linux-next/drivers/tty/serial/serial_core.c
Claudiu Beznea a47cf07f60 serial: core: Call device_set_awake_path() for console port
In case the UART port is used as a console, no_console_suspend is
available in bootargs and UART port is part of a software-controlled power
domain we need to call device_set_awake_path(). This lets the power
domain core code know that this domain should not be powered off
during system suspend. Otherwise, the UART port power domain is turned off,
nothing is printed while suspending and the suspend/resume process is
blocked. This was detected on the Renesas RZ/G3S SoC while adding support
for power domains.

Based on code investigation (on v6.9-rc5), this issue is present on other
SoCs (e.g., Renesas R-Mobile A1 [1], IMX8QXP [2]) and different SoCs have
particular implementation to handle it. Due to this the patch added the
call of device_set_awake_path() in uart_suspend_port() instead of having
it in the platform specific UART driver.

[1] drivers/pmdomain/renesas/rmobile-sysc.c:116
[2] drivers/pmdomain/imx/scu-pd.c:357

Suggested-by: Ulf Hansson <ulf.hansson@linaro.org>
Suggested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Claudiu Beznea <claudiu.beznea.uj@bp.renesas.com>
Link: https://lore.kernel.org/r/20240430095930.2806067-1-claudiu.beznea.uj@bp.renesas.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-05-04 18:11:58 +02:00

3707 lines
93 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver core for serial ports
*
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
*
* Copyright 1999 ARM Limited
* Copyright (C) 2000-2001 Deep Blue Solutions Ltd.
*/
#include <linux/module.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/gpio/consumer.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/device.h>
#include <linux/serial.h> /* for serial_state and serial_icounter_struct */
#include <linux/serial_core.h>
#include <linux/sysrq.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/security.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include "serial_base.h"
/*
* This is used to lock changes in serial line configuration.
*/
static DEFINE_MUTEX(port_mutex);
/*
* lockdep: port->lock is initialized in two places, but we
* want only one lock-class:
*/
static struct lock_class_key port_lock_key;
#define HIGH_BITS_OFFSET ((sizeof(long)-sizeof(int))*8)
/*
* Max time with active RTS before/after data is sent.
*/
#define RS485_MAX_RTS_DELAY 100 /* msecs */
static void uart_change_pm(struct uart_state *state,
enum uart_pm_state pm_state);
static void uart_port_shutdown(struct tty_port *port);
static int uart_dcd_enabled(struct uart_port *uport)
{
return !!(uport->status & UPSTAT_DCD_ENABLE);
}
static inline struct uart_port *uart_port_ref(struct uart_state *state)
{
if (atomic_add_unless(&state->refcount, 1, 0))
return state->uart_port;
return NULL;
}
static inline void uart_port_deref(struct uart_port *uport)
{
if (atomic_dec_and_test(&uport->state->refcount))
wake_up(&uport->state->remove_wait);
}
#define uart_port_lock(state, flags) \
({ \
struct uart_port *__uport = uart_port_ref(state); \
if (__uport) \
uart_port_lock_irqsave(__uport, &flags); \
__uport; \
})
#define uart_port_unlock(uport, flags) \
({ \
struct uart_port *__uport = uport; \
if (__uport) { \
uart_port_unlock_irqrestore(__uport, flags); \
uart_port_deref(__uport); \
} \
})
static inline struct uart_port *uart_port_check(struct uart_state *state)
{
lockdep_assert_held(&state->port.mutex);
return state->uart_port;
}
/**
* uart_write_wakeup - schedule write processing
* @port: port to be processed
*
* This routine is used by the interrupt handler to schedule processing in the
* software interrupt portion of the driver. A driver is expected to call this
* function when the number of characters in the transmit buffer have dropped
* below a threshold.
*
* Locking: @port->lock should be held
*/
void uart_write_wakeup(struct uart_port *port)
{
struct uart_state *state = port->state;
/*
* This means you called this function _after_ the port was
* closed. No cookie for you.
*/
BUG_ON(!state);
tty_port_tty_wakeup(&state->port);
}
EXPORT_SYMBOL(uart_write_wakeup);
static void uart_stop(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
port = uart_port_lock(state, flags);
if (port)
port->ops->stop_tx(port);
uart_port_unlock(port, flags);
}
static void __uart_start(struct uart_state *state)
{
struct uart_port *port = state->uart_port;
struct serial_port_device *port_dev;
int err;
if (!port || port->flags & UPF_DEAD || uart_tx_stopped(port))
return;
port_dev = port->port_dev;
/* Increment the runtime PM usage count for the active check below */
err = pm_runtime_get(&port_dev->dev);
if (err < 0 && err != -EINPROGRESS) {
pm_runtime_put_noidle(&port_dev->dev);
return;
}
/*
* Start TX if enabled, and kick runtime PM. If the device is not
* enabled, serial_port_runtime_resume() calls start_tx() again
* after enabling the device.
*/
if (!pm_runtime_enabled(port->dev) || pm_runtime_active(&port_dev->dev))
port->ops->start_tx(port);
pm_runtime_mark_last_busy(&port_dev->dev);
pm_runtime_put_autosuspend(&port_dev->dev);
}
static void uart_start(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
port = uart_port_lock(state, flags);
__uart_start(state);
uart_port_unlock(port, flags);
}
static void
uart_update_mctrl(struct uart_port *port, unsigned int set, unsigned int clear)
{
unsigned long flags;
unsigned int old;
uart_port_lock_irqsave(port, &flags);
old = port->mctrl;
port->mctrl = (old & ~clear) | set;
if (old != port->mctrl && !(port->rs485.flags & SER_RS485_ENABLED))
port->ops->set_mctrl(port, port->mctrl);
uart_port_unlock_irqrestore(port, flags);
}
#define uart_set_mctrl(port, set) uart_update_mctrl(port, set, 0)
#define uart_clear_mctrl(port, clear) uart_update_mctrl(port, 0, clear)
static void uart_port_dtr_rts(struct uart_port *uport, bool active)
{
if (active)
uart_set_mctrl(uport, TIOCM_DTR | TIOCM_RTS);
else
uart_clear_mctrl(uport, TIOCM_DTR | TIOCM_RTS);
}
/* Caller holds port mutex */
static void uart_change_line_settings(struct tty_struct *tty, struct uart_state *state,
const struct ktermios *old_termios)
{
struct uart_port *uport = uart_port_check(state);
struct ktermios *termios;
bool old_hw_stopped;
/*
* If we have no tty, termios, or the port does not exist,
* then we can't set the parameters for this port.
*/
if (!tty || uport->type == PORT_UNKNOWN)
return;
termios = &tty->termios;
uport->ops->set_termios(uport, termios, old_termios);
/*
* Set modem status enables based on termios cflag
*/
uart_port_lock_irq(uport);
if (termios->c_cflag & CRTSCTS)
uport->status |= UPSTAT_CTS_ENABLE;
else
uport->status &= ~UPSTAT_CTS_ENABLE;
if (termios->c_cflag & CLOCAL)
uport->status &= ~UPSTAT_DCD_ENABLE;
else
uport->status |= UPSTAT_DCD_ENABLE;
/* reset sw-assisted CTS flow control based on (possibly) new mode */
old_hw_stopped = uport->hw_stopped;
uport->hw_stopped = uart_softcts_mode(uport) &&
!(uport->ops->get_mctrl(uport) & TIOCM_CTS);
if (uport->hw_stopped != old_hw_stopped) {
if (!old_hw_stopped)
uport->ops->stop_tx(uport);
else
__uart_start(state);
}
uart_port_unlock_irq(uport);
}
static int uart_alloc_xmit_buf(struct tty_port *port)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
unsigned long flags;
unsigned long page;
/*
* Initialise and allocate the transmit and temporary
* buffer.
*/
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
uport = uart_port_lock(state, flags);
if (!state->port.xmit_buf) {
state->port.xmit_buf = (unsigned char *)page;
kfifo_init(&state->port.xmit_fifo, state->port.xmit_buf,
PAGE_SIZE);
uart_port_unlock(uport, flags);
} else {
uart_port_unlock(uport, flags);
/*
* Do not free() the page under the port lock, see
* uart_free_xmit_buf().
*/
free_page(page);
}
return 0;
}
static void uart_free_xmit_buf(struct tty_port *port)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
unsigned long flags;
char *xmit_buf;
/*
* Do not free() the transmit buffer page under the port lock since
* this can create various circular locking scenarios. For instance,
* console driver may need to allocate/free a debug object, which
* can end up in printk() recursion.
*/
uport = uart_port_lock(state, flags);
xmit_buf = port->xmit_buf;
port->xmit_buf = NULL;
INIT_KFIFO(port->xmit_fifo);
uart_port_unlock(uport, flags);
free_page((unsigned long)xmit_buf);
}
/*
* Startup the port. This will be called once per open. All calls
* will be serialised by the per-port mutex.
*/
static int uart_port_startup(struct tty_struct *tty, struct uart_state *state,
bool init_hw)
{
struct uart_port *uport = uart_port_check(state);
int retval;
if (uport->type == PORT_UNKNOWN)
return 1;
/*
* Make sure the device is in D0 state.
*/
uart_change_pm(state, UART_PM_STATE_ON);
retval = uart_alloc_xmit_buf(&state->port);
if (retval)
return retval;
retval = uport->ops->startup(uport);
if (retval == 0) {
if (uart_console(uport) && uport->cons->cflag) {
tty->termios.c_cflag = uport->cons->cflag;
tty->termios.c_ispeed = uport->cons->ispeed;
tty->termios.c_ospeed = uport->cons->ospeed;
uport->cons->cflag = 0;
uport->cons->ispeed = 0;
uport->cons->ospeed = 0;
}
/*
* Initialise the hardware port settings.
*/
uart_change_line_settings(tty, state, NULL);
/*
* Setup the RTS and DTR signals once the
* port is open and ready to respond.
*/
if (init_hw && C_BAUD(tty))
uart_port_dtr_rts(uport, true);
}
/*
* This is to allow setserial on this port. People may want to set
* port/irq/type and then reconfigure the port properly if it failed
* now.
*/
if (retval && capable(CAP_SYS_ADMIN))
return 1;
return retval;
}
static int uart_startup(struct tty_struct *tty, struct uart_state *state,
bool init_hw)
{
struct tty_port *port = &state->port;
struct uart_port *uport;
int retval;
if (tty_port_initialized(port))
goto out_base_port_startup;
retval = uart_port_startup(tty, state, init_hw);
if (retval) {
set_bit(TTY_IO_ERROR, &tty->flags);
return retval;
}
out_base_port_startup:
uport = uart_port_check(state);
if (!uport)
return -EIO;
serial_base_port_startup(uport);
return 0;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on. Calls to
* uart_shutdown are serialised by the per-port semaphore.
*
* uport == NULL if uart_port has already been removed
*/
static void uart_shutdown(struct tty_struct *tty, struct uart_state *state)
{
struct uart_port *uport = uart_port_check(state);
struct tty_port *port = &state->port;
/*
* Set the TTY IO error marker
*/
if (tty)
set_bit(TTY_IO_ERROR, &tty->flags);
if (uport)
serial_base_port_shutdown(uport);
if (tty_port_initialized(port)) {
tty_port_set_initialized(port, false);
/*
* Turn off DTR and RTS early.
*/
if (uport && uart_console(uport) && tty) {
uport->cons->cflag = tty->termios.c_cflag;
uport->cons->ispeed = tty->termios.c_ispeed;
uport->cons->ospeed = tty->termios.c_ospeed;
}
if (!tty || C_HUPCL(tty))
uart_port_dtr_rts(uport, false);
uart_port_shutdown(port);
}
/*
* It's possible for shutdown to be called after suspend if we get
* a DCD drop (hangup) at just the right time. Clear suspended bit so
* we don't try to resume a port that has been shutdown.
*/
tty_port_set_suspended(port, false);
uart_free_xmit_buf(port);
}
/**
* uart_update_timeout - update per-port frame timing information
* @port: uart_port structure describing the port
* @cflag: termios cflag value
* @baud: speed of the port
*
* Set the @port frame timing information from which the FIFO timeout value is
* derived. The @cflag value should reflect the actual hardware settings as
* number of bits, parity, stop bits and baud rate is taken into account here.
*
* Locking: caller is expected to take @port->lock
*/
void
uart_update_timeout(struct uart_port *port, unsigned int cflag,
unsigned int baud)
{
u64 temp = tty_get_frame_size(cflag);
temp *= NSEC_PER_SEC;
port->frame_time = (unsigned int)DIV64_U64_ROUND_UP(temp, baud);
}
EXPORT_SYMBOL(uart_update_timeout);
/**
* uart_get_baud_rate - return baud rate for a particular port
* @port: uart_port structure describing the port in question.
