linux-next/fs/f2fs/data.c
Linus Torvalds 1501f707d2 f2fs-for-5.19
In this round, we've refactored the existing atomic write support implemented
 by in-memory operations to have storing data in disk temporarily, which can give
 us a benefit to accept more atomic writes. At the same time, we removed the
 existing volatile write support. We've also revisited the file pinning and GC
 flows and found some corner cases which contributeed abnormal system behaviours.
 As usual, there're several minor code refactoring for readability, sanity check,
 and clean ups.
 
 Enhancement
  - allow compression for mmap files in compress_mode=user
  - kill volatile write support
  - change the current atomic write way
  - give priority to select unpinned section for foreground GC
  - introduce data read/write showing path info
  - remove unnecessary f2fs_lock_op in f2fs_new_inode
 
 Bug fix
  - fix the file pinning flow during checkpoint=disable and GCs
  - fix foreground and background GCs to select the right victims and get free
    sections on time
  - fix GC flags on defragmenting pages
  - avoid an infinite loop to flush node pages
  - fix fallocate to use file_modified to update permissions consistently
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAmKWfyEACgkQQBSofoJI
 UNJaAQ/9Hs3aGIyriGV8CMbarklRuQ24o3khQKdia5gHseFVsydMfba8tyvl7vYV
 fZnHKp9rnEV1emxWn7hHLaGOvPV8leajZqMLhqG384BIb0yoTnRipnK5t0JkoiJX
 53XC5yfxQd01dwS+J4uOSu2jW0Gs6iBLD6H9ahOs86OE6jF1TeQ/fqjsrhm9I8Zr
 GsNON6zxafPn248sYyVBB3Y5GjPBPf+USif3ZEidAWimW/TIGbXLUT1hA0B79YoX
 DRAmN3tYS75yXauQvFPerMbOmP2gwCPcvdCI/PZ4U/ApsEPP7k1SbOZYAjjGUB30
 Qn8cSMxzPZ1cHvzIC96vwJk8XPdcDhICfzROb7jJdeznD8cWTDv0E+Vd33HUf/mG
 pi5Lkpc4STvYD+KUaKpdnHVg6ARWw4HOnUtW43MF3OsfuyGEEPlROs6lBVYnk/Hz
 smlrgnnLMTOpH9y2JyuyExeHEJ3EAgWbJ8aRpq7Ua7FvKF45Yj1lIytWlvWXSnRf
 rp+A5QJhVtYvT+y2Rk2h5oTRj/9l3+pR0X7CTOfSivJuf6aH5XVgI0EmxT2iBTCp
 4SDBjLC+nXXP3EK1HamLiz1mU23Qg1Qwvx3Wc4xgdwQf3s+jyYxki9tIjzdwJCCZ
 adjd3fc/GrD9UPDmJDXlD5QSoOJ94K/NOwYpu1L1/Q+dVwkl+IE=
 =ta8Y
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "In this round, we've refactored the existing atomic write support
  implemented by in-memory operations to have storing data in disk
  temporarily, which can give us a benefit to accept more atomic writes.

  At the same time, we removed the existing volatile write support.

  We've also revisited the file pinning and GC flows and found some
  corner cases which contributeed abnormal system behaviours.

  As usual, there're several minor code refactoring for readability,
  sanity check, and clean ups.

  Enhancements:

   - allow compression for mmap files in compress_mode=user

   - kill volatile write support

   - change the current atomic write way

   - give priority to select unpinned section for foreground GC

   - introduce data read/write showing path info

   - remove unnecessary f2fs_lock_op in f2fs_new_inode

  Bug fixes:

   - fix the file pinning flow during checkpoint=disable and GCs

   - fix foreground and background GCs to select the right victims and
     get free sections on time

   - fix GC flags on defragmenting pages

   - avoid an infinite loop to flush node pages

   - fix fallocate to use file_modified to update permissions
     consistently"

