mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-18 06:15:12 +00:00
105a8c5256
The variables src_addr and dst_addr handle DMA addresses, so these should be declared as dma_addr_t. Fixes: 667b9251440b ("dmaengine: uniphier-xdmac: Add UniPhier external DMA controller driver") Signed-off-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com> Link: https://lore.kernel.org/r/1639456963-10232-1-git-send-email-hayashi.kunihiko@socionext.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
612 lines
16 KiB
C
612 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* External DMA controller driver for UniPhier SoCs
|
|
* Copyright 2019 Socionext Inc.
|
|
* Author: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
#define XDMAC_CH_WIDTH 0x100
|
|
|
|
#define XDMAC_TFA 0x08
|
|
#define XDMAC_TFA_MCNT_MASK GENMASK(23, 16)
|
|
#define XDMAC_TFA_MASK GENMASK(5, 0)
|
|
#define XDMAC_SADM 0x10
|
|
#define XDMAC_SADM_STW_MASK GENMASK(25, 24)
|
|
#define XDMAC_SADM_SAM BIT(4)
|
|
#define XDMAC_SADM_SAM_FIXED XDMAC_SADM_SAM
|
|
#define XDMAC_SADM_SAM_INC 0
|
|
#define XDMAC_DADM 0x14
|
|
#define XDMAC_DADM_DTW_MASK XDMAC_SADM_STW_MASK
|
|
#define XDMAC_DADM_DAM XDMAC_SADM_SAM
|
|
#define XDMAC_DADM_DAM_FIXED XDMAC_SADM_SAM_FIXED
|
|
#define XDMAC_DADM_DAM_INC XDMAC_SADM_SAM_INC
|
|
#define XDMAC_EXSAD 0x18
|
|
#define XDMAC_EXDAD 0x1c
|
|
#define XDMAC_SAD 0x20
|
|
#define XDMAC_DAD 0x24
|
|
#define XDMAC_ITS 0x28
|
|
#define XDMAC_ITS_MASK GENMASK(25, 0)
|
|
#define XDMAC_TNUM 0x2c
|
|
#define XDMAC_TNUM_MASK GENMASK(15, 0)
|
|
#define XDMAC_TSS 0x30
|
|
#define XDMAC_TSS_REQ BIT(0)
|
|
#define XDMAC_IEN 0x34
|
|
#define XDMAC_IEN_ERRIEN BIT(1)
|
|
#define XDMAC_IEN_ENDIEN BIT(0)
|
|
#define XDMAC_STAT 0x40
|
|
#define XDMAC_STAT_TENF BIT(0)
|
|
#define XDMAC_IR 0x44
|
|
#define XDMAC_IR_ERRF BIT(1)
|
|
#define XDMAC_IR_ENDF BIT(0)
|
|
#define XDMAC_ID 0x48
|
|
#define XDMAC_ID_ERRIDF BIT(1)
|
|
#define XDMAC_ID_ENDIDF BIT(0)
|
|
|
|
#define XDMAC_MAX_CHANS 16
|
|
#define XDMAC_INTERVAL_CLKS 20
|
|
#define XDMAC_MAX_WORDS XDMAC_TNUM_MASK
|
|
|
|
/* cut lower bit for maintain alignment of maximum transfer size */
|
|
#define XDMAC_MAX_WORD_SIZE (XDMAC_ITS_MASK & ~GENMASK(3, 0))
|
|
|
|
#define UNIPHIER_XDMAC_BUSWIDTHS \
|
|
(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
|
|
|
|
struct uniphier_xdmac_desc_node {
|
|
dma_addr_t src;
|
|
dma_addr_t dst;
|
|
u32 burst_size;
|
|
u32 nr_burst;
|
|
};
|
|
|
|
struct uniphier_xdmac_desc {
|
|
struct virt_dma_desc vd;
|
|
|
|
unsigned int nr_node;
|
|
unsigned int cur_node;
|
|
enum dma_transfer_direction dir;
|
|
struct uniphier_xdmac_desc_node nodes[];
|
|
};
|
|
|
|
struct uniphier_xdmac_chan {
|
|
struct virt_dma_chan vc;
|
|