* @termios: desired termios settings
* @old: old termios (or %NULL)
* @min: minimum acceptable baud rate
* @max: maximum acceptable baud rate
*
* Decode the termios structure into a numeric baud rate, taking account of the
* magic 38400 baud rate (with spd_* flags), and mapping the %B0 rate to 9600
* baud.
*
* If the new baud rate is invalid, try the @old termios setting. If it's still
* invalid, we try 9600 baud. If that is also invalid 0 is returned.
*
* The @termios structure is updated to reflect the baud rate we're actually
* going to be using. Don't do this for the case where B0 is requested ("hang
* up").
*
* Locking: caller dependent
*/
unsigned int
uart_get_baud_rate(struct uart_port *port, struct ktermios *termios,
const struct ktermios *old, unsigned int min, unsigned int max)
{
unsigned int try;
unsigned int baud;
unsigned int altbaud;
int hung_up = 0;
upf_t flags = port->flags & UPF_SPD_MASK;
switch (flags) {
case UPF_SPD_HI:
altbaud = 57600;
break;
case UPF_SPD_VHI:
altbaud = 115200;
break;
case UPF_SPD_SHI:
altbaud = 230400;
break;
case UPF_SPD_WARP:
altbaud = 460800;
break;
default:
altbaud = 38400;
break;
}
for (try = 0; try < 2; try++) {
baud = tty_termios_baud_rate(termios);
/*
* The spd_hi, spd_vhi, spd_shi, spd_warp kludge...
* Die! Die! Die!
*/
if (try == 0 && baud == 38400)
baud = altbaud;
/*
* Special case: B0 rate.
*/
if (baud == 0) {
hung_up = 1;
baud = 9600;
}
if (baud >= min && baud <= max)
return baud;
/*
* Oops, the quotient was zero. Try again with
* the old baud rate if possible.
*/
termios->c_cflag &= ~CBAUD;
if (old) {
baud = tty_termios_baud_rate(old);
if (!hung_up)
tty_termios_encode_baud_rate(termios,
baud, baud);
old = NULL;
continue;
}
/*
* As a last resort, if the range cannot be met then clip to
* the nearest chip supported rate.
*/
if (!hung_up) {
if (baud <= min)
tty_termios_encode_baud_rate(termios,
min + 1, min + 1);
else
tty_termios_encode_baud_rate(termios,
max - 1, max - 1);
}
}
return 0;
}
EXPORT_SYMBOL(uart_get_baud_rate);
/**
* uart_get_divisor - return uart clock divisor
* @port: uart_port structure describing the port
* @baud: desired baud rate
*
* Calculate the divisor (baud_base / baud) for the specified @baud,
* appropriately rounded.
*
* If 38400 baud and custom divisor is selected, return the custom divisor
* instead.
*
* Locking: caller dependent
*/
unsigned int
uart_get_divisor(struct uart_port *port, unsigned int baud)
{
unsigned int quot;
/*
* Old custom speed handling.
*/
if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST)
quot = port->custom_divisor;
else
quot = DIV_ROUND_CLOSEST(port->uartclk, 16 * baud);
return quot;
}
EXPORT_SYMBOL(uart_get_divisor);
static int uart_put_char(struct tty_struct *tty, u8 c)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
int ret = 0;
port = uart_port_lock(state, flags);
if (!state->port.xmit_buf) {
uart_port_unlock(port, flags);
return 0;
}
if (port)
ret = kfifo_put(&state->port.xmit_fifo, c);
uart_port_unlock(port, flags);
return ret;
}
static void uart_flush_chars(struct tty_struct *tty)
{
uart_start(tty);
}
static ssize_t uart_write(struct tty_struct *tty, const u8 *buf, size_t count)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
int ret = 0;
/*
* This means you called this function _after_ the port was
* closed. No cookie for you.
*/
if (WARN_ON(!state))
return -EL3HLT;
port = uart_port_lock(state, flags);
if (WARN_ON_ONCE(!state->port.xmit_buf)) {
uart_port_unlock(port, flags);
return 0;
}
if (port)
ret = kfifo_in(&state->port.xmit_fifo, buf, count);
__uart_start(state);
uart_port_unlock(port, flags);
return ret;
}
static unsigned int uart_write_room(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
unsigned int ret;
port = uart_port_lock(state, flags);
ret = kfifo_avail(&state->port.xmit_fifo);
uart_port_unlock(port, flags);
return ret;
}
static unsigned int uart_chars_in_buffer(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
unsigned int ret;
port = uart_port_lock(state, flags);
ret = kfifo_len(&state->port.xmit_fifo);
uart_port_unlock(port, flags);
return ret;
}
static void uart_flush_buffer(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
/*
* This means you called this function _after_ the port was
* closed. No cookie for you.
*/
if (WARN_ON(!state))
return;
pr_debug("uart_flush_buffer(%d) called\n", tty->index);
port = uart_port_lock(state, flags);
if (!port)
return;
kfifo_reset(&state->port.xmit_fifo);
if (port->ops->flush_buffer)
port->ops->flush_buffer(port);
uart_port_unlock(port, flags);
tty_port_tty_wakeup(&state->port);
}
/*
* This function performs low-level write of high-priority XON/XOFF
* character and accounting for it.
*
* Requires uart_port to implement .serial_out().
*/
void uart_xchar_out(struct uart_port *uport, int offset)
{
serial_port_out(uport, offset, uport->x_char);
uport->icount.tx++;
uport->x_char = 0;
}
EXPORT_SYMBOL_GPL(uart_xchar_out);
/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void uart_send_xchar(struct tty_struct *tty, u8 ch)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long flags;
port = uart_port_ref(state);
if (!port)
return;
if (port->ops->send_xchar)
port->ops->send_xchar(port, ch);
else {
uart_port_lock_irqsave(port, &flags);
port->x_char = ch;
if (ch)
port->ops->start_tx(port);
uart_port_unlock_irqrestore(port, flags);
}
uart_port_deref(port);
}
static void uart_throttle(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
upstat_t mask = UPSTAT_SYNC_FIFO;
struct uart_port *port;
port = uart_port_ref(state);
if (!port)
return;
if (I_IXOFF(tty))
mask |= UPSTAT_AUTOXOFF;
if (C_CRTSCTS(tty))
mask |= UPSTAT_AUTORTS;
if (port->status & mask) {
port->ops->throttle(port);
mask &= ~port->status;
}
if (mask & UPSTAT_AUTORTS)
uart_clear_mctrl(port, TIOCM_RTS);
if (mask & UPSTAT_AUTOXOFF)
uart_send_xchar(tty, STOP_CHAR(tty));
uart_port_deref(port);
}
static void uart_unthrottle(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
upstat_t mask = UPSTAT_SYNC_FIFO;
struct uart_port *port;
port = uart_port_ref(state);
if (!port)
return;
if (I_IXOFF(tty))
mask |= UPSTAT_AUTOXOFF;
if (C_CRTSCTS(tty))
mask |= UPSTAT_AUTORTS;
if (port->status & mask) {
port->ops->unthrottle(port);
mask &= ~port->status;
}
if (mask & UPSTAT_AUTORTS)
uart_set_mctrl(port, TIOCM_RTS);
if (mask & UPSTAT_AUTOXOFF)
uart_send_xchar(tty, START_CHAR(tty));
uart_port_deref(port);
}
static int uart_get_info(struct tty_port *port, struct serial_struct *retinfo)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
int ret = -ENODEV;
/* Initialize structure in case we error out later to prevent any stack info leakage. */
*retinfo = (struct serial_struct){};
/*
* Ensure the state we copy is consistent and no hardware changes
* occur as we go
*/
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (!uport)
goto out;
retinfo->type = uport->type;
retinfo->line = uport->line;
retinfo->port = uport->iobase;
if (HIGH_BITS_OFFSET)
retinfo->port_high = (long) uport->iobase >> HIGH_BITS_OFFSET;
retinfo->irq = uport->irq;
retinfo->flags = (__force int)uport->flags;
retinfo->xmit_fifo_size = uport->fifosize;
retinfo->baud_base = uport->uartclk / 16;
retinfo->close_delay = jiffies_to_msecs(port->close_delay) / 10;
retinfo->closing_wait = port->closing_wait == ASYNC_CLOSING_WAIT_NONE ?
ASYNC_CLOSING_WAIT_NONE :
jiffies_to_msecs(port->closing_wait) / 10;
retinfo->custom_divisor = uport->custom_divisor;
retinfo->hub6 = uport->hub6;
retinfo->io_type = uport->iotype;
retinfo->iomem_reg_shift = uport->regshift;
retinfo->iomem_base = (void *)(unsigned long)uport->mapbase;
ret = 0;
out:
mutex_unlock(&port->mutex);
return ret;
}
static int uart_get_info_user(struct tty_struct *tty,
struct serial_struct *ss)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
return uart_get_info(port, ss) < 0 ? -EIO : 0;
}
static int uart_set_info(struct tty_struct *tty, struct tty_port *port,
struct uart_state *state,
struct serial_struct *new_info)
{
struct uart_port *uport = uart_port_check(state);
unsigned long new_port;
unsigned int change_irq, change_port, closing_wait;
unsigned int old_custom_divisor, close_delay;
upf_t old_flags, new_flags;
int retval = 0;
if (!uport)
return -EIO;
new_port = new_info->port;
if (HIGH_BITS_OFFSET)
new_port += (unsigned long) new_info->port_high << HIGH_BITS_OFFSET;
new_info->irq = irq_canonicalize(new_info->irq);
close_delay = msecs_to_jiffies(new_info->close_delay * 10);
closing_wait = new_info->closing_wait == ASYNC_CLOSING_WAIT_NONE ?
ASYNC_CLOSING_WAIT_NONE :
msecs_to_jiffies(new_info->closing_wait * 10);
change_irq = !(uport->flags & UPF_FIXED_PORT)
&& new_info->irq != uport->irq;
/*
* Since changing the 'type' of the port changes its resource
* allocations, we should treat type changes the same as
* IO port changes.
*/
change_port = !(uport->flags & UPF_FIXED_PORT)
&& (new_port != uport->iobase ||
(unsigned long)new_info->iomem_base != uport->mapbase ||
new_info->hub6 != uport->hub6 ||
new_info->io_type != uport->iotype ||
new_info->iomem_reg_shift != uport->regshift ||
new_info->type != uport->type);
old_flags = uport->flags;
new_flags = (__force upf_t)new_info->flags;
old_custom_divisor = uport->custom_divisor;
if (!capable(CAP_SYS_ADMIN)) {
retval = -EPERM;
if (change_irq || change_port ||
(new_info->baud_base != uport->uartclk / 16) ||
(close_delay != port->close_delay) ||
(closing_wait != port->closing_wait) ||
(new_info->xmit_fifo_size &&
new_info->xmit_fifo_size != uport->fifosize) ||
(((new_flags ^ old_flags) & ~UPF_USR_MASK) != 0))
goto exit;
uport->flags = ((uport->flags & ~UPF_USR_MASK) |
(new_flags & UPF_USR_MASK));
uport->custom_divisor = new_info->custom_divisor;
goto check_and_exit;
}
if (change_irq || change_port) {
retval = security_locked_down(LOCKDOWN_TIOCSSERIAL);
if (retval)
goto exit;
}
/*
* Ask the low level driver to verify the settings.
*/
if (uport->ops->verify_port)
retval = uport->ops->verify_port(uport, new_info);
if ((new_info->irq >= nr_irqs) || (new_info->irq < 0) ||
(new_info->baud_base < 9600))
retval = -EINVAL;
if (retval)
goto exit;
if (change_port || change_irq) {
retval = -EBUSY;
/*
* Make sure that we are the sole user of this port.
*/
if (tty_port_users(port) > 1)
goto exit;
/*
* We need to shutdown the serial port at the old
* port/type/irq combination.