* tag 'f2fs-for-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (40 commits)
  f2fs: fix to tag gcing flag on page during file defragment
  f2fs: replace F2FS_I(inode) and sbi by the local variable
  f2fs: add f2fs_init_write_merge_io function
  f2fs: avoid unneeded error handling for revoke_entry_slab allocation
  f2fs: allow compression for mmap files in compress_mode=user
  f2fs: fix typo in comment
  f2fs: make f2fs_read_inline_data() more readable
  f2fs: fix to do sanity check for inline inode
  f2fs: fix fallocate to use file_modified to update permissions consistently
  f2fs: don't use casefolded comparison for "." and ".."
  f2fs: do not stop GC when requiring a free section
  f2fs: keep wait_ms if EAGAIN happens
  f2fs: introduce f2fs_gc_control to consolidate f2fs_gc parameters
  f2fs: reject test_dummy_encryption when !CONFIG_FS_ENCRYPTION
  f2fs: kill volatile write support
  f2fs: change the current atomic write way
  f2fs: don't need inode lock for system hidden quota
  f2fs: stop allocating pinned sections if EAGAIN happens
  f2fs: skip GC if possible when checkpoint disabling
  f2fs: give priority to select unpinned section for foreground GC
  ...
2022-05-31 16:52:59 -07:00

