linux-next/fs/ufs/inode.c
Evgeniy Dushistov 10e5dce07e [PATCH] ufs: truncate should allocate block for last byte
This patch fixes buggy behaviour of UFS
in such kind of scenario:
open(, O_TRUNC...)
ftruncate(, 1024)
ftruncate(, 0)

Such a scenario causes ufs_panic and remount read-only.  This happen
because of according to specification UFS should always allocate block for
last byte, and many parts of our implementation rely on this, but
`ufs_truncate' doesn't care about this.

To make possible return error code and to know about old size, this patch
removes `truncate' from ufs inode_operations and uses `setattr' method to
call ufs_truncate.

Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-01 09:56:03 -07:00

860 lines
23 KiB
C

/*
* linux/fs/ufs/inode.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*
* from
*
* linux/fs/ext2/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/ufs_fs.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include "swab.h"
#include "util.h"
static u64 ufs_frag_map(struct inode *inode, sector_t frag);
static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
{
struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
int ptrs = uspi->s_apb;
int ptrs_bits = uspi->s_apbshift;
const long direct_blocks = UFS_NDADDR,
indirect_blocks = ptrs,
double_blocks = (1 << (ptrs_bits * 2));
int n = 0;
UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
if (i_block < 0) {
ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
} else if (i_block < direct_blocks) {
offsets[n++] = i_block;
} else if ((i_block -= direct_blocks) < indirect_blocks) {
offsets[n++] = UFS_IND_BLOCK;
offsets[n++] = i_block;
} else if ((i_block -= indirect_blocks) < double_blocks) {
offsets[n++] = UFS_DIND_BLOCK;
offsets[n++] = i_block >> ptrs_bits;
offsets[n++] = i_block & (ptrs - 1);
} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
offsets[n++] = UFS_TIND_BLOCK;
offsets[n++] = i_block >> (ptrs_bits * 2);
offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
offsets[n++] = i_block & (ptrs - 1);
} else {
ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
}
return n;
}
/*
* Returns the location of the fragment from
* the begining of the filesystem.
*/
static u64 ufs_frag_map(struct inode *inode, sector_t frag)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
int shift = uspi->s_apbshift-uspi->s_fpbshift;
sector_t offsets[4], *p;
int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
u64 ret = 0L;
__fs32 block;
__fs64 u2_block = 0L;
unsigned flags = UFS_SB(sb)->s_flags;
u64 temp = 0L;
UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
uspi->s_fpbshift, uspi->s_apbmask,
(unsigned long long)mask);
if (depth == 0)
return 0;
p = offsets;
lock_kernel();
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
block = ufsi->i_u1.i_data[*p++];
if (!block)
goto out;
while (--depth) {
struct buffer_head *bh;
sector_t n = *p++;
bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
if (!bh)
goto out;
block = ((__fs32 *) bh->b_data)[n & mask];
brelse (bh);
if (!block)
goto out;
}
ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
goto out;
ufs2:
u2_block = ufsi->i_u1.u2_i_data[*p++];
if (!u2_block)
goto out;
while (--depth) {
struct buffer_head *bh;
sector_t n = *p++;
temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
bh = sb_bread(sb, temp +(u64) (n>>shift));
if (!bh)
goto out;
u2_block = ((__fs64 *)bh->b_data)[n & mask];
brelse(bh);
if (!u2_block)
goto out;
}
temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
ret = temp + (u64) (frag & uspi->s_fpbmask);
out:
unlock_kernel();
return ret;
}
static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
{
lock_buffer(bh);
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
}
static struct buffer_head *
ufs_clear_frags(struct inode *inode, sector_t beg,
unsigned int n)
{
struct buffer_head *res, *bh;
sector_t end = beg + n;
res = sb_getblk(inode->i_sb, beg);
ufs_clear_frag(inode, res);
for (++beg; beg < end; ++beg) {
bh = sb_getblk(inode->i_sb, beg);
ufs_clear_frag(inode, bh);
brelse(bh);
}
return res;
}
/**
* ufs_inode_getfrag() - allocate new fragment(s)
* @inode - pointer to inode
* @fragment - number of `fragment' which hold pointer
* to new allocated fragment(s)
* @new_fragment - number of new allocated fragment(s)
* @required - how many fragment(s) we require
* @err - we set it if something wrong
* @phys - pointer to where we save physical number of new allocated fragments,
* NULL if we allocate not data(indirect blocks for example).