*/
uart_shutdown(tty, state);
}
if (change_port) {
unsigned long old_iobase, old_mapbase;
unsigned int old_type, old_iotype, old_hub6, old_shift;
old_iobase = uport->iobase;
old_mapbase = uport->mapbase;
old_type = uport->type;
old_hub6 = uport->hub6;
old_iotype = uport->iotype;
old_shift = uport->regshift;
/*
* Free and release old regions
*/
if (old_type != PORT_UNKNOWN && uport->ops->release_port)
uport->ops->release_port(uport);
uport->iobase = new_port;
uport->type = new_info->type;
uport->hub6 = new_info->hub6;
uport->iotype = new_info->io_type;
uport->regshift = new_info->iomem_reg_shift;
uport->mapbase = (unsigned long)new_info->iomem_base;
/*
* Claim and map the new regions
*/
if (uport->type != PORT_UNKNOWN && uport->ops->request_port) {
retval = uport->ops->request_port(uport);
} else {
/* Always success - Jean II */
retval = 0;
}
/*
* If we fail to request resources for the
* new port, try to restore the old settings.
*/
if (retval) {
uport->iobase = old_iobase;
uport->type = old_type;
uport->hub6 = old_hub6;
uport->iotype = old_iotype;
uport->regshift = old_shift;
uport->mapbase = old_mapbase;
if (old_type != PORT_UNKNOWN) {
retval = uport->ops->request_port(uport);
/*
* If we failed to restore the old settings,
* we fail like this.
*/
if (retval)
uport->type = PORT_UNKNOWN;
/*
* We failed anyway.
*/
retval = -EBUSY;
}
/* Added to return the correct error -Ram Gupta */
goto exit;
}
}
if (change_irq)
uport->irq = new_info->irq;
if (!(uport->flags & UPF_FIXED_PORT))
uport->uartclk = new_info->baud_base * 16;
uport->flags = (uport->flags & ~UPF_CHANGE_MASK) |
(new_flags & UPF_CHANGE_MASK);
uport->custom_divisor = new_info->custom_divisor;
port->close_delay = close_delay;
port->closing_wait = closing_wait;
if (new_info->xmit_fifo_size)
uport->fifosize = new_info->xmit_fifo_size;
check_and_exit:
retval = 0;
if (uport->type == PORT_UNKNOWN)
goto exit;
if (tty_port_initialized(port)) {
if (((old_flags ^ uport->flags) & UPF_SPD_MASK) ||
old_custom_divisor != uport->custom_divisor) {
/*
* If they're setting up a custom divisor or speed,
* instead of clearing it, then bitch about it.
*/
if (uport->flags & UPF_SPD_MASK) {
dev_notice_ratelimited(uport->dev,
"%s sets custom speed on %s. This is deprecated.\n",
current->comm,
tty_name(port->tty));
}
uart_change_line_settings(tty, state, NULL);
}
} else {
retval = uart_startup(tty, state, true);
if (retval == 0)
tty_port_set_initialized(port, true);
if (retval > 0)
retval = 0;
}
exit:
return retval;
}
static int uart_set_info_user(struct tty_struct *tty, struct serial_struct *ss)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
int retval;
down_write(&tty->termios_rwsem);
/*
* This semaphore protects port->count. It is also
* very useful to prevent opens. Also, take the
* port configuration semaphore to make sure that a
* module insertion/removal doesn't change anything
* under us.
*/
mutex_lock(&port->mutex);
retval = uart_set_info(tty, port, state, ss);
mutex_unlock(&port->mutex);
up_write(&tty->termios_rwsem);
return retval;
}
/**
* uart_get_lsr_info - get line status register info
* @tty: tty associated with the UART
* @state: UART being queried
* @value: returned modem value
*/
static int uart_get_lsr_info(struct tty_struct *tty,
struct uart_state *state, unsigned int __user *value)
{
struct uart_port *uport = uart_port_check(state);
unsigned int result;
result = uport->ops->tx_empty(uport);
/*
* If we're about to load something into the transmit
* register, we'll pretend the transmitter isn't empty to
* avoid a race condition (depending on when the transmit
* interrupt happens).
*/
if (uport->x_char ||
(!kfifo_is_empty(&state->port.xmit_fifo) &&
!uart_tx_stopped(uport)))
result &= ~TIOCSER_TEMT;
return put_user(result, value);
}
static int uart_tiocmget(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
struct uart_port *uport;
int result = -EIO;
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (!uport)
goto out;
if (!tty_io_error(tty)) {
uart_port_lock_irq(uport);
result = uport->mctrl;
result |= uport->ops->get_mctrl(uport);
uart_port_unlock_irq(uport);
}
out:
mutex_unlock(&port->mutex);
return result;
}
static int
uart_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
struct uart_port *uport;
int ret = -EIO;
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (!uport)
goto out;
if (!tty_io_error(tty)) {
uart_update_mctrl(uport, set, clear);
ret = 0;
}
out:
mutex_unlock(&port->mutex);
return ret;
}
static int uart_break_ctl(struct tty_struct *tty, int break_state)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
struct uart_port *uport;
int ret = -EIO;
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (!uport)
goto out;
if (uport->type != PORT_UNKNOWN && uport->ops->break_ctl)
uport->ops->break_ctl(uport, break_state);
ret = 0;
out:
mutex_unlock(&port->mutex);
return ret;
}
static int uart_do_autoconfig(struct tty_struct *tty, struct uart_state *state)
{
struct tty_port *port = &state->port;
struct uart_port *uport;
int flags, ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
/*
* Take the per-port semaphore. This prevents count from
* changing, and hence any extra opens of the port while
* we're auto-configuring.
*/
if (mutex_lock_interruptible(&port->mutex))
return -ERESTARTSYS;
uport = uart_port_check(state);
if (!uport) {
ret = -EIO;
goto out;
}
ret = -EBUSY;
if (tty_port_users(port) == 1) {
uart_shutdown(tty, state);
/*
* If we already have a port type configured,
* we must release its resources.
*/
if (uport->type != PORT_UNKNOWN && uport->ops->release_port)
uport->ops->release_port(uport);
flags = UART_CONFIG_TYPE;
if (uport->flags & UPF_AUTO_IRQ)
flags |= UART_CONFIG_IRQ;
/*
* This will claim the ports resources if
* a port is found.
*/
uport->ops->config_port(uport, flags);
ret = uart_startup(tty, state, true);
if (ret == 0)
tty_port_set_initialized(port, true);
if (ret > 0)
ret = 0;
}
out:
mutex_unlock(&port->mutex);
return ret;
}
static void uart_enable_ms(struct uart_port *uport)
{
/*
* Force modem status interrupts on
*/
if (uport->ops->enable_ms)
uport->ops->enable_ms(uport);
}
/*
* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change
* - mask passed in arg for lines of interest
* (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
* Caller should use TIOCGICOUNT to see which one it was
*
* FIXME: This wants extracting into a common all driver implementation
* of TIOCMWAIT using tty_port.
*/
static int uart_wait_modem_status(struct uart_state *state, unsigned long arg)
{
struct uart_port *uport;
struct tty_port *port = &state->port;
DECLARE_WAITQUEUE(wait, current);
struct uart_icount cprev, cnow;
int ret;
/*
* note the counters on entry
*/
uport = uart_port_ref(state);
if (!uport)
return -EIO;
uart_port_lock_irq(uport);
memcpy(&cprev, &uport->icount, sizeof(struct uart_icount));
uart_enable_ms(uport);
uart_port_unlock_irq(uport);
add_wait_queue(&port->delta_msr_wait, &wait);
for (;;) {
uart_port_lock_irq(uport);
memcpy(&cnow, &uport->icount, sizeof(struct uart_icount));
uart_port_unlock_irq(uport);
set_current_state(TASK_INTERRUPTIBLE);
if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) ||
((arg & TIOCM_CTS) && (cnow.cts != cprev.cts))) {
ret = 0;
break;
}
schedule();
/* see if a signal did it */
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
cprev = cnow;
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(&port->delta_msr_wait, &wait);
uart_port_deref(uport);
return ret;
}
/*
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
* Return: write counters to the user passed counter struct
* NB: both 1->0 and 0->1 transitions are counted except for
* RI where only 0->1 is counted.
*/
static int uart_get_icount(struct tty_struct *tty,
struct serial_icounter_struct *icount)
{
struct uart_state *state = tty->driver_data;
struct uart_icount cnow;
struct uart_port *uport;
uport = uart_port_ref(state);
if (!uport)
return -EIO;
uart_port_lock_irq(uport);
memcpy(&cnow, &uport->icount, sizeof(struct uart_icount));
uart_port_unlock_irq(uport);
uart_port_deref(uport);
icount->cts = cnow.cts;
icount->dsr = cnow.dsr;
icount->rng = cnow.rng;
icount->dcd = cnow.dcd;
icount->rx = cnow.rx;
icount->tx = cnow.tx;
icount->frame = cnow.frame;
icount->overrun = cnow.overrun;
icount->parity = cnow.parity;
icount->brk = cnow.brk;
icount->buf_overrun = cnow.buf_overrun;
return 0;
}
#define SER_RS485_LEGACY_FLAGS (SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | \
SER_RS485_RTS_AFTER_SEND | SER_RS485_RX_DURING_TX | \
SER_RS485_TERMINATE_BUS)
static int uart_check_rs485_flags(struct uart_port *port, struct serial_rs485 *rs485)
{
u32 flags = rs485->flags;
/* Don't return -EINVAL for unsupported legacy flags */
flags &= ~SER_RS485_LEGACY_FLAGS;
/*
* For any bit outside of the legacy ones that is not supported by
* the driver, return -EINVAL.