4165 lines
100 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/data.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/sched/mm.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blk-crypto.h>
#include <linux/swap.h>
#include <linux/prefetch.h>
#include <linux/uio.h>
#include <linux/sched/signal.h>
#include <linux/fiemap.h>
#include <linux/iomap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "iostat.h"
#include <trace/events/f2fs.h>
#define NUM_PREALLOC_POST_READ_CTXS 128
static struct kmem_cache *bio_post_read_ctx_cache;
static struct kmem_cache *bio_entry_slab;
static mempool_t *bio_post_read_ctx_pool;
static struct bio_set f2fs_bioset;
#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
int __init f2fs_init_bioset(void)
{
if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
0, BIOSET_NEED_BVECS))
return -ENOMEM;
return 0;
}
void f2fs_destroy_bioset(void)
{
bioset_exit(&f2fs_bioset);
}
static bool __is_cp_guaranteed(struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode;
struct f2fs_sb_info *sbi;
if (!mapping)
return false;
inode = mapping->host;
sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_META_INO(sbi) ||
inode->i_ino == F2FS_NODE_INO(sbi) ||
S_ISDIR(inode->i_mode))
return true;
if (f2fs_is_compressed_page(page))
return false;
if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
page_private_gcing(page))
return true;
return false;
}
static enum count_type __read_io_type(struct page *page)
{
struct address_space *mapping = page_file_mapping(page);
if (mapping) {
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_META_INO(sbi))
return F2FS_RD_META;
if (inode->i_ino == F2FS_NODE_INO(sbi))
return F2FS_RD_NODE;
}
return F2FS_RD_DATA;
}
/* postprocessing steps for read bios */
enum bio_post_read_step {
#ifdef CONFIG_FS_ENCRYPTION
STEP_DECRYPT = 1 << 0,
#else
STEP_DECRYPT = 0, /* compile out the decryption-related code */
#endif
#ifdef CONFIG_F2FS_FS_COMPRESSION
STEP_DECOMPRESS = 1 << 1,
#else
STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
#endif
#ifdef CONFIG_FS_VERITY
STEP_VERITY = 1 << 2,
#else
STEP_VERITY = 0, /* compile out the verity-related code */
#endif
};
struct bio_post_read_ctx {
struct bio *bio;
struct f2fs_sb_info *sbi;
struct work_struct work;
unsigned int enabled_steps;
block_t fs_blkaddr;
};
static void f2fs_finish_read_bio(struct bio *bio)
{
struct bio_vec *bv;
struct bvec_iter_all iter_all;
/*
* Update and unlock the bio's pagecache pages, and put the
* decompression context for any compressed pages.
*/
bio_for_each_segment_all(bv, bio, iter_all) {
struct page *page = bv->bv_page;
if (f2fs_is_compressed_page(page)) {
if (bio->bi_status)
f2fs_end_read_compressed_page(page, true, 0);
f2fs_put_page_dic(page);
continue;
}
/* PG_error was set if decryption or verity failed. */
if (bio->bi_status || PageError(page)) {
ClearPageUptodate(page);
/* will re-read again later */
ClearPageError(page);
} else {
SetPageUptodate(page);
}
dec_page_count(F2FS_P_SB(page), __read_io_type(page));
unlock_page(page);
}
if (bio->bi_private)
mempool_free(bio->bi_private, bio_post_read_ctx_pool);
bio_put(bio);
}
static void f2fs_verify_bio(struct work_struct *work)
{
struct bio_post_read_ctx *ctx =
container_of(work, struct bio_post_read_ctx, work);
struct bio *bio = ctx->bio;
bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
/*
* fsverity_verify_bio() may call readahead() again, and while verity
* will be disabled for this, decryption and/or decompression may still
* be needed, resulting in another bio_post_read_ctx being allocated.
* So to prevent deadlocks we need to release the current ctx to the
* mempool first. This assumes that verity is the last post-read step.
*/
mempool_free(ctx, bio_post_read_ctx_pool);
bio->bi_private = NULL;
/*
* Verify the bio's pages with fs-verity. Exclude compressed pages,
* as those were handled separately by f2fs_end_read_compressed_page().
*/
if (may_have_compressed_pages) {
struct bio_vec *bv;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bv, bio, iter_all) {
struct page *page = bv->bv_page;
if (!f2fs_is_compressed_page(page) &&
!PageError(page) && !fsverity_verify_page(page))
SetPageError(page);
}
} else {
fsverity_verify_bio(bio);
}