* @new - we set it if we allocate new block
* @locked_page - for ufs_new_fragments()
*/
static struct buffer_head *
ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
sector_t new_fragment, unsigned int required, int *err,
long *phys, int *new, struct page *locked_page)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * result;
unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
unsigned tmp, goal;
__fs32 * p, * p2;
UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
"metadata %d\n", inode->i_ino, fragment,
(unsigned long long)new_fragment, required, !phys);
/* TODO : to be done for write support
if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
*/
block = ufs_fragstoblks (fragment);
blockoff = ufs_fragnum (fragment);
p = ufsi->i_u1.i_data + block;
goal = 0;
repeat:
tmp = fs32_to_cpu(sb, *p);
lastfrag = ufsi->i_lastfrag;
if (tmp && fragment < lastfrag) {
if (!phys) {
result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
if (tmp == fs32_to_cpu(sb, *p)) {
UFSD("EXIT, result %u\n", tmp + blockoff);
return result;
}
brelse (result);
goto repeat;
} else {
*phys = tmp + blockoff;
return NULL;
}
}
lastblock = ufs_fragstoblks (lastfrag);
lastblockoff = ufs_fragnum (lastfrag);
/*
* We will extend file into new block beyond last allocated block
*/
if (lastblock < block) {
/*
* We must reallocate last allocated block
*/
if (lastblockoff) {
p2 = ufsi->i_u1.i_data + lastblock;
tmp = ufs_new_fragments (inode, p2, lastfrag,
fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
err, locked_page);
if (!tmp) {
if (lastfrag != ufsi->i_lastfrag)
goto repeat;
else
return NULL;
}
lastfrag = ufsi->i_lastfrag;
}
goal = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]) + uspi->s_fpb;
tmp = ufs_new_fragments (inode, p, fragment - blockoff,
goal, required + blockoff,
err, locked_page);
}
/*
* We will extend last allocated block
*/
else if (lastblock == block) {
tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
err, locked_page);
}
/*
* We will allocate new block before last allocated block
*/
else /* (lastblock > block) */ {
if (lastblock && (tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock-1])))
goal = tmp + uspi->s_fpb;
tmp = ufs_new_fragments(inode, p, fragment - blockoff,
goal, uspi->s_fpb, err, locked_page);
}
if (!tmp) {
if ((!blockoff && *p) ||
(blockoff && lastfrag != ufsi->i_lastfrag))
goto repeat;
*err = -ENOSPC;
return NULL;
}
if (!phys) {
result = ufs_clear_frags(inode, tmp + blockoff, required);
} else {
*phys = tmp + blockoff;
result = NULL;
*err = 0;
*new = 1;
}
inode->i_ctime = CURRENT_TIME_SEC;
if (IS_SYNC(inode))
ufs_sync_inode (inode);
mark_inode_dirty(inode);
UFSD("EXIT, result %u\n", tmp + blockoff);
return result;
/* This part : To be implemented ....
Required only for writing, not required for READ-ONLY.