*/
if (flags & ~port->rs485_supported.flags)
return -EINVAL;
/* Asking for address w/o addressing mode? */
if (!(rs485->flags & SER_RS485_ADDRB) &&
(rs485->flags & (SER_RS485_ADDR_RECV|SER_RS485_ADDR_DEST)))
return -EINVAL;
/* Address given but not enabled? */
if (!(rs485->flags & SER_RS485_ADDR_RECV) && rs485->addr_recv)
return -EINVAL;
if (!(rs485->flags & SER_RS485_ADDR_DEST) && rs485->addr_dest)
return -EINVAL;
return 0;
}
static void uart_sanitize_serial_rs485_delays(struct uart_port *port,
struct serial_rs485 *rs485)
{
if (!port->rs485_supported.delay_rts_before_send) {
if (rs485->delay_rts_before_send) {
dev_warn_ratelimited(port->dev,
"%s (%d): RTS delay before sending not supported\n",
port->name, port->line);
}
rs485->delay_rts_before_send = 0;
} else if (rs485->delay_rts_before_send > RS485_MAX_RTS_DELAY) {
rs485->delay_rts_before_send = RS485_MAX_RTS_DELAY;
dev_warn_ratelimited(port->dev,
"%s (%d): RTS delay before sending clamped to %u ms\n",
port->name, port->line, rs485->delay_rts_before_send);
}
if (!port->rs485_supported.delay_rts_after_send) {
if (rs485->delay_rts_after_send) {
dev_warn_ratelimited(port->dev,
"%s (%d): RTS delay after sending not supported\n",
port->name, port->line);
}
rs485->delay_rts_after_send = 0;
} else if (rs485->delay_rts_after_send > RS485_MAX_RTS_DELAY) {
rs485->delay_rts_after_send = RS485_MAX_RTS_DELAY;
dev_warn_ratelimited(port->dev,
"%s (%d): RTS delay after sending clamped to %u ms\n",
port->name, port->line, rs485->delay_rts_after_send);
}
}
static void uart_sanitize_serial_rs485(struct uart_port *port, struct serial_rs485 *rs485)
{
u32 supported_flags = port->rs485_supported.flags;
if (!(rs485->flags & SER_RS485_ENABLED)) {
memset(rs485, 0, sizeof(*rs485));
return;
}
/* Clear other RS485 flags but SER_RS485_TERMINATE_BUS and return if enabling RS422 */
if (rs485->flags & SER_RS485_MODE_RS422) {
rs485->flags &= (SER_RS485_ENABLED | SER_RS485_MODE_RS422 | SER_RS485_TERMINATE_BUS);
return;
}
rs485->flags &= supported_flags;
/* Pick sane settings if the user hasn't */
if (!(rs485->flags & SER_RS485_RTS_ON_SEND) ==
!(rs485->flags & SER_RS485_RTS_AFTER_SEND)) {
if (supported_flags & SER_RS485_RTS_ON_SEND) {
rs485->flags |= SER_RS485_RTS_ON_SEND;
rs485->flags &= ~SER_RS485_RTS_AFTER_SEND;
dev_warn_ratelimited(port->dev,
"%s (%d): invalid RTS setting, using RTS_ON_SEND instead\n",
port->name, port->line);
} else {
rs485->flags |= SER_RS485_RTS_AFTER_SEND;
rs485->flags &= ~SER_RS485_RTS_ON_SEND;
dev_warn_ratelimited(port->dev,
"%s (%d): invalid RTS setting, using RTS_AFTER_SEND instead\n",
port->name, port->line);
}
}
uart_sanitize_serial_rs485_delays(port, rs485);
/* Return clean padding area to userspace */
memset(rs485->padding0, 0, sizeof(rs485->padding0));
memset(rs485->padding1, 0, sizeof(rs485->padding1));
}
static void uart_set_rs485_termination(struct uart_port *port,
const struct serial_rs485 *rs485)
{
if (!(rs485->flags & SER_RS485_ENABLED))
return;
gpiod_set_value_cansleep(port->rs485_term_gpio,
!!(rs485->flags & SER_RS485_TERMINATE_BUS));
}
static void uart_set_rs485_rx_during_tx(struct uart_port *port,
const struct serial_rs485 *rs485)
{
if (!(rs485->flags & SER_RS485_ENABLED))
return;
gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio,
!!(rs485->flags & SER_RS485_RX_DURING_TX));
}
static int uart_rs485_config(struct uart_port *port)
{
struct serial_rs485 *rs485 = &port->rs485;
unsigned long flags;
int ret;
if (!(rs485->flags & SER_RS485_ENABLED))
return 0;
uart_sanitize_serial_rs485(port, rs485);
uart_set_rs485_termination(port, rs485);
uart_set_rs485_rx_during_tx(port, rs485);
uart_port_lock_irqsave(port, &flags);
ret = port->rs485_config(port, NULL, rs485);
uart_port_unlock_irqrestore(port, flags);
if (ret) {
memset(rs485, 0, sizeof(*rs485));
/* unset GPIOs */
gpiod_set_value_cansleep(port->rs485_term_gpio, 0);
gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio, 0);
}
return ret;
}
static int uart_get_rs485_config(struct uart_port *port,
struct serial_rs485 __user *rs485)
{
unsigned long flags;
struct serial_rs485 aux;
uart_port_lock_irqsave(port, &flags);
aux = port->rs485;
uart_port_unlock_irqrestore(port, flags);
if (copy_to_user(rs485, &aux, sizeof(aux)))
return -EFAULT;
return 0;
}
static int uart_set_rs485_config(struct tty_struct *tty, struct uart_port *port,
struct serial_rs485 __user *rs485_user)
{
struct serial_rs485 rs485;
int ret;
unsigned long flags;
if (!(port->rs485_supported.flags & SER_RS485_ENABLED))
return -ENOTTY;
if (copy_from_user(&rs485, rs485_user, sizeof(*rs485_user)))
return -EFAULT;
ret = uart_check_rs485_flags(port, &rs485);
if (ret)
return ret;
uart_sanitize_serial_rs485(port, &rs485);
uart_set_rs485_termination(port, &rs485);
uart_set_rs485_rx_during_tx(port, &rs485);
uart_port_lock_irqsave(port, &flags);
ret = port->rs485_config(port, &tty->termios, &rs485);
if (!ret) {
port->rs485 = rs485;
/* Reset RTS and other mctrl lines when disabling RS485 */
if (!(rs485.flags & SER_RS485_ENABLED))
port->ops->set_mctrl(port, port->mctrl);
}
uart_port_unlock_irqrestore(port, flags);
if (ret) {
/* restore old GPIO settings */
gpiod_set_value_cansleep(port->rs485_term_gpio,
!!(port->rs485.flags & SER_RS485_TERMINATE_BUS));
gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio,
!!(port->rs485.flags & SER_RS485_RX_DURING_TX));
return ret;
}
if (copy_to_user(rs485_user, &port->rs485, sizeof(port->rs485)))
return -EFAULT;
return 0;
}
static int uart_get_iso7816_config(struct uart_port *port,
struct serial_iso7816 __user *iso7816)
{
unsigned long flags;
struct serial_iso7816 aux;
if (!port->iso7816_config)
return -ENOTTY;
uart_port_lock_irqsave(port, &flags);
aux = port->iso7816;
uart_port_unlock_irqrestore(port, flags);
if (copy_to_user(iso7816, &aux, sizeof(aux)))
return -EFAULT;
return 0;
}
static int uart_set_iso7816_config(struct uart_port *port,
struct serial_iso7816 __user *iso7816_user)
{
struct serial_iso7816 iso7816;
int i, ret;
unsigned long flags;
if (!port->iso7816_config)
return -ENOTTY;
if (copy_from_user(&iso7816, iso7816_user, sizeof(*iso7816_user)))
return -EFAULT;
/*
* There are 5 words reserved for future use. Check that userspace
* doesn't put stuff in there to prevent breakages in the future.
*/
for (i = 0; i < ARRAY_SIZE(iso7816.reserved); i++)
if (iso7816.reserved[i])
return -EINVAL;
uart_port_lock_irqsave(port, &flags);
ret = port->iso7816_config(port, &iso7816);
uart_port_unlock_irqrestore(port, flags);
if (ret)
return ret;
if (copy_to_user(iso7816_user, &port->iso7816, sizeof(port->iso7816)))
return -EFAULT;
return 0;
}
/*
* Called via sys_ioctl. We can use spin_lock_irq() here.
*/
static int
uart_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
struct uart_port *uport;
void __user *uarg = (void __user *)arg;
int ret = -ENOIOCTLCMD;
/*
* These ioctls don't rely on the hardware to be present.
*/
switch (cmd) {
case TIOCSERCONFIG:
down_write(&tty->termios_rwsem);
ret = uart_do_autoconfig(tty, state);
up_write(&tty->termios_rwsem);
break;
}
if (ret != -ENOIOCTLCMD)
goto out;
if (tty_io_error(tty)) {
ret = -EIO;
goto out;
}
/*
* The following should only be used when hardware is present.
*/
switch (cmd) {
case TIOCMIWAIT:
ret = uart_wait_modem_status(state, arg);
break;
}
if (ret != -ENOIOCTLCMD)
goto out;
/* rs485_config requires more locking than others */
if (cmd == TIOCSRS485)
down_write(&tty->termios_rwsem);
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (!uport || tty_io_error(tty)) {
ret = -EIO;
goto out_up;
}
/*
* All these rely on hardware being present and need to be
* protected against the tty being hung up.
*/
switch (cmd) {
case TIOCSERGETLSR: /* Get line status register */
ret = uart_get_lsr_info(tty, state, uarg);
break;
case TIOCGRS485:
ret = uart_get_rs485_config(uport, uarg);
break;
case TIOCSRS485:
ret = uart_set_rs485_config(tty, uport, uarg);
break;
case TIOCSISO7816:
ret = uart_set_iso7816_config(state->uart_port, uarg);
break;
case TIOCGISO7816:
ret = uart_get_iso7816_config(state->uart_port, uarg);
break;
default:
if (uport->ops->ioctl)
ret = uport->ops->ioctl(uport, cmd, arg);
break;
}
out_up:
mutex_unlock(&port->mutex);
if (cmd == TIOCSRS485)
up_write(&tty->termios_rwsem);
out:
return ret;
}
static void uart_set_ldisc(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *uport;
struct tty_port *port = &state->port;
if (!tty_port_initialized(port))
return;
mutex_lock(&state->port.mutex);
uport = uart_port_check(state);
if (uport && uport->ops->set_ldisc)
uport->ops->set_ldisc(uport, &tty->termios);
mutex_unlock(&state->port.mutex);
}
static void uart_set_termios(struct tty_struct *tty,
const struct ktermios *old_termios)
{
struct uart_state *state = tty->driver_data;
struct uart_port *uport;
unsigned int cflag = tty->termios.c_cflag;
unsigned int iflag_mask = IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK;
bool sw_changed = false;
mutex_lock(&state->port.mutex);
uport = uart_port_check(state);
if (!uport)
goto out;
/*
* Drivers doing software flow control also need to know
* about changes to these input settings.
*/
if (uport->flags & UPF_SOFT_FLOW) {
iflag_mask |= IXANY|IXON|IXOFF;
sw_changed =
tty->termios.c_cc[VSTART] != old_termios->c_cc[VSTART] ||
tty->termios.c_cc[VSTOP] != old_termios->c_cc[VSTOP];
}
/*
* These are the bits that are used to setup various
* flags in the low level driver. We can ignore the Bfoo
* bits in c_cflag; c_[io]speed will always be set
* appropriately by set_termios() in tty_ioctl.c
*/
if ((cflag ^ old_termios->c_cflag) == 0 &&
tty->termios.c_ospeed == old_termios->c_ospeed &&
tty->termios.c_ispeed == old_termios->c_ispeed &&
((tty->termios.c_iflag ^ old_termios->c_iflag) & iflag_mask) == 0 &&
!sw_changed) {
goto out;
}
uart_change_line_settings(tty, state, old_termios);
/* reload cflag from termios; port driver may have overridden flags */
cflag = tty->termios.c_cflag;
/* Handle transition to B0 status */
if (((old_termios->c_cflag & CBAUD) != B0) && ((cflag & CBAUD) == B0))
uart_clear_mctrl(uport, TIOCM_RTS | TIOCM_DTR);
/* Handle transition away from B0 status */
else if (((old_termios->c_cflag & CBAUD) == B0) && ((cflag & CBAUD) != B0)) {
unsigned int mask = TIOCM_DTR;
if (!(cflag & CRTSCTS) || !tty_throttled(tty))
mask |= TIOCM_RTS;
uart_set_mctrl(uport, mask);
}
out:
mutex_unlock(&state->port.mutex);
}
/*
* Calls to uart_close() are serialised via the tty_lock in
* drivers/tty/tty_io.c:tty_release()
* drivers/tty/tty_io.c:do_tty_hangup()
*/
static void uart_close(struct tty_struct *tty, struct file *filp)
{
struct uart_state *state = tty->driver_data;
if (!state) {
struct uart_driver *drv = tty->driver->driver_state;
struct tty_port *port;
state = drv->state + tty->index;
port = &state->port;
spin_lock_irq(&port->lock);
--port->count;
spin_unlock_irq(&port->lock);
return;
}
pr_debug("uart_close(%d) called\n", tty->index);
tty_port_close(tty->port, tty, filp);
}
static void uart_tty_port_shutdown(struct tty_port *port)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport = uart_port_check(state);
/*
* At this point, we stop accepting input. To do this, we
* disable the receive line status interrupts.
*/
if (WARN(!uport, "detached port still initialized!\n"))
return;
uart_port_lock_irq(uport);
uport->ops->stop_rx(uport);
uart_port_unlock_irq(uport);
serial_base_port_shutdown(uport);
uart_port_shutdown(port);
/*
* It's possible for shutdown to be called after suspend if we get
* a DCD drop (hangup) at just the right time. Clear suspended bit so
* we don't try to resume a port that has been shutdown.
*/
tty_port_set_suspended(port, false);
uart_free_xmit_buf(port);
uart_change_pm(state, UART_PM_STATE_OFF);
}
static void uart_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port;
unsigned long char_time, expire, fifo_timeout;
port = uart_port_ref(state);
if (!port)
return;
if (port->type == PORT_UNKNOWN || port->fifosize == 0) {
uart_port_deref(port);
return;
}
/*
* Set the check interval to be 1/5 of the estimated time to
* send a single character, and make it at least 1. The check
* interval should also be less than the timeout.
*
* Note: we have to use pretty tight timings here to satisfy
* the NIST-PCTS.
*/
char_time = max(nsecs_to_jiffies(port->frame_time / 5), 1UL);
if (timeout && timeout < char_time)
char_time = timeout;
if (!uart_cts_enabled(port)) {
/*
* If the transmitter hasn't cleared in twice the approximate
* amount of time to send the entire FIFO, it probably won't
* ever clear. This assumes the UART isn't doing flow
* control, which is currently the case. Hence, if it ever
* takes longer than FIFO timeout, this is probably due to a
* UART bug of some kind. So, we clamp the timeout parameter at
* 2 * FIFO timeout.
*/
fifo_timeout = uart_fifo_timeout(port);
if (timeout == 0 || timeout > 2 * fifo_timeout)
timeout = 2 * fifo_timeout;
}
expire = jiffies + timeout;
pr_debug("uart_wait_until_sent(%d), jiffies=%lu, expire=%lu...\n",
port->line, jiffies, expire);
/*
* Check whether the transmitter is empty every 'char_time'.
* 'timeout' / 'expire' give us the maximum amount of time
* we wait.
*/
while (!port->ops->tx_empty(port)) {
msleep_interruptible(jiffies_to_msecs(char_time));
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, expire))
break;
}
uart_port_deref(port);
}
/*
* Calls to uart_hangup() are serialised by the tty_lock in
* drivers/tty/tty_io.c:do_tty_hangup()
* This runs from a workqueue and can sleep for a _short_ time only.
