linux-next/sound/soc/sti/sti_uniperif.c
Jerome Audu 6b99068d5e
ASoC: sti: add missing probe entry for player and reader
This patch addresses a regression in the ASoC STI drivers that was
introduced in Linux version 6.6.y. The issue originated from a series of
patches (see https://lore.kernel.org/all/87wmy5b0wt.wl-kuninori.morimoto.gx@renesas.com/)
that unintentionally omitted necessary probe functions for the player
and reader components.

Probe function in `sound/soc/sti/sti_uniperif.c:415` is being replaced
by another probe function located at `sound/soc/sti/sti_uniperif.c:453`,
which should instead be derived from the player and reader components.
This patch correctly reinserts the missing probe entries,
restoring the intended functionality.

Fixes: 9f625f5e6c ("ASoC: sti: merge DAI call back functions into ops")
Signed-off-by: Jerome Audu <jau@free.fr>
Link: https://patch.msgid.link/20240727-sti-audio-fix-v2-1-208bde546c3f@free.fr
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-07-29 13:36:56 +01:00

507 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) STMicroelectronics SA 2015
* Authors: Arnaud Pouliquen <arnaud.pouliquen@st.com>
* for STMicroelectronics.
*/
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/delay.h>
#include "uniperif.h"
/*
* User frame size shall be 2, 4, 6 or 8 32-bits words length
* (i.e. 8, 16, 24 or 32 bytes)
* This constraint comes from allowed values for
* UNIPERIF_I2S_FMT_NUM_CH register
*/
#define UNIPERIF_MAX_FRAME_SZ 0x20
#define UNIPERIF_ALLOWED_FRAME_SZ (0x08 | 0x10 | 0x18 | UNIPERIF_MAX_FRAME_SZ)
struct sti_uniperiph_dev_data {
unsigned int id; /* Nb available player instances */
unsigned int version; /* player IP version */
unsigned int stream;
const char *dai_names;
enum uniperif_type type;
};
static const struct sti_uniperiph_dev_data sti_uniplayer_hdmi = {
.id = 0,
.version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0,
.stream = SNDRV_PCM_STREAM_PLAYBACK,
.dai_names = "Uni Player #0 (HDMI)",
.type = SND_ST_UNIPERIF_TYPE_HDMI
};
static const struct sti_uniperiph_dev_data sti_uniplayer_pcm_out = {
.id = 1,
.version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0,
.stream = SNDRV_PCM_STREAM_PLAYBACK,
.dai_names = "Uni Player #1 (PCM OUT)",
.type = SND_ST_UNIPERIF_TYPE_PCM | SND_ST_UNIPERIF_TYPE_TDM,
};
static const struct sti_uniperiph_dev_data sti_uniplayer_dac = {
.id = 2,
.version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0,
.stream = SNDRV_PCM_STREAM_PLAYBACK,
.dai_names = "Uni Player #2 (DAC)",
.type = SND_ST_UNIPERIF_TYPE_PCM,
};
static const struct sti_uniperiph_dev_data sti_uniplayer_spdif = {
.id = 3,
.version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0,
.stream = SNDRV_PCM_STREAM_PLAYBACK,
.dai_names = "Uni Player #3 (SPDIF)",
.type = SND_ST_UNIPERIF_TYPE_SPDIF
};
static const struct sti_uniperiph_dev_data sti_unireader_pcm_in = {
.id = 0,
.version = SND_ST_UNIPERIF_VERSION_UNI_RDR_1_0,
.stream = SNDRV_PCM_STREAM_CAPTURE,
.dai_names = "Uni Reader #0 (PCM IN)",
.type = SND_ST_UNIPERIF_TYPE_PCM | SND_ST_UNIPERIF_TYPE_TDM,
};
static const struct sti_uniperiph_dev_data sti_unireader_hdmi_in = {
.id = 1,
.version = SND_ST_UNIPERIF_VERSION_UNI_RDR_1_0,
.stream = SNDRV_PCM_STREAM_CAPTURE,
.dai_names = "Uni Reader #1 (HDMI IN)",
.type = SND_ST_UNIPERIF_TYPE_PCM,
};
static const struct of_device_id snd_soc_sti_match[] = {
{ .compatible = "st,stih407-uni-player-hdmi",
.data = &sti_uniplayer_hdmi
},
{ .compatible = "st,stih407-uni-player-pcm-out",
.data = &sti_uniplayer_pcm_out
},
{ .compatible = "st,stih407-uni-player-dac",
.data = &sti_uniplayer_dac