struct uniphier_xdmac_device *xdev;
|
|
struct uniphier_xdmac_desc *xd;
|
|
void __iomem *reg_ch_base;
|
|
struct dma_slave_config sconfig;
|
|
int id;
|
|
unsigned int req_factor;
|
|
};
|
|
|
|
struct uniphier_xdmac_device {
|
|
struct dma_device ddev;
|
|
void __iomem *reg_base;
|
|
int nr_chans;
|
|
struct uniphier_xdmac_chan channels[];
|
|
};
|
|
|
|
static struct uniphier_xdmac_chan *
|
|
to_uniphier_xdmac_chan(struct virt_dma_chan *vc)
|
|
{
|
|
return container_of(vc, struct uniphier_xdmac_chan, vc);
|
|
}
|
|
|
|
static struct uniphier_xdmac_desc *
|
|
to_uniphier_xdmac_desc(struct virt_dma_desc *vd)
|
|
{
|
|
return container_of(vd, struct uniphier_xdmac_desc, vd);
|
|
}
|
|
|
|
/* xc->vc.lock must be held by caller */
|
|
static struct uniphier_xdmac_desc *
|
|
uniphier_xdmac_next_desc(struct uniphier_xdmac_chan *xc)
|
|
{
|
|
struct virt_dma_desc *vd;
|
|
|
|
vd = vchan_next_desc(&xc->vc);
|
|
if (!vd)
|
|
return NULL;
|
|
|
|
list_del(&vd->node);
|
|
|
|
return to_uniphier_xdmac_desc(vd);
|
|
}
|
|
|
|
/* xc->vc.lock must be held by caller */
|
|
static void uniphier_xdmac_chan_start(struct uniphier_xdmac_chan *xc,
|
|
struct uniphier_xdmac_desc *xd)
|
|
{
|
|
u32 src_mode, src_width;
|
|
u32 dst_mode, dst_width;
|
|
dma_addr_t src_addr, dst_addr;
|
|
u32 val, its, tnum;
|
|
enum dma_slave_buswidth buswidth;
|
|
|
|
src_addr = xd->nodes[xd->cur_node].src;
|
|
dst_addr = xd->nodes[xd->cur_node].dst;
|
|
its = xd->nodes[xd->cur_node].burst_size;
|
|
tnum = xd->nodes[xd->cur_node].nr_burst;
|
|
|
|
/*
|
|
* The width of MEM side must be 4 or 8 bytes, that does not
|
|
* affect that of DEV side and transfer size.
|
|
*/
|
|
if (xd->dir == DMA_DEV_TO_MEM) {
|
|
src_mode = XDMAC_SADM_SAM_FIXED;
|
|
buswidth = xc->sconfig.src_addr_width;
|
|
} else {
|
|
src_mode = XDMAC_SADM_SAM_INC;
|
|
buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
|
|
}
|
|
src_width = FIELD_PREP(XDMAC_SADM_STW_MASK, __ffs(buswidth));
|
|
|
|
if (xd->dir == DMA_MEM_TO_DEV) {
|
|
dst_mode = XDMAC_DADM_DAM_FIXED;
|
|
buswidth = xc->sconfig.dst_addr_width;
|
|
} else {
|
|
dst_mode = XDMAC_DADM_DAM_INC;
|
|
buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
|
|
}
|
|
dst_width = FIELD_PREP(XDMAC_DADM_DTW_MASK, __ffs(buswidth));
|
|
|
|
/* setup transfer factor */
|
|
val = FIELD_PREP(XDMAC_TFA_MCNT_MASK, XDMAC_INTERVAL_CLKS);
|
|
val |= FIELD_PREP(XDMAC_TFA_MASK, xc->req_factor);
|
|
writel(val, xc->reg_ch_base + XDMAC_TFA);
|
|
|
|
/* setup the channel */
|
|
writel(lower_32_bits(src_addr), xc->reg_ch_base + XDMAC_SAD);
|
|
writel(upper_32_bits(src_addr), xc->reg_ch_base + XDMAC_EXSAD);
|
|
|
|
writel(lower_32_bits(dst_addr), xc->reg_ch_base + XDMAC_DAD);
|
|