*/
static void uart_hangup(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct tty_port *port = &state->port;
struct uart_port *uport;
unsigned long flags;
pr_debug("uart_hangup(%d)\n", tty->index);
mutex_lock(&port->mutex);
uport = uart_port_check(state);
WARN(!uport, "hangup of detached port!\n");
if (tty_port_active(port)) {
uart_flush_buffer(tty);
uart_shutdown(tty, state);
spin_lock_irqsave(&port->lock, flags);
port->count = 0;
spin_unlock_irqrestore(&port->lock, flags);
tty_port_set_active(port, false);
tty_port_tty_set(port, NULL);
if (uport && !uart_console(uport))
uart_change_pm(state, UART_PM_STATE_OFF);
wake_up_interruptible(&port->open_wait);
wake_up_interruptible(&port->delta_msr_wait);
}
mutex_unlock(&port->mutex);
}
/* uport == NULL if uart_port has already been removed */
static void uart_port_shutdown(struct tty_port *port)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport = uart_port_check(state);
/*
* clear delta_msr_wait queue to avoid mem leaks: we may free
* the irq here so the queue might never be woken up. Note
* that we won't end up waiting on delta_msr_wait again since
* any outstanding file descriptors should be pointing at
* hung_up_tty_fops now.
*/
wake_up_interruptible(&port->delta_msr_wait);
if (uport) {
/* Free the IRQ and disable the port. */
uport->ops->shutdown(uport);
/* Ensure that the IRQ handler isn't running on another CPU. */
synchronize_irq(uport->irq);
}
}
static bool uart_carrier_raised(struct tty_port *port)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
int mctrl;
uport = uart_port_ref(state);
/*
* Should never observe uport == NULL since checks for hangup should
* abort the tty_port_block_til_ready() loop before checking for carrier
* raised -- but report carrier raised if it does anyway so open will
* continue and not sleep
*/
if (WARN_ON(!uport))
return true;
uart_port_lock_irq(uport);
uart_enable_ms(uport);
mctrl = uport->ops->get_mctrl(uport);
uart_port_unlock_irq(uport);
uart_port_deref(uport);
return mctrl & TIOCM_CAR;
}
static void uart_dtr_rts(struct tty_port *port, bool active)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
uport = uart_port_ref(state);
if (!uport)
return;
uart_port_dtr_rts(uport, active);
uart_port_deref(uport);
}
static int uart_install(struct tty_driver *driver, struct tty_struct *tty)
{
struct uart_driver *drv = driver->driver_state;
struct uart_state *state = drv->state + tty->index;
tty->driver_data = state;
return tty_standard_install(driver, tty);
}
/*
* Calls to uart_open are serialised by the tty_lock in
* drivers/tty/tty_io.c:tty_open()
* Note that if this fails, then uart_close() _will_ be called.
*
* In time, we want to scrap the "opening nonpresent ports"
* behaviour and implement an alternative way for setserial
* to set base addresses/ports/types. This will allow us to
* get rid of a certain amount of extra tests.
*/
static int uart_open(struct tty_struct *tty, struct file *filp)
{
struct uart_state *state = tty->driver_data;
int retval;
retval = tty_port_open(&state->port, tty, filp);
if (retval > 0)
retval = 0;
return retval;
}
static int uart_port_activate(struct tty_port *port, struct tty_struct *tty)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
int ret;
uport = uart_port_check(state);
if (!uport || uport->flags & UPF_DEAD)
return -ENXIO;
/*
* Start up the serial port.
*/
ret = uart_startup(tty, state, false);
if (ret > 0)
tty_port_set_active(port, true);
return ret;
}
static const char *uart_type(struct uart_port *port)
{
const char *str = NULL;
if (port->ops->type)
str = port->ops->type(port);
if (!str)
str = "unknown";
return str;
}
#ifdef CONFIG_PROC_FS
static void uart_line_info(struct seq_file *m, struct uart_driver *drv, int i)
{
struct uart_state *state = drv->state + i;
struct tty_port *port = &state->port;
enum uart_pm_state pm_state;
struct uart_port *uport;
char stat_buf[32];
unsigned int status;
int mmio;
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (!uport)
goto out;
mmio = uport->iotype >= UPIO_MEM;
seq_printf(m, "%d: uart:%s %s%08llX irq:%d",
uport->line, uart_type(uport),
mmio ? "mmio:0x" : "port:",
mmio ? (unsigned long long)uport->mapbase
: (unsigned long long)uport->iobase,
uport->irq);
if (uport->type == PORT_UNKNOWN) {
seq_putc(m, '\n');
goto out;
}
if (capable(CAP_SYS_ADMIN)) {
pm_state = state->pm_state;
if (pm_state != UART_PM_STATE_ON)
uart_change_pm(state, UART_PM_STATE_ON);
uart_port_lock_irq(uport);
status = uport->ops->get_mctrl(uport);
uart_port_unlock_irq(uport);
if (pm_state != UART_PM_STATE_ON)
uart_change_pm(state, pm_state);
seq_printf(m, " tx:%d rx:%d",
uport->icount.tx, uport->icount.rx);
if (uport->icount.frame)
seq_printf(m, " fe:%d", uport->icount.frame);
if (uport->icount.parity)
seq_printf(m, " pe:%d", uport->icount.parity);
if (uport->icount.brk)
seq_printf(m, " brk:%d", uport->icount.brk);
if (uport->icount.overrun)
seq_printf(m, " oe:%d", uport->icount.overrun);
if (uport->icount.buf_overrun)
seq_printf(m, " bo:%d", uport->icount.buf_overrun);
#define INFOBIT(bit, str) \
if (uport->mctrl & (bit)) \
strncat(stat_buf, (str), sizeof(stat_buf) - \
strlen(stat_buf) - 2)
#define STATBIT(bit, str) \
if (status & (bit)) \
strncat(stat_buf, (str), sizeof(stat_buf) - \
strlen(stat_buf) - 2)
stat_buf[0] = '\0';
stat_buf[1] = '\0';
INFOBIT(TIOCM_RTS, "|RTS");
STATBIT(TIOCM_CTS, "|CTS");
INFOBIT(TIOCM_DTR, "|DTR");
STATBIT(TIOCM_DSR, "|DSR");
STATBIT(TIOCM_CAR, "|CD");
STATBIT(TIOCM_RNG, "|RI");
if (stat_buf[0])
stat_buf[0] = ' ';
seq_puts(m, stat_buf);
}
seq_putc(m, '\n');
#undef STATBIT
#undef INFOBIT
out:
mutex_unlock(&port->mutex);
}
static int uart_proc_show(struct seq_file *m, void *v)
{
struct tty_driver *ttydrv = m->private;
struct uart_driver *drv = ttydrv->driver_state;
int i;
seq_printf(m, "serinfo:1.0 driver%s%s revision:%s\n", "", "", "");
for (i = 0; i < drv->nr; i++)
uart_line_info(m, drv, i);
return 0;
}
#endif
static void uart_port_spin_lock_init(struct uart_port *port)
{
spin_lock_init(&port->lock);
lockdep_set_class(&port->lock, &port_lock_key);
}
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL)
/**
* uart_console_write - write a console message to a serial port
* @port: the port to write the message
* @s: array of characters
* @count: number of characters in string to write
* @putchar: function to write character to port
*/
void uart_console_write(struct uart_port *port, const char *s,
unsigned int count,
void (*putchar)(struct uart_port *, unsigned char))
{
unsigned int i;
for (i = 0; i < count; i++, s++) {
if (*s == '\n')
putchar(port, '\r');
putchar(port, *s);
}
}
EXPORT_SYMBOL_GPL(uart_console_write);
/**
* uart_get_console - get uart port for console
* @ports: ports to search in
* @nr: number of @ports
* @co: console to search for
* Returns: uart_port for the console @co
*
* Check whether an invalid uart number has been specified (as @co->index), and
* if so, search for the first available port that does have console support.
*/
struct uart_port * __init
uart_get_console(struct uart_port *ports, int nr, struct console *co)
{
int idx = co->index;
if (idx < 0 || idx >= nr || (ports[idx].iobase == 0 &&
ports[idx].membase == NULL))
for (idx = 0; idx < nr; idx++)
if (ports[idx].iobase != 0 ||
ports[idx].membase != NULL)
break;
co->index = idx;
return ports + idx;
}
/**
* uart_parse_earlycon - Parse earlycon options
* @p: ptr to 2nd field (ie., just beyond '<name>,')
* @iotype: ptr for decoded iotype (out)
* @addr: ptr for decoded mapbase/iobase (out)
* @options: ptr for <options> field; %NULL if not present (out)
*
* Decodes earlycon kernel command line parameters of the form:
* * earlycon=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options>
* * console=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options>
*
* The optional form:
* * earlycon=<name>,0x<addr>,<options>
* * console=<name>,0x<addr>,<options>
*
* is also accepted; the returned @iotype will be %UPIO_MEM.
*
* Returns: 0 on success or -%EINVAL on failure
*/
int uart_parse_earlycon(char *p, unsigned char *iotype, resource_size_t *addr,
char **options)
{
if (strncmp(p, "mmio,", 5) == 0) {
*iotype = UPIO_MEM;
p += 5;
} else if (strncmp(p, "mmio16,", 7) == 0) {
*iotype = UPIO_MEM16;
p += 7;
} else if (strncmp(p, "mmio32,", 7) == 0) {
*iotype = UPIO_MEM32;
p += 7;
} else if (strncmp(p, "mmio32be,", 9) == 0) {
*iotype = UPIO_MEM32BE;
p += 9;
} else if (strncmp(p, "mmio32native,", 13) == 0) {
*iotype = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) ?
UPIO_MEM32BE : UPIO_MEM32;
p += 13;
} else if (strncmp(p, "io,", 3) == 0) {
*iotype = UPIO_PORT;
p += 3;
} else if (strncmp(p, "0x", 2) == 0) {
*iotype = UPIO_MEM;
} else {
return -EINVAL;
}
/*
* Before you replace it with kstrtoull(), think about options separator
* (',') it will not tolerate
*/
*addr = simple_strtoull(p, NULL, 0);
p = strchr(p, ',');
if (p)
p++;
*options = p;
return 0;
}
EXPORT_SYMBOL_GPL(uart_parse_earlycon);
/**
* uart_parse_options - Parse serial port baud/parity/bits/flow control.
* @options: pointer to option string
* @baud: pointer to an 'int' variable for the baud rate.
* @parity: pointer to an 'int' variable for the parity.
* @bits: pointer to an 'int' variable for the number of data bits.
* @flow: pointer to an 'int' variable for the flow control character.
*
* uart_parse_options() decodes a string containing the serial console
* options. The format of the string is <baud><parity><bits><flow>,
* eg: 115200n8r
*/
void
uart_parse_options(const char *options, int *baud, int *parity,
int *bits, int *flow)
{
const char *s = options;
*baud = simple_strtoul(s, NULL, 10);
while (*s >= '0' && *s <= '9')
s++;
if (*s)
*parity = *s++;
if (*s)
*bits = *s++ - '0';
if (*s)
*flow = *s;
}
EXPORT_SYMBOL_GPL(uart_parse_options);
/**
* uart_set_options - setup the serial console parameters
* @port: pointer to the serial ports uart_port structure
* @co: console pointer
* @baud: baud rate
* @parity: parity character - 'n' (none), 'o' (odd), 'e' (even)
* @bits: number of data bits
* @flow: flow control character - 'r' (rts)
*
* Locking: Caller must hold console_list_lock in order to serialize
* early initialization of the serial-console lock.
*/
int
uart_set_options(struct uart_port *port, struct console *co,
int baud, int parity, int bits, int flow)
{
struct ktermios termios;
static struct ktermios dummy;
/*
* Ensure that the serial-console lock is initialised early.
*
* Note that the console-registered check is needed because
* kgdboc can call uart_set_options() for an already registered
* console via tty_find_polling_driver() and uart_poll_init().
*/
if (!uart_console_registered_locked(port) && !port->console_reinit)
uart_port_spin_lock_init(port);
memset(&termios, 0, sizeof(struct ktermios));
termios.c_cflag |= CREAD | HUPCL | CLOCAL;
tty_termios_encode_baud_rate(&termios, baud, baud);
if (bits == 7)
termios.c_cflag |= CS7;
else
termios.c_cflag |= CS8;
switch (parity) {
case 'o': case 'O':
termios.c_cflag |= PARODD;
fallthrough;
case 'e': case 'E':
termios.c_cflag |= PARENB;
break;
}
if (flow == 'r')
termios.c_cflag |= CRTSCTS;
/*
* some uarts on other side don't support no flow control.