},
{ .compatible = "st,stih407-uni-player-spdif",
.data = &sti_uniplayer_spdif
},
{ .compatible = "st,stih407-uni-reader-pcm_in",
.data = &sti_unireader_pcm_in
},
{ .compatible = "st,stih407-uni-reader-hdmi",
.data = &sti_unireader_hdmi_in
},
{},
};
MODULE_DEVICE_TABLE(of, snd_soc_sti_match);
int sti_uniperiph_reset(struct uniperif *uni)
{
int count = 10;
/* Reset uniperipheral uni */
SET_UNIPERIF_SOFT_RST_SOFT_RST(uni);
if (uni->ver < SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0) {
while (GET_UNIPERIF_SOFT_RST_SOFT_RST(uni) && count) {
udelay(5);
count--;
}
}
if (!count) {
dev_err(uni->dev, "Failed to reset uniperif\n");
return -EIO;
}
return 0;
}
int sti_uniperiph_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots,
int slot_width)
{
struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai);
struct uniperif *uni = priv->dai_data.uni;
int i, frame_size, avail_slots;
if (!UNIPERIF_TYPE_IS_TDM(uni)) {
dev_err(uni->dev, "cpu dai not in tdm mode\n");
return -EINVAL;
}
/* store info in unip context */
uni->tdm_slot.slots = slots;
uni->tdm_slot.slot_width = slot_width;
/* unip is unidirectionnal */
uni->tdm_slot.mask = (tx_mask != 0) ? tx_mask : rx_mask;
/* number of available timeslots */
for (i = 0, avail_slots = 0; i < uni->tdm_slot.slots; i++) {
if ((uni->tdm_slot.mask >> i) & 0x01)
avail_slots++;
}
uni->tdm_slot.avail_slots = avail_slots;
/* frame size in bytes */
frame_size = uni->tdm_slot.avail_slots * uni->tdm_slot.slot_width / 8;
/* check frame size is allowed */
if ((frame_size > UNIPERIF_MAX_FRAME_SZ) ||
(frame_size & ~(int)UNIPERIF_ALLOWED_FRAME_SZ)) {
dev_err(uni->dev, "frame size not allowed: %d bytes\n",
frame_size);
return -EINVAL;
}
return 0;
}
int sti_uniperiph_fix_tdm_chan(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct uniperif *uni = rule->private;
struct snd_interval t;
t.min = uni->tdm_slot.avail_slots;
t.max = uni->tdm_slot.avail_slots;
t.openmin = 0;
t.openmax = 0;
t.integer = 0;
return snd_interval_refine(hw_param_interval(params, rule->var), &t);
}
int sti_uniperiph_fix_tdm_format(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct uniperif *uni = rule->private;
struct snd_mask *maskp = hw_param_mask(params, rule->var);
u64 format;
switch (uni->tdm_slot.slot_width) {
case 16:
format = SNDRV_PCM_FMTBIT_S16_LE;
break;
case 32:
format = SNDRV_PCM_FMTBIT_S32_LE;
break;
default:
dev_err(uni->dev, "format not supported: %d bits\n",
uni->tdm_slot.slot_width);
return -EINVAL;
}
maskp->bits[0] &= (u_int32_t)format;
maskp->bits[1] &= (u_int32_t)(format >> 32);
/* clear remaining indexes */
memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX - 64) / 8);
if (!maskp->bits[0] && !maskp->bits[1])
return -EINVAL;
return 0;
}
int sti_uniperiph_get_tdm_word_pos(struct uniperif *uni,
unsigned int *word_pos)
{
int slot_width = uni->tdm_slot.slot_width / 8;
int slots_num = uni->tdm_slot.slots;
unsigned int slots_mask = uni->tdm_slot.mask;
int i, j, k;
unsigned int word16_pos[4];
/* word16_pos:
* word16_pos[0] = WORDX_LSB
* word16_pos[1] = WORDX_MSB,
* word16_pos[2] = WORDX+1_LSB
* word16_pos[3] = WORDX+1_MSB
*/
/* set unip word position */
for (i = 0, j = 0, k = 0; (i < slots_num) && (k < WORD_MAX); i++) {
if ((slots_mask >> i) & 0x01) {
word16_pos[j] = i * slot_width;
if (slot_width == 4) {
word16_pos[j + 1] = word16_pos[j] + 2;
j++;
}
j++;
if (j > 3) {
word_pos[k] = word16_pos[1] |
(word16_pos[0] << 8) |
(word16_pos[3] << 16) |
(word16_pos[2] << 24);
j = 0;
k++;
}
}
}
return 0;
}
/*
* sti_uniperiph_dai_create_ctrl
* This function is used to create Ctrl associated to DAI but also pcm device.