writel(upper_32_bits(dst_addr), xc->reg_ch_base + XDMAC_EXDAD);
|
|
|
|
src_mode |= src_width;
|
|
dst_mode |= dst_width;
|
|
writel(src_mode, xc->reg_ch_base + XDMAC_SADM);
|
|
writel(dst_mode, xc->reg_ch_base + XDMAC_DADM);
|
|
|
|
writel(its, xc->reg_ch_base + XDMAC_ITS);
|
|
writel(tnum, xc->reg_ch_base + XDMAC_TNUM);
|
|
|
|
/* enable interrupt */
|
|
writel(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN,
|
|
xc->reg_ch_base + XDMAC_IEN);
|
|
|
|
/* start XDMAC */
|
|
val = readl(xc->reg_ch_base + XDMAC_TSS);
|
|
val |= XDMAC_TSS_REQ;
|
|
writel(val, xc->reg_ch_base + XDMAC_TSS);
|
|
}
|
|
|
|
/* xc->vc.lock must be held by caller */
|
|
static int uniphier_xdmac_chan_stop(struct uniphier_xdmac_chan *xc)
|
|
{
|
|
u32 val;
|
|
|
|
/* disable interrupt */
|
|
val = readl(xc->reg_ch_base + XDMAC_IEN);
|
|
val &= ~(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN);
|
|
writel(val, xc->reg_ch_base + XDMAC_IEN);
|
|
|
|
/* stop XDMAC */
|
|
val = readl(xc->reg_ch_base + XDMAC_TSS);
|
|
val &= ~XDMAC_TSS_REQ;
|
|
writel(0, xc->reg_ch_base + XDMAC_TSS);
|
|
|
|
/* wait until transfer is stopped */
|
|
return readl_poll_timeout_atomic(xc->reg_ch_base + XDMAC_STAT, val,
|
|
!(val & XDMAC_STAT_TENF), 100, 1000);
|
|
}
|
|
|
|
/* xc->vc.lock must be held by caller */
|
|
static void uniphier_xdmac_start(struct uniphier_xdmac_chan *xc)
|
|
{
|
|
struct uniphier_xdmac_desc *xd;
|
|
|
|
xd = uniphier_xdmac_next_desc(xc);
|
|
if (xd)
|
|
uniphier_xdmac_chan_start(xc, xd);
|
|
|
|
/* set desc to chan regardless of xd is null */
|
|
xc->xd = xd;
|
|
}
|
|
|
|
static void uniphier_xdmac_chan_irq(struct uniphier_xdmac_chan *xc)
|
|
{
|
|
u32 stat;
|
|
int ret;
|
|
|
|
spin_lock(&xc->vc.lock);
|
|
|
|
stat = readl(xc->reg_ch_base + XDMAC_ID);
|
|
|
|
if (stat & XDMAC_ID_ERRIDF) {
|
|
ret = uniphier_xdmac_chan_stop(xc);
|
|
if (ret)
|
|
dev_err(xc->xdev->ddev.dev,
|
|
"DMA transfer error with aborting issue\n");
|
|
else
|
|
dev_err(xc->xdev->ddev.dev,
|
|
"DMA transfer error\n");
|
|
|
|
} else if ((stat & XDMAC_ID_ENDIDF) && xc->xd) {
|
|
xc->xd->cur_node++;
|
|
if (xc->xd->cur_node >= xc->xd->nr_node) {
|
|
vchan_cookie_complete(&xc->xd->vd);
|
|
uniphier_xdmac_start(xc);
|
|
} else {
|
|
uniphier_xdmac_chan_start(xc, xc->xd);
|
|
}
|
|
}
|
|
|
|
/* write bits to clear */
|
|
writel(stat, xc->reg_ch_base + XDMAC_IR);
|
|
|
|
spin_unlock(&xc->vc.lock);
|
|
}
|
|
|
|
static irqreturn_t uniphier_xdmac_irq_handler(int irq, void *dev_id)
|
|
{
|
|
struct uniphier_xdmac_device *xdev = dev_id;
|
|
int i;
|
|
|
|
for (i = 0; i < xdev->nr_chans; i++)
|
|
uniphier_xdmac_chan_irq(&xdev->channels[i]);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void uniphier_xdmac_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