ufs2:
u2_block = ufs_fragstoblks(fragment);
u2_blockoff = ufs_fragnum(fragment);
p = ufsi->i_u1.u2_i_data + block;
goal = 0;
repeat2:
tmp = fs32_to_cpu(sb, *p);
lastfrag = ufsi->i_lastfrag;
*/
}
/**
* ufs_inode_getblock() - allocate new block
* @inode - pointer to inode
* @bh - pointer to block which hold "pointer" to new allocated block
* @fragment - number of `fragment' which hold pointer
* to new allocated block
* @new_fragment - number of new allocated fragment
* (block will hold this fragment and also uspi->s_fpb-1)
* @err - see ufs_inode_getfrag()
* @phys - see ufs_inode_getfrag()
* @new - see ufs_inode_getfrag()
* @locked_page - see ufs_inode_getfrag()
*/
static struct buffer_head *
ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
unsigned int fragment, sector_t new_fragment, int *err,
long *phys, int *new, struct page *locked_page)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * result;
unsigned tmp, goal, block, blockoff;
__fs32 * p;
block = ufs_fragstoblks (fragment);
blockoff = ufs_fragnum (fragment);
UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
result = NULL;
if (!bh)
goto out;
if (!buffer_uptodate(bh)) {
ll_rw_block (READ, 1, &bh);
wait_on_buffer (bh);
if (!buffer_uptodate(bh))
goto out;
}
p = (__fs32 *) bh->b_data + block;
repeat:
tmp = fs32_to_cpu(sb, *p);
if (tmp) {
if (!phys) {
result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
if (tmp == fs32_to_cpu(sb, *p))
goto out;
brelse (result);
goto repeat;
} else {
*phys = tmp + blockoff;
goto out;
}
}
if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1]) + uspi->s_fpb))
goal = tmp + uspi->s_fpb;
else
goal = bh->b_blocknr + uspi->s_fpb;
tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
uspi->s_fpb, err, locked_page);
if (!tmp) {
if (fs32_to_cpu(sb, *p))
goto repeat;
goto out;
}
if (!phys) {
result = ufs_clear_frags(inode, tmp + blockoff, uspi->s_fpb);
} else {
*phys = tmp + blockoff;
*new = 1;
}
mark_buffer_dirty(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
UFSD("result %u\n", tmp + blockoff);
out:
brelse (bh);
UFSD("EXIT\n");
return result;
}
/**
* ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
* readpage, writepage and so on
*/
int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
{
struct super_block * sb = inode->i_sb;
struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * bh;
int ret, err, new;
unsigned long ptr,phys;
u64 phys64 = 0;
if (!create) {
phys64 = ufs_frag_map(inode, fragment);
UFSD("phys64 = %llu\n", (unsigned long long)phys64);
if (phys64)
map_bh(bh_result, sb, phys64);
return 0;
}
/* This code entered only while writing ....? */
err = -EIO;
new = 0;
ret = 0;
bh = NULL;
lock_kernel();
UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
if (fragment < 0)
goto abort_negative;
if (fragment >
((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
<< uspi->s_fpbshift))
goto abort_too_big;
err = 0;
ptr = fragment;
/*
* ok, these macros clean the logic up a bit and make
* it much more readable:
*/
#define GET_INODE_DATABLOCK(x) \
ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
#define GET_INODE_PTR(x) \
ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
#define GET_INDIRECT_DATABLOCK(x) \
ufs_inode_getblock(inode, bh, x, fragment, \
&err, &phys, &new, bh_result->b_page);
#define GET_INDIRECT_PTR(x) \
ufs_inode_getblock(inode, bh, x, fragment, \
&err, NULL, NULL, bh_result->b_page);
if (ptr < UFS_NDIR_FRAGMENT) {
bh = GET_INODE_DATABLOCK(ptr);
goto out;
}
ptr -= UFS_NDIR_FRAGMENT;
if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
goto get_indirect;
}
ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
goto get_double;
}
ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
get_double:
bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
get_indirect:
bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
#undef GET_INODE_DATABLOCK
#undef GET_INODE_PTR
#undef GET_INDIRECT_DATABLOCK
#undef GET_INDIRECT_PTR
out:
if (err)
goto abort;
if (new)
set_buffer_new(bh_result);
map_bh(bh_result, sb, phys);
abort:
unlock_kernel();
return err;
abort_negative:
ufs_warning(sb, "ufs_get_block", "block < 0");
goto abort;
abort_too_big:
ufs_warning(sb, "ufs_get_block", "block > big");
goto abort;
}
static struct buffer_head *ufs_getfrag(struct inode *inode,
unsigned int fragment,
int create, int *err)
{
struct buffer_head dummy;
int error;
dummy.b_state = 0;
dummy.b_blocknr = -1000;
error = ufs_getfrag_block(inode, fragment, &dummy, create);
*err = error;
if (!error && buffer_mapped(&dummy)) {
struct buffer_head *bh;
bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
if (buffer_new(&dummy)) {
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
}
return bh;
}
return NULL;
}
struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
int create, int * err)
{
struct buffer_head * bh;
UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
bh = ufs_getfrag (inode, fragment, create, err);
