linux-next/fs/xfs/xfs_attr_inactive.c
Brian Foster c8eac49ef7 xfs: remove all boilerplate defer init/finish code
At this point, the transaction subsystem completely manages deferred
items internally such that the common and boilerplate
xfs_trans_alloc() -> xfs_defer_init() -> xfs_defer_finish() ->
xfs_trans_commit() sequence can be replaced with a simple
transaction allocation and commit.

Remove all such boilerplate deferred ops code. In doing so, we
change each case over to use the dfops in the transaction and
specifically eliminate:

- The on-stack dfops and associated xfs_defer_init() call, as the
  internal dfops is initialized on transaction allocation.
- xfs_bmap_finish() calls that precede a final xfs_trans_commit() of
  a transaction.
- xfs_defer_cancel() calls in error handlers that precede a
  transaction cancel.

The only deferred ops calls that remain are those that are
non-deterministic with respect to the final commit of the associated
transaction or are open-coded due to special handling.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-07-26 10:15:15 -07:00

448 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2013 Red Hat, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_alloc.h"
#include "xfs_attr_remote.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_attr.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_trace.h"
#include "xfs_dir2.h"
#include "xfs_defer.h"
/*
* Look at all the extents for this logical region,
* invalidate any buffers that are incore/in transactions.
*/
STATIC int
xfs_attr3_leaf_freextent(
struct xfs_trans **trans,
struct xfs_inode *dp,
xfs_dablk_t blkno,
int blkcnt)
{
struct xfs_bmbt_irec map;
struct xfs_buf *bp;
xfs_dablk_t tblkno;
xfs_daddr_t dblkno;
int tblkcnt;
int dblkcnt;
int nmap;
int error;
/*
* Roll through the "value", invalidating the attribute value's
* blocks.
*/
tblkno = blkno;
tblkcnt = blkcnt;
while (tblkcnt > 0) {
/*
* Try to remember where we decided to put the value.
*/
nmap = 1;
error = xfs_bmapi_read(dp, (xfs_fileoff_t)tblkno, tblkcnt,
&map, &nmap, XFS_BMAPI_ATTRFORK);
if (error) {
return error;
}
ASSERT(nmap == 1);
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
/*
* If it's a hole, these are already unmapped
* so there's nothing to invalidate.
*/
if (map.br_startblock != HOLESTARTBLOCK) {
dblkno = XFS_FSB_TO_DADDR(dp->i_mount,
map.br_startblock);
dblkcnt = XFS_FSB_TO_BB(dp->i_mount,
map.br_blockcount);
bp = xfs_trans_get_buf(*trans,
dp->i_mount->m_ddev_targp,
dblkno, dblkcnt, 0);
if (!bp)
return -ENOMEM;
xfs_trans_binval(*trans, bp);
/*
* Roll to next transaction.
*/
error = xfs_trans_roll_inode(trans, dp);
if (error)
return error;
}
tblkno += map.br_blockcount;
tblkcnt -= map.br_blockcount;
}
return 0;
}
/*
* Invalidate all of the "remote" value regions pointed to by a particular
* leaf block.
* Note that we must release the lock on the buffer so that we are not
* caught holding something that the logging code wants to flush to disk.
*/
STATIC int
xfs_attr3_leaf_inactive(
struct xfs_trans **trans,
struct xfs_inode *dp,
struct xfs_buf *bp)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_attr_inactive_list *list;
struct xfs_attr_inactive_list *lp;
int error;
int count;
int size;
int tmp;
int i;
struct xfs_mount *mp = bp->b_target->bt_mount;
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
/*
* Count the number of "remote" value extents.
*/
count = 0;
entry = xfs_attr3_leaf_entryp(leaf);
for (i = 0; i < ichdr.count; entry++, i++) {
if (be16_to_cpu(entry->nameidx) &&
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
name_rmt = xfs_attr3_leaf_name_remote(leaf, i);
if (name_rmt->valueblk)
count++;
}
}
/*
* If there are no "remote" values, we're done.
*/
if (count == 0) {
xfs_trans_brelse(*trans, bp);
return 0;
}
/*
* Allocate storage for a list of all the "remote" value extents.
*/
size = count * sizeof(xfs_attr_inactive_list_t);
list = kmem_alloc(size, KM_SLEEP);
/*
* Identify each of the "remote" value extents.