f2fs_finish_read_bio(bio);
}
/*
* If the bio's data needs to be verified with fs-verity, then enqueue the
* verity work for the bio. Otherwise finish the bio now.
*
* Note that to avoid deadlocks, the verity work can't be done on the
* decryption/decompression workqueue. This is because verifying the data pages
* can involve reading verity metadata pages from the file, and these verity
* metadata pages may be encrypted and/or compressed.
*/
static void f2fs_verify_and_finish_bio(struct bio *bio)
{
struct bio_post_read_ctx *ctx = bio->bi_private;
if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
INIT_WORK(&ctx->work, f2fs_verify_bio);
fsverity_enqueue_verify_work(&ctx->work);
} else {
f2fs_finish_read_bio(bio);
}
}
/*
* Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
* remaining page was read by @ctx->bio.
*
* Note that a bio may span clusters (even a mix of compressed and uncompressed
* clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
* that the bio includes at least one compressed page. The actual decompression
* is done on a per-cluster basis, not a per-bio basis.
*/
static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
{
struct bio_vec *bv;
struct bvec_iter_all iter_all;
bool all_compressed = true;
block_t blkaddr = ctx->fs_blkaddr;
bio_for_each_segment_all(bv, ctx->bio, iter_all) {
struct page *page = bv->bv_page;
/* PG_error was set if decryption failed. */
if (f2fs_is_compressed_page(page))
f2fs_end_read_compressed_page(page, PageError(page),
blkaddr);
else
all_compressed = false;
blkaddr++;
}
/*
* Optimization: if all the bio's pages are compressed, then scheduling
* the per-bio verity work is unnecessary, as verity will be fully
* handled at the compression cluster level.
*/
if (all_compressed)
ctx->enabled_steps &= ~STEP_VERITY;
}
static void f2fs_post_read_work(struct work_struct *work)
{
struct bio_post_read_ctx *ctx =
container_of(work, struct bio_post_read_ctx, work);
if (ctx->enabled_steps & STEP_DECRYPT)
fscrypt_decrypt_bio(ctx->bio);
if (ctx->enabled_steps & STEP_DECOMPRESS)
f2fs_handle_step_decompress(ctx);
f2fs_verify_and_finish_bio(ctx->bio);
}
static void f2fs_read_end_io(struct bio *bio)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
struct bio_post_read_ctx *ctx;
iostat_update_and_unbind_ctx(bio, 0);
ctx = bio->bi_private;
if (time_to_inject(sbi, FAULT_READ_IO)) {
f2fs_show_injection_info(sbi, FAULT_READ_IO);
bio->bi_status = BLK_STS_IOERR;
}
if (bio->bi_status) {
f2fs_finish_read_bio(bio);
return;
}
if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
INIT_WORK(&ctx->work, f2fs_post_read_work);
queue_work(ctx->sbi->post_read_wq, &ctx->work);
} else {
f2fs_verify_and_finish_bio(bio);
}
}
static void f2fs_write_end_io(struct bio *bio)
{
struct f2fs_sb_info *sbi;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
iostat_update_and_unbind_ctx(bio, 1);
sbi = bio->bi_private;
if (time_to_inject(sbi, FAULT_WRITE_IO)) {
f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
bio->bi_status = BLK_STS_IOERR;
}
bio_for_each_segment_all(bvec, bio, iter_all) {
struct page *page = bvec->bv_page;
enum count_type type = WB_DATA_TYPE(page);
if (page_private_dummy(page)) {
clear_page_private_dummy(page);
unlock_page(page);
mempool_free(page, sbi->write_io_dummy);
if (unlikely(bio->bi_status))
f2fs_stop_checkpoint(sbi, true);
continue;
}
fscrypt_finalize_bounce_page(&page);
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_is_compressed_page(page)) {
f2fs_compress_write_end_io(bio, page);
continue;
}
#endif
if (unlikely(bio->bi_status)) {
mapping_set_error(page->mapping, -EIO);
if (type == F2FS_WB_CP_DATA)
f2fs_stop_checkpoint(sbi, true);
}
f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
page->index != nid_of_node(page));
dec_page_count(sbi, type);
if (f2fs_in_warm_node_list(sbi, page))
f2fs_del_fsync_node_entry(sbi, page);
clear_page_private_gcing(page);
end_page_writeback(page);
}
if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
wq_has_sleeper(&sbi->cp_wait))
wake_up(&sbi->cp_wait);
bio_put(bio);
}
struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
block_t blk_addr, sector_t *sector)
{
struct block_device *bdev = sbi->sb->s_bdev;
int i;
if (f2fs_is_multi_device(sbi)) {