vchan_free_chan_resources(to_virt_chan(chan));
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
uniphier_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
|
|
dma_addr_t src, size_t len, unsigned long flags)
|
|
{
|
|
struct virt_dma_chan *vc = to_virt_chan(chan);
|
|
struct uniphier_xdmac_desc *xd;
|
|
unsigned int nr;
|
|
size_t burst_size, tlen;
|
|
int i;
|
|
|
|
if (len > XDMAC_MAX_WORD_SIZE * XDMAC_MAX_WORDS)
|
|
return NULL;
|
|
|
|
nr = 1 + len / XDMAC_MAX_WORD_SIZE;
|
|
|
|
xd = kzalloc(struct_size(xd, nodes, nr), GFP_NOWAIT);
|
|
if (!xd)
|
|
return NULL;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
burst_size = min_t(size_t, len, XDMAC_MAX_WORD_SIZE);
|
|
xd->nodes[i].src = src;
|
|
xd->nodes[i].dst = dst;
|
|
xd->nodes[i].burst_size = burst_size;
|
|
xd->nodes[i].nr_burst = len / burst_size;
|
|
tlen = rounddown(len, burst_size);
|
|
src += tlen;
|
|
dst += tlen;
|
|
len -= tlen;
|
|
}
|
|
|
|
xd->dir = DMA_MEM_TO_MEM;
|
|
xd->nr_node = nr;
|
|
xd->cur_node = 0;
|
|
|
|
return vchan_tx_prep(vc, &xd->vd, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
uniphier_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct virt_dma_chan *vc = to_virt_chan(chan);
|
|
struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
|
|
struct uniphier_xdmac_desc *xd;
|
|
struct scatterlist *sg;
|
|
enum dma_slave_buswidth buswidth;
|
|
u32 maxburst;
|
|
int i;
|
|
|
|
if (!is_slave_direction(direction))
|
|
return NULL;
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
buswidth = xc->sconfig.src_addr_width;
|
|
maxburst = xc->sconfig.src_maxburst;
|
|
} else {
|
|
buswidth = xc->sconfig.dst_addr_width;
|
|
maxburst = xc->sconfig.dst_maxburst;
|
|
}
|
|
|
|
if (!maxburst)
|
|
maxburst = 1;
|
|
if (maxburst > xc->xdev->ddev.max_burst) {
|
|
dev_err(xc->xdev->ddev.dev,
|
|
"Exceed maximum number of burst words\n");
|
|
return NULL;
|
|
}
|
|
|
|
xd = kzalloc(struct_size(xd, nodes, sg_len), GFP_NOWAIT);
|
|
if (!xd)
|
|
return NULL;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
xd->nodes[i].src = (direction == DMA_DEV_TO_MEM)
|
|
? xc->sconfig.src_addr : sg_dma_address(sg);
|
|
xd->nodes[i].dst = (direction == DMA_MEM_TO_DEV)
|
|
? xc->sconfig.dst_addr : sg_dma_address(sg);
|
|
xd->nodes[i].burst_size = maxburst * buswidth;
|
|
xd->nodes[i].nr_burst =
|
|
sg_dma_len(sg) / xd->nodes[i].burst_size;
|
|
|
|
/*
|
|
* Currently transfer that size doesn't align the unit size
|
|
* (the number of burst words * bus-width) is not allowed,
|
|
* because the driver does not support the way to transfer
|
|
* residue size. As a matter of fact, in order to transfer
|
|
* arbitrary size, 'src_maxburst' or 'dst_maxburst' of
|
|
* dma_slave_config must be 1.