* So we set * DTR in host uart to make them happy
*/
port->mctrl |= TIOCM_DTR;
port->ops->set_termios(port, &termios, &dummy);
/*
* Allow the setting of the UART parameters with a NULL console
* too:
*/
if (co) {
co->cflag = termios.c_cflag;
co->ispeed = termios.c_ispeed;
co->ospeed = termios.c_ospeed;
}
return 0;
}
EXPORT_SYMBOL_GPL(uart_set_options);
#endif /* CONFIG_SERIAL_CORE_CONSOLE */
/**
* uart_change_pm - set power state of the port
*
* @state: port descriptor
* @pm_state: new state
*
* Locking: port->mutex has to be held
*/
static void uart_change_pm(struct uart_state *state,
enum uart_pm_state pm_state)
{
struct uart_port *port = uart_port_check(state);
if (state->pm_state != pm_state) {
if (port && port->ops->pm)
port->ops->pm(port, pm_state, state->pm_state);
state->pm_state = pm_state;
}
}
struct uart_match {
struct uart_port *port;
struct uart_driver *driver;
};
static int serial_match_port(struct device *dev, void *data)
{
struct uart_match *match = data;
struct tty_driver *tty_drv = match->driver->tty_driver;
dev_t devt = MKDEV(tty_drv->major, tty_drv->minor_start) +
match->port->line;
return dev->devt == devt; /* Actually, only one tty per port */
}
int uart_suspend_port(struct uart_driver *drv, struct uart_port *uport)
{
struct uart_state *state = drv->state + uport->line;
struct tty_port *port = &state->port;
struct device *tty_dev;
struct uart_match match = {uport, drv};
mutex_lock(&port->mutex);
tty_dev = device_find_child(&uport->port_dev->dev, &match, serial_match_port);
if (tty_dev && device_may_wakeup(tty_dev)) {
enable_irq_wake(uport->irq);
put_device(tty_dev);
mutex_unlock(&port->mutex);
return 0;
}
put_device(tty_dev);
/*
* Nothing to do if the console is not suspending
* except stop_rx to prevent any asynchronous data
* over RX line. However ensure that we will be
* able to Re-start_rx later.
*/
if (!console_suspend_enabled && uart_console(uport)) {
if (uport->ops->start_rx) {
uart_port_lock_irq(uport);
uport->ops->stop_rx(uport);
uart_port_unlock_irq(uport);
}
device_set_awake_path(uport->dev);
goto unlock;
}
uport->suspended = 1;
if (tty_port_initialized(port)) {
const struct uart_ops *ops = uport->ops;
int tries;
unsigned int mctrl;
tty_port_set_suspended(port, true);
tty_port_set_initialized(port, false);
uart_port_lock_irq(uport);
ops->stop_tx(uport);
if (!(uport->rs485.flags & SER_RS485_ENABLED))
ops->set_mctrl(uport, 0);
/* save mctrl so it can be restored on resume */
mctrl = uport->mctrl;
uport->mctrl = 0;
ops->stop_rx(uport);
uart_port_unlock_irq(uport);
/*
* Wait for the transmitter to empty.
*/
for (tries = 3; !ops->tx_empty(uport) && tries; tries--)
msleep(10);
if (!tries)
dev_err(uport->dev, "%s: Unable to drain transmitter\n",
uport->name);
ops->shutdown(uport);
uport->mctrl = mctrl;
}
/*
* Disable the console device before suspending.
*/
if (uart_console(uport))
console_stop(uport->cons);
uart_change_pm(state, UART_PM_STATE_OFF);
unlock:
mutex_unlock(&port->mutex);
return 0;
}
EXPORT_SYMBOL(uart_suspend_port);
int uart_resume_port(struct uart_driver *drv, struct uart_port *uport)
{
struct uart_state *state = drv->state + uport->line;
struct tty_port *port = &state->port;
struct device *tty_dev;
struct uart_match match = {uport, drv};
struct ktermios termios;
mutex_lock(&port->mutex);
tty_dev = device_find_child(&uport->port_dev->dev, &match, serial_match_port);
if (!uport->suspended && device_may_wakeup(tty_dev)) {
if (irqd_is_wakeup_set(irq_get_irq_data((uport->irq))))
disable_irq_wake(uport->irq);
put_device(tty_dev);
mutex_unlock(&port->mutex);
return 0;
}
put_device(tty_dev);
uport->suspended = 0;
/*
* Re-enable the console device after suspending.
*/
if (uart_console(uport)) {
/*
* First try to use the console cflag setting.
*/
memset(&termios, 0, sizeof(struct ktermios));
termios.c_cflag = uport->cons->cflag;
termios.c_ispeed = uport->cons->ispeed;
termios.c_ospeed = uport->cons->ospeed;
/*
* If that's unset, use the tty termios setting.
*/
if (port->tty && termios.c_cflag == 0)
termios = port->tty->termios;
if (console_suspend_enabled)
uart_change_pm(state, UART_PM_STATE_ON);
uport->ops->set_termios(uport, &termios, NULL);
if (!console_suspend_enabled && uport->ops->start_rx) {
uart_port_lock_irq(uport);
uport->ops->start_rx(uport);
uart_port_unlock_irq(uport);
}
if (console_suspend_enabled)
console_start(uport->cons);
}
if (tty_port_suspended(port)) {
const struct uart_ops *ops = uport->ops;
int ret;
uart_change_pm(state, UART_PM_STATE_ON);
uart_port_lock_irq(uport);
if (!(uport->rs485.flags & SER_RS485_ENABLED))
ops->set_mctrl(uport, 0);
uart_port_unlock_irq(uport);
if (console_suspend_enabled || !uart_console(uport)) {
/* Protected by port mutex for now */
struct tty_struct *tty = port->tty;
ret = ops->startup(uport);
if (ret == 0) {
if (tty)
uart_change_line_settings(tty, state, NULL);
uart_rs485_config(uport);
uart_port_lock_irq(uport);
if (!(uport->rs485.flags & SER_RS485_ENABLED))
ops->set_mctrl(uport, uport->mctrl);
ops->start_tx(uport);
uart_port_unlock_irq(uport);
tty_port_set_initialized(port, true);
} else {
/*
* Failed to resume - maybe hardware went away?
* Clear the "initialized" flag so we won't try
* to call the low level drivers shutdown method.
*/
uart_shutdown(tty, state);
}
}
tty_port_set_suspended(port, false);
}
mutex_unlock(&port->mutex);
return 0;
}
EXPORT_SYMBOL(uart_resume_port);
static inline void
uart_report_port(struct uart_driver *drv, struct uart_port *port)
{
char address[64];
switch (port->iotype) {
case UPIO_PORT:
snprintf(address, sizeof(address), "I/O 0x%lx", port->iobase);
break;
case UPIO_HUB6:
snprintf(address, sizeof(address),
"I/O 0x%lx offset 0x%x", port->iobase, port->hub6);
break;
case UPIO_MEM:
case UPIO_MEM16:
case UPIO_MEM32:
case UPIO_MEM32BE:
case UPIO_AU:
case UPIO_TSI:
snprintf(address, sizeof(address),
"MMIO 0x%llx", (unsigned long long)port->mapbase);
break;
default:
strscpy(address, "*unknown*", sizeof(address));
break;
}
pr_info("%s%s%s at %s (irq = %d, base_baud = %d) is a %s\n",
port->dev ? dev_name(port->dev) : "",
port->dev ? ": " : "",
port->name,
address, port->irq, port->uartclk / 16, uart_type(port));
/* The magic multiplier feature is a bit obscure, so report it too. */
if (port->flags & UPF_MAGIC_MULTIPLIER)
pr_info("%s%s%s extra baud rates supported: %d, %d",
port->dev ? dev_name(port->dev) : "",
port->dev ? ": " : "",
port->name,
port->uartclk / 8, port->uartclk / 4);
}
static void
uart_configure_port(struct uart_driver *drv, struct uart_state *state,
struct uart_port *port)
{
unsigned int flags;
/*
* If there isn't a port here, don't do anything further.
*/
if (!port->iobase && !port->mapbase && !port->membase)
return;
/*
* Now do the auto configuration stuff. Note that config_port
* is expected to claim the resources and map the port for us.
*/
flags = 0;
if (port->flags & UPF_AUTO_IRQ)
flags |= UART_CONFIG_IRQ;
if (port->flags & UPF_BOOT_AUTOCONF) {
if (!(port->flags & UPF_FIXED_TYPE)) {
port->type = PORT_UNKNOWN;
flags |= UART_CONFIG_TYPE;
}
/* Synchronize with possible boot console. */
if (uart_console(port))
console_lock();
port->ops->config_port(port, flags);
if (uart_console(port))
console_unlock();
}
if (port->type != PORT_UNKNOWN) {
unsigned long flags;
uart_report_port(drv, port);
/* Synchronize with possible boot console. */
if (uart_console(port))
console_lock();
/* Power up port for set_mctrl() */
uart_change_pm(state, UART_PM_STATE_ON);
/*
* Ensure that the modem control lines are de-activated.
* keep the DTR setting that is set in uart_set_options()
* We probably don't need a spinlock around this, but
*/
uart_port_lock_irqsave(port, &flags);
port->mctrl &= TIOCM_DTR;
if (!(port->rs485.flags & SER_RS485_ENABLED))
port->ops->set_mctrl(port, port->mctrl);
uart_port_unlock_irqrestore(port, flags);
uart_rs485_config(port);
if (uart_console(port))
console_unlock();
/*
* If this driver supports console, and it hasn't been
* successfully registered yet, try to re-register it.
* It may be that the port was not available.
*/
if (port->cons && !console_is_registered(port->cons))
register_console(port->cons);
/*
* Power down all ports by default, except the
* console if we have one.
*/
if (!uart_console(port))
uart_change_pm(state, UART_PM_STATE_OFF);
}
}
#ifdef CONFIG_CONSOLE_POLL
static int uart_poll_init(struct tty_driver *driver, int line, char *options)
{
struct uart_driver *drv = driver->driver_state;
struct uart_state *state = drv->state + line;
enum uart_pm_state pm_state;
struct tty_port *tport;
struct uart_port *port;
int baud = 9600;
int bits = 8;
int parity = 'n';
int flow = 'n';
int ret = 0;
tport = &state->port;
mutex_lock(&tport->mutex);
port = uart_port_check(state);
if (!port || port->type == PORT_UNKNOWN ||
!(port->ops->poll_get_char && port->ops->poll_put_char)) {
ret = -1;
goto out;
}
pm_state = state->pm_state;
uart_change_pm(state, UART_PM_STATE_ON);
if (port->ops->poll_init) {
/*
* We don't set initialized as we only initialized the hw,
* e.g. state->xmit is still uninitialized.
*/
if (!tty_port_initialized(tport))
ret = port->ops->poll_init(port);
}
if (!ret && options) {
uart_parse_options(options, &baud, &parity, &bits, &flow);
console_list_lock();
ret = uart_set_options(port, NULL, baud, parity, bits, flow);
console_list_unlock();
}
out:
if (ret)
uart_change_pm(state, pm_state);
mutex_unlock(&tport->mutex);
return ret;
}
static int uart_poll_get_char(struct tty_driver *driver, int line)
{
struct uart_driver *drv = driver->driver_state;
struct uart_state *state = drv->state + line;
struct uart_port *port;
int ret = -1;
port = uart_port_ref(state);
if (port) {
ret = port->ops->poll_get_char(port);
uart_port_deref(port);
}
return ret;
}
static void uart_poll_put_char(struct tty_driver *driver, int line, char ch)
{
struct uart_driver *drv = driver->driver_state;
struct uart_state *state = drv->state + line;
struct uart_port *port;
port = uart_port_ref(state);
if (!port)
return;
if (ch == '\n')
port->ops->poll_put_char(port, '\r');
port->ops->poll_put_char(port, ch);
uart_port_deref(port);
}
#endif
static const struct tty_operations uart_ops = {
.install = uart_install,
.open = uart_open,
.close = uart_close,
.write = uart_write,
.put_char = uart_put_char,
.flush_chars = uart_flush_chars,
.write_room = uart_write_room,
.chars_in_buffer= uart_chars_in_buffer,
.flush_buffer = uart_flush_buffer,
.ioctl = uart_ioctl,
.throttle = uart_throttle,
.unthrottle = uart_unthrottle,
.send_xchar = uart_send_xchar,
.set_termios = uart_set_termios,
.set_ldisc = uart_set_ldisc,
.stop = uart_stop,
.start = uart_start,
.hangup = uart_hangup,
.break_ctl = uart_break_ctl,
.wait_until_sent= uart_wait_until_sent,
#ifdef CONFIG_PROC_FS
.proc_show = uart_proc_show,
#endif
.tiocmget = uart_tiocmget,
.tiocmset = uart_tiocmset,
.set_serial = uart_set_info_user,
.get_serial = uart_get_info_user,
.get_icount = uart_get_icount,
#ifdef CONFIG_CONSOLE_POLL
.poll_init = uart_poll_init,
.poll_get_char = uart_poll_get_char,
.poll_put_char = uart_poll_put_char,
#endif
};
static const struct tty_port_operations uart_port_ops = {
.carrier_raised = uart_carrier_raised,
.dtr_rts = uart_dtr_rts,
.activate = uart_port_activate,
.shutdown = uart_tty_port_shutdown,
};
/**
* uart_register_driver - register a driver with the uart core layer
* @drv: low level driver structure
*
* Register a uart driver with the core driver. We in turn register with the
* tty layer, and initialise the core driver per-port state.