* Request is done by front end to associate ctrl with pcm device id
*/
static int sti_uniperiph_dai_create_ctrl(struct snd_soc_dai *dai)
{
struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai);
struct uniperif *uni = priv->dai_data.uni;
struct snd_kcontrol_new *ctrl;
int i;
if (!uni->num_ctrls)
return 0;
for (i = 0; i < uni->num_ctrls; i++) {
/*
* Several Control can have same name. Controls are indexed on
* Uniperipheral instance ID
*/
ctrl = &uni->snd_ctrls[i];
ctrl->index = uni->id;
ctrl->device = uni->id;
}
return snd_soc_add_dai_controls(dai, uni->snd_ctrls, uni->num_ctrls);
}
/*
* DAI
*/
int sti_uniperiph_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai);
struct uniperif *uni = priv->dai_data.uni;
struct snd_dmaengine_dai_dma_data *dma_data;
int transfer_size;
if (uni->type == SND_ST_UNIPERIF_TYPE_TDM)
/* transfer size = user frame size (in 32-bits FIFO cell) */
transfer_size = snd_soc_params_to_frame_size(params) / 32;
else
transfer_size = params_channels(params) * UNIPERIF_FIFO_FRAMES;
dma_data = snd_soc_dai_get_dma_data(dai, substream);
dma_data->maxburst = transfer_size;
return 0;
}
int sti_uniperiph_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai);
priv->dai_data.uni->daifmt = fmt;
return 0;
}
static int sti_uniperiph_suspend(struct snd_soc_component *component)
{
struct sti_uniperiph_data *priv = snd_soc_component_get_drvdata(component);
struct uniperif *uni = priv->dai_data.uni;
int ret;
/* The uniperipheral should be in stopped state */
if (uni->state != UNIPERIF_STATE_STOPPED) {
dev_err(uni->dev, "%s: invalid uni state( %d)\n",
__func__, (int)uni->state);
return -EBUSY;
}
/* Pinctrl: switch pinstate to sleep */
ret = pinctrl_pm_select_sleep_state(uni->dev);
if (ret)
dev_err(uni->dev, "%s: failed to select pinctrl state\n",
__func__);
return ret;
}
static int sti_uniperiph_resume(struct snd_soc_component *component)
{
struct sti_uniperiph_data *priv = snd_soc_component_get_drvdata(component);
struct uniperif *uni = priv->dai_data.uni;
int ret;
if (priv->dai_data.stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = uni_player_resume(uni);
if (ret)
return ret;
}
/* pinctrl: switch pinstate to default */
ret = pinctrl_pm_select_default_state(uni->dev);
if (ret)
dev_err(uni->dev, "%s: failed to select pinctrl state\n",
__func__);
return ret;
}
int sti_uniperiph_dai_probe(struct snd_soc_dai *dai)
{
struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai);
struct sti_uniperiph_dai *dai_data = &priv->dai_data;
/* DMA settings*/
if (priv->dai_data.stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_soc_dai_init_dma_data(dai, &dai_data->dma_data, NULL);
else
snd_soc_dai_init_dma_data(dai, NULL, &dai_data->dma_data);
dai_data->dma_data.addr = dai_data->uni->fifo_phys_address;
dai_data->dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
return sti_uniperiph_dai_create_ctrl(dai);
}
static const struct snd_soc_dai_ops sti_uniperiph_dai_ops = {
.probe = sti_uniperiph_dai_probe,
};
static const struct snd_soc_dai_driver sti_uniperiph_dai_template = {
.ops = &sti_uniperiph_dai_ops,
};