for (i = 0; i < sbi->s_ndevs; i++) {
if (FDEV(i).start_blk <= blk_addr &&
FDEV(i).end_blk >= blk_addr) {
blk_addr -= FDEV(i).start_blk;
bdev = FDEV(i).bdev;
break;
}
}
}
if (sector)
*sector = SECTOR_FROM_BLOCK(blk_addr);
return bdev;
}
int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
{
int i;
if (!f2fs_is_multi_device(sbi))
return 0;
for (i = 0; i < sbi->s_ndevs; i++)
if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
return i;
return 0;
}
static unsigned int f2fs_io_flags(struct f2fs_io_info *fio)
{
unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
unsigned int fua_flag, meta_flag, io_flag;
unsigned int op_flags = 0;
if (fio->op != REQ_OP_WRITE)
return 0;
if (fio->type == DATA)
io_flag = fio->sbi->data_io_flag;
else if (fio->type == NODE)
io_flag = fio->sbi->node_io_flag;
else
return 0;
fua_flag = io_flag & temp_mask;
meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
/*
* data/node io flag bits per temp:
* REQ_META | REQ_FUA |
* 5 | 4 | 3 | 2 | 1 | 0 |
* Cold | Warm | Hot | Cold | Warm | Hot |
*/
if ((1 << fio->temp) & meta_flag)
op_flags |= REQ_META;
if ((1 << fio->temp) & fua_flag)
op_flags |= REQ_FUA;
return op_flags;
}
static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
{
struct f2fs_sb_info *sbi = fio->sbi;
struct block_device *bdev;
sector_t sector;
struct bio *bio;
bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
bio = bio_alloc_bioset(bdev, npages,
fio->op | fio->op_flags | f2fs_io_flags(fio),
GFP_NOIO, &f2fs_bioset);
bio->bi_iter.bi_sector = sector;
if (is_read_io(fio->op)) {
bio->bi_end_io = f2fs_read_end_io;
bio->bi_private = NULL;
} else {
bio->bi_end_io = f2fs_write_end_io;
bio->bi_private = sbi;
}
iostat_alloc_and_bind_ctx(sbi, bio, NULL);
if (fio->io_wbc)
wbc_init_bio(fio->io_wbc, bio);
return bio;
}
static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
pgoff_t first_idx,
const struct f2fs_io_info *fio,
gfp_t gfp_mask)
{
/*
* The f2fs garbage collector sets ->encrypted_page when it wants to
* read/write raw data without encryption.
*/
if (!fio || !fio->encrypted_page)
fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
}
static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
pgoff_t next_idx,
const struct f2fs_io_info *fio)
{
/*
* The f2fs garbage collector sets ->encrypted_page when it wants to
* read/write raw data without encryption.
*/
if (fio && fio->encrypted_page)
return !bio_has_crypt_ctx(bio);
return fscrypt_mergeable_bio(bio, inode, next_idx);
}
static inline void __submit_bio(struct f2fs_sb_info *sbi,
struct bio *bio, enum page_type type)
{
if (!is_read_io(bio_op(bio))) {
unsigned int start;
if (type != DATA && type != NODE)
goto submit_io;
if (f2fs_lfs_mode(sbi) && current->plug)
blk_finish_plug(current->plug);
if (!F2FS_IO_ALIGNED(sbi))
goto submit_io;
start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
start %= F2FS_IO_SIZE(sbi);
if (start == 0)
goto submit_io;
/* fill dummy pages */
for (; start < F2FS_IO_SIZE(sbi); start++) {
struct page *page =
mempool_alloc(sbi->write_io_dummy,
GFP_NOIO | __GFP_NOFAIL);
f2fs_bug_on(sbi, !page);
lock_page(page);
zero_user_segment(page, 0, PAGE_SIZE);
set_page_private_dummy(page);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
f2fs_bug_on(sbi, 1);
}
/*
* In the NODE case, we lose next block address chain. So, we
* need to do checkpoint in f2fs_sync_file.
*/
if (type == NODE)
set_sbi_flag(sbi, SBI_NEED_CP);
}
submit_io:
if (is_read_io(bio_op(bio)))
trace_f2fs_submit_read_bio(sbi->sb, type, bio);
else
trace_f2fs_submit_write_bio(sbi->sb, type, bio);
iostat_update_submit_ctx(bio, type);
submit_bio(bio);
}
void f2fs_submit_bio(struct f2fs_sb_info *sbi,
struct bio *bio, enum page_type type)
{
__submit_bio(sbi, bio, type);
}
static void __submit_merged_bio(struct f2fs_bio_info *io)
{
struct f2fs_io_info *fio = &io->fio;
if (!io->bio)
return;
if (is_read_io(fio->op))
trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
else
trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
__submit_bio(io->sbi, io->bio, fio->type);
io->bio = NULL;
}
static bool __has_merged_page(struct bio *bio, struct inode *inode,
struct page *page, nid_t ino)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
if (!bio)
return false;
if (!inode && !page && !ino)