*
* We have a proc file in /proc/tty/driver which is named after the normal
* driver.
*
* @drv->port should be %NULL, and the per-port structures should be registered
* using uart_add_one_port() after this call has succeeded.
*
* Locking: none, Interrupts: enabled
*/
int uart_register_driver(struct uart_driver *drv)
{
struct tty_driver *normal;
int i, retval = -ENOMEM;
BUG_ON(drv->state);
/*
* Maybe we should be using a slab cache for this, especially if
* we have a large number of ports to handle.
*/
drv->state = kcalloc(drv->nr, sizeof(struct uart_state), GFP_KERNEL);
if (!drv->state)
goto out;
normal = tty_alloc_driver(drv->nr, TTY_DRIVER_REAL_RAW |
TTY_DRIVER_DYNAMIC_DEV);
if (IS_ERR(normal)) {
retval = PTR_ERR(normal);
goto out_kfree;
}
drv->tty_driver = normal;
normal->driver_name = drv->driver_name;
normal->name = drv->dev_name;
normal->major = drv->major;
normal->minor_start = drv->minor;
normal->type = TTY_DRIVER_TYPE_SERIAL;
normal->subtype = SERIAL_TYPE_NORMAL;
normal->init_termios = tty_std_termios;
normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600;
normal->driver_state = drv;
tty_set_operations(normal, &uart_ops);
/*
* Initialise the UART state(s).
*/
for (i = 0; i < drv->nr; i++) {
struct uart_state *state = drv->state + i;
struct tty_port *port = &state->port;
tty_port_init(port);
port->ops = &uart_port_ops;
}
retval = tty_register_driver(normal);
if (retval >= 0)
return retval;
for (i = 0; i < drv->nr; i++)
tty_port_destroy(&drv->state[i].port);
tty_driver_kref_put(normal);
out_kfree:
kfree(drv->state);
out:
return retval;
}
EXPORT_SYMBOL(uart_register_driver);
/**
* uart_unregister_driver - remove a driver from the uart core layer
* @drv: low level driver structure
*
* Remove all references to a driver from the core driver. The low level
* driver must have removed all its ports via the uart_remove_one_port() if it
* registered them with uart_add_one_port(). (I.e. @drv->port is %NULL.)
*
* Locking: none, Interrupts: enabled
*/
void uart_unregister_driver(struct uart_driver *drv)
{
struct tty_driver *p = drv->tty_driver;
unsigned int i;
tty_unregister_driver(p);
tty_driver_kref_put(p);
for (i = 0; i < drv->nr; i++)
tty_port_destroy(&drv->state[i].port);
kfree(drv->state);
drv->state = NULL;
drv->tty_driver = NULL;
}
EXPORT_SYMBOL(uart_unregister_driver);
struct tty_driver *uart_console_device(struct console *co, int *index)
{
struct uart_driver *p = co->data;
*index = co->index;
return p->tty_driver;
}
EXPORT_SYMBOL_GPL(uart_console_device);
static ssize_t uartclk_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.baud_base * 16);
}
static ssize_t type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.type);
}
static ssize_t line_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.line);
}
static ssize_t port_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
unsigned long ioaddr;
uart_get_info(port, &tmp);
ioaddr = tmp.port;
if (HIGH_BITS_OFFSET)
ioaddr |= (unsigned long)tmp.port_high << HIGH_BITS_OFFSET;
return sprintf(buf, "0x%lX\n", ioaddr);
}
static ssize_t irq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.irq);
}
static ssize_t flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "0x%X\n", tmp.flags);
}
static ssize_t xmit_fifo_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.xmit_fifo_size);
}
static ssize_t close_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.close_delay);
}
static ssize_t closing_wait_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.closing_wait);
}
static ssize_t custom_divisor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.custom_divisor);
}
static ssize_t io_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.io_type);
}
static ssize_t iomem_base_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "0x%lX\n", (unsigned long)tmp.iomem_base);
}
static ssize_t iomem_reg_shift_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct serial_struct tmp;
struct tty_port *port = dev_get_drvdata(dev);
uart_get_info(port, &tmp);
return sprintf(buf, "%d\n", tmp.iomem_reg_shift);
}
static ssize_t console_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tty_port *port = dev_get_drvdata(dev);
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
bool console = false;
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (uport)
console = uart_console_registered(uport);
mutex_unlock(&port->mutex);
return sprintf(buf, "%c\n", console ? 'Y' : 'N');
}
static ssize_t console_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct tty_port *port = dev_get_drvdata(dev);
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport;
bool oldconsole, newconsole;
int ret;
ret = kstrtobool(buf, &newconsole);
if (ret)
return ret;
mutex_lock(&port->mutex);
uport = uart_port_check(state);
if (uport) {
oldconsole = uart_console_registered(uport);
if (oldconsole && !newconsole) {
ret = unregister_console(uport->cons);
} else if (!oldconsole && newconsole) {
if (uart_console(uport)) {
uport->console_reinit = 1;
register_console(uport->cons);
} else {
ret = -ENOENT;
}
}
} else {
ret = -ENXIO;
}
mutex_unlock(&port->mutex);
return ret < 0 ? ret : count;
}
static DEVICE_ATTR_RO(uartclk);
static DEVICE_ATTR_RO(type);
static DEVICE_ATTR_RO(line);
static DEVICE_ATTR_RO(port);
static DEVICE_ATTR_RO(irq);
static DEVICE_ATTR_RO(flags);
static DEVICE_ATTR_RO(xmit_fifo_size);
static DEVICE_ATTR_RO(close_delay);
static DEVICE_ATTR_RO(closing_wait);
static DEVICE_ATTR_RO(custom_divisor);
static DEVICE_ATTR_RO(io_type);
static DEVICE_ATTR_RO(iomem_base);
static DEVICE_ATTR_RO(iomem_reg_shift);
static DEVICE_ATTR_RW(console);
static struct attribute *tty_dev_attrs[] = {
&dev_attr_uartclk.attr,
&dev_attr_type.attr,
&dev_attr_line.attr,
&dev_attr_port.attr,
&dev_attr_irq.attr,
&dev_attr_flags.attr,
&dev_attr_xmit_fifo_size.attr,
&dev_attr_close_delay.attr,
&dev_attr_closing_wait.attr,
&dev_attr_custom_divisor.attr,
&dev_attr_io_type.attr,
&dev_attr_iomem_base.attr,
&dev_attr_iomem_reg_shift.attr,
&dev_attr_console.attr,
NULL
};
static const struct attribute_group tty_dev_attr_group = {
.attrs = tty_dev_attrs,
};
/**
* serial_core_add_one_port - attach a driver-defined port structure
* @drv: pointer to the uart low level driver structure for this port
* @uport: uart port structure to use for this port.
*
* Context: task context, might sleep
*
* This allows the driver @drv to register its own uart_port structure with the
* core driver. The main purpose is to allow the low level uart drivers to
* expand uart_port, rather than having yet more levels of structures.
* Caller must hold port_mutex.
*/
static int serial_core_add_one_port(struct uart_driver *drv, struct uart_port *uport)
{
struct uart_state *state;
struct tty_port *port;
int ret = 0;
struct device *tty_dev;
int num_groups;
if (uport->line >= drv->nr)
return -EINVAL;
state = drv->state + uport->line;
port = &state->port;
mutex_lock(&port->mutex);
if (state->uart_port) {
ret = -EINVAL;
goto out;
}
/* Link the port to the driver state table and vice versa */
atomic_set(&state->refcount, 1);
init_waitqueue_head(&state->remove_wait);
state->uart_port = uport;
uport->state = state;
state->pm_state = UART_PM_STATE_UNDEFINED;
uport->cons = drv->cons;
uport->minor = drv->tty_driver->minor_start + uport->line;
uport->name = kasprintf(GFP_KERNEL, "%s%d", drv->dev_name,
drv->tty_driver->name_base + uport->line);
if (!uport->name) {
ret = -ENOMEM;
goto out;
}
/*
* If this port is in use as a console then the spinlock is already
* initialised.
*/
if (!uart_console_registered(uport))
uart_port_spin_lock_init(uport);
if (uport->cons && uport->dev)
of_console_check(uport->dev->of_node, uport->cons->name, uport->line);
tty_port_link_device(port, drv->tty_driver, uport->line);
uart_configure_port(drv, state, uport);
port->console = uart_console(uport);
num_groups = 2;
if (uport->attr_group)
num_groups++;
uport->tty_groups = kcalloc(num_groups, sizeof(*uport->tty_groups),
GFP_KERNEL);
if (!uport->tty_groups) {
ret = -ENOMEM;
goto out;
}
uport->tty_groups[0] = &tty_dev_attr_group;
if (uport->attr_group)
uport->tty_groups[1] = uport->attr_group;
/*
* Register the port whether it's detected or not. This allows
* setserial to be used to alter this port's parameters.
*/
tty_dev = tty_port_register_device_attr_serdev(port, drv->tty_driver,
uport->line, uport->dev, &uport->port_dev->dev, port,
uport->tty_groups);
if (!IS_ERR(tty_dev)) {
device_set_wakeup_capable(tty_dev, 1);
} else {
dev_err(uport->dev, "Cannot register tty device on line %d\n",
uport->line);
}
out:
mutex_unlock(&port->mutex);
return ret;
}
/**
* serial_core_remove_one_port - detach a driver defined port structure
* @drv: pointer to the uart low level driver structure for this port
* @uport: uart port structure for this port
*
* Context: task context, might sleep
*
* This unhooks (and hangs up) the specified port structure from the core
* driver. No further calls will be made to the low-level code for this port.
* Caller must hold port_mutex.
*/
static void serial_core_remove_one_port(struct uart_driver *drv,
struct uart_port *uport)
{
struct uart_state *state = drv->state + uport->line;
struct tty_port *port = &state->port;
struct uart_port *uart_port;
struct tty_struct *tty;
mutex_lock(&port->mutex);
uart_port = uart_port_check(state);
if (uart_port != uport)
dev_alert(uport->dev, "Removing wrong port: %p != %p\n",
uart_port, uport);
if (!uart_port) {
mutex_unlock(&port->mutex);
return;
}
mutex_unlock(&port->mutex);
/*
* Remove the devices from the tty layer
*/
tty_port_unregister_device(port, drv->tty_driver, uport->line);
tty = tty_port_tty_get(port);
if (tty) {
tty_vhangup(port->tty);
tty_kref_put(tty);
}
/*
* If the port is used as a console, unregister it
*/
if (uart_console(uport))
unregister_console(uport->cons);
/*
* Free the port IO and memory resources, if any.
*/
if (uport->type != PORT_UNKNOWN && uport->ops->release_port)
uport->ops->release_port(uport);
kfree(uport->tty_groups);
kfree(uport->name);
/*
* Indicate that there isn't a port here anymore.
*/
uport->type = PORT_UNKNOWN;
uport->port_dev = NULL;
mutex_lock(&port->mutex);
WARN_ON(atomic_dec_return(&state->refcount) < 0);
wait_event(state->remove_wait, !atomic_read(&state->refcount));
state->uart_port = NULL;
mutex_unlock(&port->mutex);
}
/**
* uart_match_port - are the two ports equivalent?
* @port1: first port
* @port2: second port
*
* This utility function can be used to determine whether two uart_port
* structures describe the same port.