*/
lp = list;
entry = xfs_attr3_leaf_entryp(leaf);
for (i = 0; i < ichdr.count; entry++, i++) {
if (be16_to_cpu(entry->nameidx) &&
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
name_rmt = xfs_attr3_leaf_name_remote(leaf, i);
if (name_rmt->valueblk) {
lp->valueblk = be32_to_cpu(name_rmt->valueblk);
lp->valuelen = xfs_attr3_rmt_blocks(dp->i_mount,
be32_to_cpu(name_rmt->valuelen));
lp++;
}
}
}
xfs_trans_brelse(*trans, bp); /* unlock for trans. in freextent() */
/*
* Invalidate each of the "remote" value extents.
*/
error = 0;
for (lp = list, i = 0; i < count; i++, lp++) {
tmp = xfs_attr3_leaf_freextent(trans, dp,
lp->valueblk, lp->valuelen);
if (error == 0)
error = tmp; /* save only the 1st errno */
}
kmem_free(list);
return error;
}
/*
* Recurse (gasp!) through the attribute nodes until we find leaves.
* We're doing a depth-first traversal in order to invalidate everything.
*/
STATIC int
xfs_attr3_node_inactive(
struct xfs_trans **trans,
struct xfs_inode *dp,
struct xfs_buf *bp,
int level)
{
xfs_da_blkinfo_t *info;
xfs_da_intnode_t *node;
xfs_dablk_t child_fsb;
xfs_daddr_t parent_blkno, child_blkno;
int error, i;
struct xfs_buf *child_bp;
struct xfs_da_node_entry *btree;
struct xfs_da3_icnode_hdr ichdr;
/*
* Since this code is recursive (gasp!) we must protect ourselves.
*/
if (level > XFS_DA_NODE_MAXDEPTH) {
xfs_trans_brelse(*trans, bp); /* no locks for later trans */
return -EIO;
}
node = bp->b_addr;
dp->d_ops->node_hdr_from_disk(&ichdr, node);
parent_blkno = bp->b_bn;
if (!ichdr.count) {
xfs_trans_brelse(*trans, bp);
return 0;
}
btree = dp->d_ops->node_tree_p(node);
child_fsb = be32_to_cpu(btree[0].before);
xfs_trans_brelse(*trans, bp); /* no locks for later trans */
/*
* If this is the node level just above the leaves, simply loop
* over the leaves removing all of them. If this is higher up
* in the tree, recurse downward.
*/
for (i = 0; i < ichdr.count; i++) {
/*
* Read the subsidiary block to see what we have to work with.
* Don't do this in a transaction. This is a depth-first
* traversal of the tree so we may deal with many blocks
* before we come back to this one.
*/
error = xfs_da3_node_read(*trans, dp, child_fsb, -1, &child_bp,
XFS_ATTR_FORK);
if (error)
return error;
/* save for re-read later */
child_blkno = XFS_BUF_ADDR(child_bp);
/*
* Invalidate the subtree, however we have to.
*/
info = child_bp->b_addr;
switch (info->magic) {
case cpu_to_be16(XFS_DA_NODE_MAGIC):
case cpu_to_be16(XFS_DA3_NODE_MAGIC):
error = xfs_attr3_node_inactive(trans, dp, child_bp,
level + 1);
break;
case cpu_to_be16(XFS_ATTR_LEAF_MAGIC):
case cpu_to_be16(XFS_ATTR3_LEAF_MAGIC):
error = xfs_attr3_leaf_inactive(trans, dp, child_bp);
break;
default:
error = -EIO;
xfs_trans_brelse(*trans, child_bp);
break;
}
if (error)
return error;
/*
* Remove the subsidiary block from the cache and from the log.
*/
error = xfs_da_get_buf(*trans, dp, 0, child_blkno, &child_bp,
XFS_ATTR_FORK);
if (error)
return error;
xfs_trans_binval(*trans, child_bp);
/*
* If we're not done, re-read the parent to get the next
* child block number.
*/
if (i + 1 < ichdr.count) {
error = xfs_da3_node_read(*trans, dp, 0, parent_blkno,
&bp, XFS_ATTR_FORK);
if (error)
return error;
node = bp->b_addr;
btree = dp->d_ops->node_tree_p(node);
child_fsb = be32_to_cpu(btree[i + 1].before);
xfs_trans_brelse(*trans, bp);
}
/*
* Atomically commit the whole invalidate stuff.