|
|
*/
|
|
if (sg_dma_len(sg) % xd->nodes[i].burst_size) {
|
|
dev_err(xc->xdev->ddev.dev,
|
|
"Unaligned transfer size: %d", sg_dma_len(sg));
|
|
kfree(xd);
|
|
return NULL;
|
|
}
|
|
|
|
if (xd->nodes[i].nr_burst > XDMAC_MAX_WORDS) {
|
|
dev_err(xc->xdev->ddev.dev,
|
|
"Exceed maximum transfer size");
|
|
kfree(xd);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
xd->dir = direction;
|
|
xd->nr_node = sg_len;
|
|
xd->cur_node = 0;
|
|
|
|
return vchan_tx_prep(vc, &xd->vd, flags);
|
|
}
|
|
|
|
static int uniphier_xdmac_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct virt_dma_chan *vc = to_virt_chan(chan);
|
|
struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
|
|
|
|
memcpy(&xc->sconfig, config, sizeof(*config));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uniphier_xdmac_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct virt_dma_chan *vc = to_virt_chan(chan);
|
|
struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&vc->lock, flags);
|
|
|
|
if (xc->xd) {
|
|
vchan_terminate_vdesc(&xc->xd->vd);
|
|
xc->xd = NULL;
|
|
ret = uniphier_xdmac_chan_stop(xc);
|
|
}
|
|
|
|
vchan_get_all_descriptors(vc, &head);
|
|
|
|
spin_unlock_irqrestore(&vc->lock, flags);
|
|
|
|
vchan_dma_desc_free_list(vc, &head);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void uniphier_xdmac_synchronize(struct dma_chan *chan)
|
|
{
|
|
vchan_synchronize(to_virt_chan(chan));
|
|
}
|
|
|
|
static void uniphier_xdmac_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct virt_dma_chan *vc = to_virt_chan(chan);
|
|
struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc->lock, flags);
|
|
|
|
if (vchan_issue_pending(vc) && !xc->xd)
|
|
uniphier_xdmac_start(xc);
|
|
|
|
spin_unlock_irqrestore(&vc->lock, flags);
|
|
}
|
|
|
|
static void uniphier_xdmac_desc_free(struct virt_dma_desc *vd)
|
|
{
|
|
kfree(to_uniphier_xdmac_desc(vd));
|
|
}
|
|
|
|
static void uniphier_xdmac_chan_init(struct uniphier_xdmac_device *xdev,
|
|
int ch)
|
|
{
|
|
struct uniphier_xdmac_chan *xc = &xdev->channels[ch];
|
|
|
|
xc->xdev = xdev;
|
|
xc->reg_ch_base = xdev->reg_base + XDMAC_CH_WIDTH * ch;
|
|
xc->vc.desc_free = uniphier_xdmac_desc_free;
|
|
|
|
vchan_init(&xc->vc, &xdev->ddev);
|
|
}
|
|
|
|
static struct dma_chan *of_dma_uniphier_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct uniphier_xdmac_device *xdev = ofdma->of_dma_data;
|
|
int chan_id = dma_spec->args[0];
|
|
|
|
if (chan_id >= xdev->nr_chans)
|
|
return NULL;
|
|
|
|
xdev->channels[chan_id].id = chan_id;
|
|
xdev->channels[chan_id].req_factor = dma_spec->args[1];
|
|
|
|
return dma_get_slave_channel(&xdev->channels[chan_id].vc.chan);
|
|
}
|
|
|
|
static int uniphier_xdmac_probe(struct platform_device *pdev)
|
|
{
|
|
struct uniphier_xdmac_device *xdev;
|
|
struct device *dev = &pdev->dev;
|
|
struct dma_device *ddev;
|
|
int irq;
|
|
int nr_chans;
|
|
int i, ret;
|
|
|
|
if (of_property_read_u32(dev->of_node, "dma-channels", &nr_chans))
|
|
return -EINVAL;
|
|
if (nr_chans > XDMAC_MAX_CHANS)
|
|
nr_chans = XDMAC_MAX_CHANS;
|
|
|
|
xdev = devm_kzalloc(dev, struct_size(xdev, channels, nr_chans),
|
|
GFP_KERNEL);
|
|
if (!xdev)
|
|
return -ENOMEM;
|
|
|
|
xdev->nr_chans = nr_chans;
|
|
xdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(xdev->reg_base))
|
|
return PTR_ERR(xdev->reg_base);
|
|
|
|
ddev = &xdev->ddev;
|
|
ddev->dev = dev;
|
|
dma_cap_zero(ddev->cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, ddev->cap_mask);