*/
bool uart_match_port(const struct uart_port *port1,
const struct uart_port *port2)
{
if (port1->iotype != port2->iotype)
return false;
switch (port1->iotype) {
case UPIO_PORT:
return port1->iobase == port2->iobase;
case UPIO_HUB6:
return port1->iobase == port2->iobase &&
port1->hub6 == port2->hub6;
case UPIO_MEM:
case UPIO_MEM16:
case UPIO_MEM32:
case UPIO_MEM32BE:
case UPIO_AU:
case UPIO_TSI:
return port1->mapbase == port2->mapbase;
}
return false;
}
EXPORT_SYMBOL(uart_match_port);
static struct serial_ctrl_device *
serial_core_get_ctrl_dev(struct serial_port_device *port_dev)
{
struct device *dev = &port_dev->dev;
return to_serial_base_ctrl_device(dev->parent);
}
/*
* Find a registered serial core controller device if one exists. Returns
* the first device matching the ctrl_id. Caller must hold port_mutex.
*/
static struct serial_ctrl_device *serial_core_ctrl_find(struct uart_driver *drv,
struct device *phys_dev,
int ctrl_id)
{
struct uart_state *state;
int i;
lockdep_assert_held(&port_mutex);
for (i = 0; i < drv->nr; i++) {
state = drv->state + i;
if (!state->uart_port || !state->uart_port->port_dev)
continue;
if (state->uart_port->dev == phys_dev &&
state->uart_port->ctrl_id == ctrl_id)
return serial_core_get_ctrl_dev(state->uart_port->port_dev);
}
return NULL;
}
static struct serial_ctrl_device *serial_core_ctrl_device_add(struct uart_port *port)
{
return serial_base_ctrl_add(port, port->dev);
}
static int serial_core_port_device_add(struct serial_ctrl_device *ctrl_dev,
struct uart_port *port)
{
struct serial_port_device *port_dev;
port_dev = serial_base_port_add(port, ctrl_dev);
if (IS_ERR(port_dev))
return PTR_ERR(port_dev);
port->port_dev = port_dev;
return 0;
}
/*
* Initialize a serial core port device, and a controller device if needed.
*/
int serial_core_register_port(struct uart_driver *drv, struct uart_port *port)
{
struct serial_ctrl_device *ctrl_dev, *new_ctrl_dev = NULL;
int ret;
mutex_lock(&port_mutex);
/*
* Prevent serial_port_runtime_resume() from trying to use the port
* until serial_core_add_one_port() has completed
*/
port->flags |= UPF_DEAD;
/* Inititalize a serial core controller device if needed */
ctrl_dev = serial_core_ctrl_find(drv, port->dev, port->ctrl_id);
if (!ctrl_dev) {
new_ctrl_dev = serial_core_ctrl_device_add(port);
if (IS_ERR(new_ctrl_dev)) {
ret = PTR_ERR(new_ctrl_dev);
goto err_unlock;
}
ctrl_dev = new_ctrl_dev;
}
/*
* Initialize a serial core port device. Tag the port dead to prevent
* serial_port_runtime_resume() trying to do anything until port has
* been registered. It gets cleared by serial_core_add_one_port().
*/
ret = serial_core_port_device_add(ctrl_dev, port);
if (ret)
goto err_unregister_ctrl_dev;
ret = serial_base_add_preferred_console(drv, port);
if (ret)
goto err_unregister_port_dev;
ret = serial_core_add_one_port(drv, port);
if (ret)
goto err_unregister_port_dev;
port->flags &= ~UPF_DEAD;
mutex_unlock(&port_mutex);
return 0;
err_unregister_port_dev:
serial_base_port_device_remove(port->port_dev);
err_unregister_ctrl_dev:
serial_base_ctrl_device_remove(new_ctrl_dev);
err_unlock:
mutex_unlock(&port_mutex);
return ret;
}
/*
* Removes a serial core port device, and the related serial core controller
* device if the last instance.
*/
void serial_core_unregister_port(struct uart_driver *drv, struct uart_port *port)
{
struct device *phys_dev = port->dev;
struct serial_port_device *port_dev = port->port_dev;
struct serial_ctrl_device *ctrl_dev = serial_core_get_ctrl_dev(port_dev);
int ctrl_id = port->ctrl_id;
mutex_lock(&port_mutex);
port->flags |= UPF_DEAD;
serial_core_remove_one_port(drv, port);
/* Note that struct uart_port *port is no longer valid at this point */
serial_base_port_device_remove(port_dev);
/* Drop the serial core controller device if no ports are using it */
if (!serial_core_ctrl_find(drv, phys_dev, ctrl_id))
serial_base_ctrl_device_remove(ctrl_dev);
mutex_unlock(&port_mutex);
}
/**
* uart_handle_dcd_change - handle a change of carrier detect state
* @uport: uart_port structure for the open port
* @active: new carrier detect status
*
* Caller must hold uport->lock.
*/
void uart_handle_dcd_change(struct uart_port *uport, bool active)
{
struct tty_port *port = &uport->state->port;
struct tty_struct *tty = port->tty;
struct tty_ldisc *ld;
lockdep_assert_held_once(&uport->lock);
if (tty) {
ld = tty_ldisc_ref(tty);
if (ld) {
if (ld->ops->dcd_change)
ld->ops->dcd_change(tty, active);
tty_ldisc_deref(ld);
}
}
uport->icount.dcd++;
if (uart_dcd_enabled(uport)) {
if (active)
wake_up_interruptible(&port->open_wait);
else if (tty)
tty_hangup(tty);
}
}
EXPORT_SYMBOL_GPL(uart_handle_dcd_change);
/**
* uart_handle_cts_change - handle a change of clear-to-send state
* @uport: uart_port structure for the open port
* @active: new clear-to-send status
*
* Caller must hold uport->lock.
*/
void uart_handle_cts_change(struct uart_port *uport, bool active)
{
lockdep_assert_held_once(&uport->lock);
uport->icount.cts++;
if (uart_softcts_mode(uport)) {
if (uport->hw_stopped) {
if (active) {
uport->hw_stopped = false;
uport->ops->start_tx(uport);
uart_write_wakeup(uport);
}
} else {
if (!active) {
uport->hw_stopped = true;
uport->ops->stop_tx(uport);
}
}
}
}
EXPORT_SYMBOL_GPL(uart_handle_cts_change);
/**
* uart_insert_char - push a char to the uart layer
*
* User is responsible to call tty_flip_buffer_push when they are done with
* insertion.
*
* @port: corresponding port
* @status: state of the serial port RX buffer (LSR for 8250)
* @overrun: mask of overrun bits in @status
* @ch: character to push
* @flag: flag for the character (see TTY_NORMAL and friends)
*/
void uart_insert_char(struct uart_port *port, unsigned int status,
unsigned int overrun, u8 ch, u8 flag)
{
struct tty_port *tport = &port->state->port;
if ((status & port->ignore_status_mask & ~overrun) == 0)
if (tty_insert_flip_char(tport, ch, flag) == 0)
++port->icount.buf_overrun;
/*
* Overrun is special. Since it's reported immediately,
* it doesn't affect the current character.
*/
if (status & ~port->ignore_status_mask & overrun)
if (tty_insert_flip_char(tport, 0, TTY_OVERRUN) == 0)
++port->icount.buf_overrun;
}
EXPORT_SYMBOL_GPL(uart_insert_char);
#ifdef CONFIG_MAGIC_SYSRQ_SERIAL
static const u8 sysrq_toggle_seq[] = CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE;
static void uart_sysrq_on(struct work_struct *w)
{
int sysrq_toggle_seq_len = strlen(sysrq_toggle_seq);
sysrq_toggle_support(1);
pr_info("SysRq is enabled by magic sequence '%*pE' on serial\n",
sysrq_toggle_seq_len, sysrq_toggle_seq);
}
static DECLARE_WORK(sysrq_enable_work, uart_sysrq_on);
/**
* uart_try_toggle_sysrq - Enables SysRq from serial line
* @port: uart_port structure where char(s) after BREAK met
* @ch: new character in the sequence after received BREAK
*
* Enables magic SysRq when the required sequence is met on port
* (see CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE).
*
* Returns: %false if @ch is out of enabling sequence and should be
* handled some other way, %true if @ch was consumed.
*/
bool uart_try_toggle_sysrq(struct uart_port *port, u8 ch)
{
int sysrq_toggle_seq_len = strlen(sysrq_toggle_seq);
if (!sysrq_toggle_seq_len)
return false;
BUILD_BUG_ON(ARRAY_SIZE(sysrq_toggle_seq) >= U8_MAX);
if (sysrq_toggle_seq[port->sysrq_seq] != ch) {
port->sysrq_seq = 0;
return false;
}
if (++port->sysrq_seq < sysrq_toggle_seq_len) {
port->sysrq = jiffies + SYSRQ_TIMEOUT;
return true;
}
schedule_work(&sysrq_enable_work);
port->sysrq = 0;
return true;
}
EXPORT_SYMBOL_GPL(uart_try_toggle_sysrq);
#endif
/**
* uart_get_rs485_mode() - retrieve rs485 properties for given uart
* @port: uart device's target port
*
* This function implements the device tree binding described in
* Documentation/devicetree/bindings/serial/rs485.txt.
*/
int uart_get_rs485_mode(struct uart_port *port)
{
struct serial_rs485 *rs485conf = &port->rs485;
struct device *dev = port->dev;
enum gpiod_flags dflags;
struct gpio_desc *desc;
u32 rs485_delay[2];
int ret;
if (!(port->rs485_supported.flags & SER_RS485_ENABLED))
return 0;
ret = device_property_read_u32_array(dev, "rs485-rts-delay",
rs485_delay, 2);
if (!ret) {
rs485conf->delay_rts_before_send = rs485_delay[0];
rs485conf->delay_rts_after_send = rs485_delay[1];
} else {
rs485conf->delay_rts_before_send = 0;
rs485conf->delay_rts_after_send = 0;
}
uart_sanitize_serial_rs485_delays(port, rs485conf);
/*
* Clear full-duplex and enabled flags, set RTS polarity to active high
* to get to a defined state with the following properties:
*/
rs485conf->flags &= ~(SER_RS485_RX_DURING_TX | SER_RS485_ENABLED |
SER_RS485_TERMINATE_BUS |
SER_RS485_RTS_AFTER_SEND);
rs485conf->flags |= SER_RS485_RTS_ON_SEND;
if (device_property_read_bool(dev, "rs485-rx-during-tx"))
rs485conf->flags |= SER_RS485_RX_DURING_TX;
if (device_property_read_bool(dev, "linux,rs485-enabled-at-boot-time"))
rs485conf->flags |= SER_RS485_ENABLED;
if (device_property_read_bool(dev, "rs485-rts-active-low")) {
rs485conf->flags &= ~SER_RS485_RTS_ON_SEND;
rs485conf->flags |= SER_RS485_RTS_AFTER_SEND;
}
/*
* Disabling termination by default is the safe choice: Else if many
* bus participants enable it, no communication is possible at all.
* Works fine for short cables and users may enable for longer cables.
*/
desc = devm_gpiod_get_optional(dev, "rs485-term", GPIOD_OUT_LOW);
if (IS_ERR(desc))
return dev_err_probe(dev, PTR_ERR(desc), "Cannot get rs485-term-gpios\n");
port->rs485_term_gpio = desc;
if (port->rs485_term_gpio)
port->rs485_supported.flags |= SER_RS485_TERMINATE_BUS;
dflags = (rs485conf->flags & SER_RS485_RX_DURING_TX) ?
GPIOD_OUT_HIGH : GPIOD_OUT_LOW;
desc = devm_gpiod_get_optional(dev, "rs485-rx-during-tx", dflags);
if (IS_ERR(desc))
return dev_err_probe(dev, PTR_ERR(desc), "Cannot get rs485-rx-during-tx-gpios\n");
port->rs485_rx_during_tx_gpio = desc;
if (port->rs485_rx_during_tx_gpio)
port->rs485_supported.flags |= SER_RS485_RX_DURING_TX;
return 0;
}
EXPORT_SYMBOL_GPL(uart_get_rs485_mode);
/* Compile-time assertions for serial_rs485 layout */
static_assert(offsetof(struct serial_rs485, padding) ==
(offsetof(struct serial_rs485, delay_rts_after_send) + sizeof(__u32)));
static_assert(offsetof(struct serial_rs485, padding1) ==
offsetof(struct serial_rs485, padding[1]));
static_assert((offsetof(struct serial_rs485, padding[4]) + sizeof(__u32)) ==
sizeof(struct serial_rs485));
MODULE_DESCRIPTION("Serial driver core");
MODULE_LICENSE("GPL");