if (!bh || buffer_uptodate(bh))
return bh;
ll_rw_block (READ, 1, &bh);
wait_on_buffer (bh);
if (buffer_uptodate(bh))
return bh;
brelse (bh);
*err = -EIO;
return NULL;
}
static int ufs_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page,ufs_getfrag_block,wbc);
}
static int ufs_readpage(struct file *file, struct page *page)
{
return block_read_full_page(page,ufs_getfrag_block);
}
static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
{
return block_prepare_write(page,from,to,ufs_getfrag_block);
}
static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
{
return generic_block_bmap(mapping,block,ufs_getfrag_block);
}
const struct address_space_operations ufs_aops = {
.readpage = ufs_readpage,
.writepage = ufs_writepage,
.sync_page = block_sync_page,
.prepare_write = ufs_prepare_write,
.commit_write = generic_commit_write,
.bmap = ufs_bmap
};
static void ufs_set_inode_ops(struct inode *inode)
{
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ufs_file_inode_operations;
inode->i_fop = &ufs_file_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ufs_dir_inode_operations;
inode->i_fop = &ufs_dir_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISLNK(inode->i_mode)) {
if (!inode->i_blocks)
inode->i_op = &ufs_fast_symlink_inode_operations;
else {
inode->i_op = &page_symlink_inode_operations;
inode->i_mapping->a_ops = &ufs_aops;
}
} else
init_special_inode(inode, inode->i_mode,
ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
}
static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
mode_t mode;
unsigned i;
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
if (inode->i_nlink == 0)
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
inode->i_mtime.tv_nsec = 0;
inode->i_atime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
} else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
}
}
static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
mode_t mode;
unsigned i;
UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
if (inode->i_nlink == 0)
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
inode->i_mtime.tv_nsec = 0;
inode->i_atime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
/*
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
*/
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufsi->i_u1.u2_i_data[i] =
ufs2_inode->ui_u2.ui_addr.ui_db[i];
} else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
}
}
void ufs_read_inode(struct inode * inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * bh;
UFSD("ENTER, ino %lu\n", inode->i_ino);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
inode->i_ino);
goto bad_inode;
}
bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
inode->i_ino);
goto bad_inode;
}
if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
ufs2_read_inode(inode,
ufs2_inode + ufs_inotofsbo(inode->i_ino));
} else {
struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
}
inode->i_blksize = PAGE_SIZE;/*This is the optimal IO size (for stat)*/
inode->i_version++;
ufsi->i_lastfrag =
(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
ufsi->i_dir_start_lookup = 0;
ufsi->i_osync = 0;
ufs_set_inode_ops(inode);
brelse(bh);
UFSD("EXIT\n");
return;
bad_inode:
make_bad_inode(inode);
}
static int ufs_update_inode(struct inode * inode, int do_sync)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * bh;
struct ufs_inode * ufs_inode;
unsigned i;
unsigned flags;
UFSD("ENTER, ino %lu\n", inode->i_ino);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
flags = UFS_SB(sb)->s_flags;
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
return -1;
}
bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
return -1;
}
ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
ufs_inode->ui_atime.tv_usec = 0;
ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
ufs_inode->ui_ctime.tv_usec = 0;
ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
ufs_inode->ui_mtime.tv_usec = 0;
ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
} else if (inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
}
else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs_inode));
mark_buffer_dirty(bh);
if (do_sync)
sync_dirty_buffer(bh);
brelse (bh);
UFSD("EXIT\n");
return 0;
}
int ufs_write_inode (struct inode * inode, int wait)
{
int ret;
lock_kernel();
ret = ufs_update_inode (inode, wait);
unlock_kernel();
return ret;
}
int ufs_sync_inode (struct inode *inode)
{
return ufs_update_inode (inode, 1);
}
void ufs_delete_inode (struct inode * inode)
{
loff_t old_i_size;
truncate_inode_pages(&inode->i_data, 0);
/*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
lock_kernel();
mark_inode_dirty(inode);
ufs_update_inode(inode, IS_SYNC(inode));
old_i_size = inode->i_size;
inode->i_size = 0;
if (inode->i_blocks && ufs_truncate(inode, old_i_size))
ufs_warning(inode->i_sb, __FUNCTION__, "ufs_truncate failed\n");
ufs_free_inode (inode);
unlock_kernel();
}