static const struct snd_soc_component_driver sti_uniperiph_dai_component = {
.name = "sti_cpu_dai",
.suspend = sti_uniperiph_suspend,
.resume = sti_uniperiph_resume,
.legacy_dai_naming = 1,
};
static int sti_uniperiph_cpu_dai_of(struct device_node *node,
struct sti_uniperiph_data *priv)
{
struct device *dev = &priv->pdev->dev;
struct sti_uniperiph_dai *dai_data = &priv->dai_data;
struct snd_soc_dai_driver *dai = priv->dai;
struct snd_soc_pcm_stream *stream;
struct uniperif *uni;
const struct of_device_id *of_id;
const struct sti_uniperiph_dev_data *dev_data;
const char *mode;
int ret;
/* Populate data structure depending on compatibility */
of_id = of_match_node(snd_soc_sti_match, node);
if (!of_id->data) {
dev_err(dev, "data associated to device is missing\n");
return -EINVAL;
}
dev_data = (struct sti_uniperiph_dev_data *)of_id->data;
uni = devm_kzalloc(dev, sizeof(*uni), GFP_KERNEL);
if (!uni)
return -ENOMEM;
uni->id = dev_data->id;
uni->ver = dev_data->version;
*dai = sti_uniperiph_dai_template;
dai->name = dev_data->dai_names;
/* Get resources and base address */
uni->base = devm_platform_get_and_ioremap_resource(priv->pdev, 0, &uni->mem_region);
if (IS_ERR(uni->base))
return PTR_ERR(uni->base);
uni->fifo_phys_address = uni->mem_region->start +
UNIPERIF_FIFO_DATA_OFFSET(uni);
uni->irq = platform_get_irq(priv->pdev, 0);
if (uni->irq < 0)
return -ENXIO;
uni->type = dev_data->type;
/* check if player should be configured for tdm */
if (dev_data->type & SND_ST_UNIPERIF_TYPE_TDM) {
if (!of_property_read_string(node, "st,tdm-mode", &mode))
uni->type = SND_ST_UNIPERIF_TYPE_TDM;
else
uni->type = SND_ST_UNIPERIF_TYPE_PCM;
}
dai_data->uni = uni;
dai_data->stream = dev_data->stream;
if (priv->dai_data.stream == SNDRV_PCM_STREAM_PLAYBACK) {
ret = uni_player_init(priv->pdev, uni);
stream = &dai->playback;
} else {
ret = uni_reader_init(priv->pdev, uni);
stream = &dai->capture;
}
if (ret < 0)
return ret;
dai->ops = uni->dai_ops;
stream->stream_name = dai->name;
stream->channels_min = uni->hw->channels_min;
stream->channels_max = uni->hw->channels_max;
stream->rates = uni->hw->rates;
stream->formats = uni->hw->formats;
return 0;
}
static int sti_uniperiph_probe(struct platform_device *pdev)
{
struct sti_uniperiph_data *priv;
struct device_node *node = pdev->dev.of_node;
int ret;
/* Allocate the private data and the CPU_DAI array */
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dai = devm_kzalloc(&pdev->dev, sizeof(*priv->dai), GFP_KERNEL);
if (!priv->dai)
return -ENOMEM;
priv->pdev = pdev;
ret = sti_uniperiph_cpu_dai_of(node, priv);
if (ret < 0)
return ret;
dev_set_drvdata(&pdev->dev, priv);
ret = devm_snd_soc_register_component(&pdev->dev,
&sti_uniperiph_dai_component,
priv->dai, 1);
if (ret < 0)
return ret;
return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
}
static struct platform_driver sti_uniperiph_driver = {
.driver = {
.name = "sti-uniperiph-dai",
.of_match_table = snd_soc_sti_match,
},
.probe = sti_uniperiph_probe,
};
module_platform_driver(sti_uniperiph_driver);
MODULE_DESCRIPTION("uniperipheral DAI driver");
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_LICENSE("GPL v2");