*/
error = xfs_trans_roll_inode(trans, dp);
if (error)
return error;
}
return 0;
}
/*
* Indiscriminately delete the entire attribute fork
*
* Recurse (gasp!) through the attribute nodes until we find leaves.
* We're doing a depth-first traversal in order to invalidate everything.
*/
static int
xfs_attr3_root_inactive(
struct xfs_trans **trans,
struct xfs_inode *dp)
{
struct xfs_da_blkinfo *info;
struct xfs_buf *bp;
xfs_daddr_t blkno;
int error;
/*
* Read block 0 to see what we have to work with.
* We only get here if we have extents, since we remove
* the extents in reverse order the extent containing
* block 0 must still be there.
*/
error = xfs_da3_node_read(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK);
if (error)
return error;
blkno = bp->b_bn;
/*
* Invalidate the tree, even if the "tree" is only a single leaf block.
* This is a depth-first traversal!
*/
info = bp->b_addr;
switch (info->magic) {
case cpu_to_be16(XFS_DA_NODE_MAGIC):
case cpu_to_be16(XFS_DA3_NODE_MAGIC):
error = xfs_attr3_node_inactive(trans, dp, bp, 1);
break;
case cpu_to_be16(XFS_ATTR_LEAF_MAGIC):
case cpu_to_be16(XFS_ATTR3_LEAF_MAGIC):
error = xfs_attr3_leaf_inactive(trans, dp, bp);
break;
default:
error = -EIO;
xfs_trans_brelse(*trans, bp);
break;
}
if (error)
return error;
/*
* Invalidate the incore copy of the root block.
*/
error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK);
if (error)
return error;
xfs_trans_binval(*trans, bp); /* remove from cache */
/*
* Commit the invalidate and start the next transaction.
*/
error = xfs_trans_roll_inode(trans, dp);
return error;
}
/*
* xfs_attr_inactive kills all traces of an attribute fork on an inode. It
* removes both the on-disk and in-memory inode fork. Note that this also has to
* handle the condition of inodes without attributes but with an attribute fork
* configured, so we can't use xfs_inode_hasattr() here.
*
* The in-memory attribute fork is removed even on error.
*/
int
xfs_attr_inactive(
struct xfs_inode *dp)
{
struct xfs_trans *trans;
struct xfs_mount *mp;
int lock_mode = XFS_ILOCK_SHARED;
int error = 0;
mp = dp->i_mount;
ASSERT(! XFS_NOT_DQATTACHED(mp, dp));
xfs_ilock(dp, lock_mode);
if (!XFS_IFORK_Q(dp))
goto out_destroy_fork;
xfs_iunlock(dp, lock_mode);
lock_mode = 0;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_attrinval, 0, 0, 0, &trans);
if (error)
goto out_destroy_fork;
lock_mode = XFS_ILOCK_EXCL;
xfs_ilock(dp, lock_mode);
if (!XFS_IFORK_Q(dp))
goto out_cancel;
/*
* No need to make quota reservations here. We expect to release some
* blocks, not allocate, in the common case.
*/
xfs_trans_ijoin(trans, dp, 0);
/*
* Invalidate and truncate the attribute fork extents. Make sure the
* fork actually has attributes as otherwise the invalidation has no
* blocks to read and returns an error. In this case, just do the fork
* removal below.
*/
if (xfs_inode_hasattr(dp) &&
dp->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) {
error = xfs_attr3_root_inactive(&trans, dp);
if (error)
goto out_cancel;
error = xfs_itruncate_extents(&trans, dp, XFS_ATTR_FORK, 0);
if (error)
goto out_cancel;
}
/* Reset the attribute fork - this also destroys the in-core fork */
xfs_attr_fork_remove(dp, trans);
error = xfs_trans_commit(trans);
xfs_iunlock(dp, lock_mode);
return error;
out_cancel:
xfs_trans_cancel(trans);
out_destroy_fork:
/* kill the in-core attr fork before we drop the inode lock */
if (dp->i_afp)
xfs_idestroy_fork(dp, XFS_ATTR_FORK);
if (lock_mode)
xfs_iunlock(dp, lock_mode);
return error;
}