|
|
dma_cap_set(DMA_SLAVE, ddev->cap_mask);
|
|
ddev->src_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
|
|
ddev->dst_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
|
|
ddev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
|
|
BIT(DMA_MEM_TO_MEM);
|
|
ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
ddev->max_burst = XDMAC_MAX_WORDS;
|
|
ddev->device_free_chan_resources = uniphier_xdmac_free_chan_resources;
|
|
ddev->device_prep_dma_memcpy = uniphier_xdmac_prep_dma_memcpy;
|
|
ddev->device_prep_slave_sg = uniphier_xdmac_prep_slave_sg;
|
|
ddev->device_config = uniphier_xdmac_slave_config;
|
|
ddev->device_terminate_all = uniphier_xdmac_terminate_all;
|
|
ddev->device_synchronize = uniphier_xdmac_synchronize;
|
|
ddev->device_tx_status = dma_cookie_status;
|
|
ddev->device_issue_pending = uniphier_xdmac_issue_pending;
|
|
INIT_LIST_HEAD(&ddev->channels);
|
|
|
|
for (i = 0; i < nr_chans; i++)
|
|
uniphier_xdmac_chan_init(xdev, i);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = devm_request_irq(dev, irq, uniphier_xdmac_irq_handler,
|
|
IRQF_SHARED, "xdmac", xdev);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to request IRQ\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = dma_async_device_register(ddev);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register XDMA device\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = of_dma_controller_register(dev->of_node,
|
|
of_dma_uniphier_xlate, xdev);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register XDMA controller\n");
|
|
goto out_unregister_dmac;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, xdev);
|
|
|
|
dev_info(&pdev->dev, "UniPhier XDMAC driver (%d channels)\n",
|
|
nr_chans);
|
|
|
|
return 0;
|
|
|
|
out_unregister_dmac:
|
|
dma_async_device_unregister(ddev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int uniphier_xdmac_remove(struct platform_device *pdev)
|
|
{
|
|
struct uniphier_xdmac_device *xdev = platform_get_drvdata(pdev);
|
|
struct dma_device *ddev = &xdev->ddev;
|
|
struct dma_chan *chan;
|
|
int ret;
|
|
|
|
/*
|
|
* Before reaching here, almost all descriptors have been freed by the
|
|
* ->device_free_chan_resources() hook. However, each channel might
|
|
* be still holding one descriptor that was on-flight at that moment.
|
|
* Terminate it to make sure this hardware is no longer running. Then,
|
|
* free the channel resources once again to avoid memory leak.
|
|
*/
|
|
list_for_each_entry(chan, &ddev->channels, device_node) {
|
|
ret = dmaengine_terminate_sync(chan);
|
|
if (ret)
|
|
return ret;
|
|
uniphier_xdmac_free_chan_resources(chan);
|
|
}
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
dma_async_device_unregister(ddev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id uniphier_xdmac_match[] = {
|
|
{ .compatible = "socionext,uniphier-xdmac" },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, uniphier_xdmac_match);
|
|
|
|
static struct platform_driver uniphier_xdmac_driver = {
|
|
.probe = uniphier_xdmac_probe,
|
|
.remove = uniphier_xdmac_remove,
|
|
.driver = {
|
|
.name = "uniphier-xdmac",
|
|
.of_match_table = uniphier_xdmac_match,
|
|
},
|
|
};
|
|
module_platform_driver(uniphier_xdmac_driver);
|
|
|
|
MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
|
|
MODULE_DESCRIPTION("UniPhier external DMA controller driver");
|
|
MODULE_LICENSE("GPL v2");
|