return true;
bio_for_each_segment_all(bvec, bio, iter_all) {
struct page *target = bvec->bv_page;
if (fscrypt_is_bounce_page(target)) {
target = fscrypt_pagecache_page(target);
if (IS_ERR(target))
continue;
}
if (f2fs_is_compressed_page(target)) {
target = f2fs_compress_control_page(target);
if (IS_ERR(target))
continue;
}
if (inode && inode == target->mapping->host)
return true;
if (page && page == target)
return true;
if (ino && ino == ino_of_node(target))
return true;
}
return false;
}
int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < NR_PAGE_TYPE; i++) {
int n = (i == META) ? 1 : NR_TEMP_TYPE;
int j;
sbi->write_io[i] = f2fs_kmalloc(sbi,
array_size(n, sizeof(struct f2fs_bio_info)),
GFP_KERNEL);
if (!sbi->write_io[i])
return -ENOMEM;
for (j = HOT; j < n; j++) {
init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
sbi->write_io[i][j].sbi = sbi;
sbi->write_io[i][j].bio = NULL;
spin_lock_init(&sbi->write_io[i][j].io_lock);
INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
}
}
return 0;
}
static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
enum page_type type, enum temp_type temp)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
f2fs_down_write(&io->io_rwsem);
/* change META to META_FLUSH in the checkpoint procedure */
if (type >= META_FLUSH) {
io->fio.type = META_FLUSH;
io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
if (!test_opt(sbi, NOBARRIER))
io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
}
__submit_merged_bio(io);
f2fs_up_write(&io->io_rwsem);
}
static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
struct inode *inode, struct page *page,
nid_t ino, enum page_type type, bool force)
{
enum temp_type temp;
bool ret = true;
for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
if (!force) {
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
f2fs_down_read(&io->io_rwsem);
ret = __has_merged_page(io->bio, inode, page, ino);
f2fs_up_read(&io->io_rwsem);
}
if (ret)
__f2fs_submit_merged_write(sbi, type, temp);
/* TODO: use HOT temp only for meta pages now. */
if (type >= META)
break;
}
}
void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
{
__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
}
void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
struct inode *inode, struct page *page,
nid_t ino, enum page_type type)
{
__submit_merged_write_cond(sbi, inode, page, ino, type, false);
}
void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
{
f2fs_submit_merged_write(sbi, DATA);
f2fs_submit_merged_write(sbi, NODE);
f2fs_submit_merged_write(sbi, META);
}
/*
* Fill the locked page with data located in the block address.
* A caller needs to unlock the page on failure.
*/
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
{
struct bio *bio;
struct page *page = fio->encrypted_page ?
fio->encrypted_page : fio->page;
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
fio->is_por ? META_POR : (__is_meta_io(fio) ?
META_GENERIC : DATA_GENERIC_ENHANCE)))
return -EFSCORRUPTED;
trace_f2fs_submit_page_bio(page, fio);
/* Allocate a new bio */
bio = __bio_alloc(fio, 1);
f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
fio->page->index, fio, GFP_NOIO);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
bio_put(bio);
return -EFAULT;
}
if (fio->io_wbc && !is_read_io(fio->op))
wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
inc_page_count(fio->sbi, is_read_io(fio->op) ?
__read_io_type(page): WB_DATA_TYPE(fio->page));
__submit_bio(fio->sbi, bio, fio->type);
return 0;
}
static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
block_t last_blkaddr, block_t cur_blkaddr)
{
if (unlikely(sbi->max_io_bytes &&
bio->bi_iter.bi_size >= sbi->max_io_bytes))
return false;
if (last_blkaddr + 1 != cur_blkaddr)
return false;
return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
}
static bool io_type_is_mergeable(struct f2fs_bio_info *io,
struct f2fs_io_info *fio)
{
if (io->fio.op != fio->op)
return false;
return io->fio.op_flags == fio->op_flags;
}
static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
struct f2fs_bio_info *io,
struct f2fs_io_info *fio,
block_t last_blkaddr,
block_t cur_blkaddr)
{
if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
unsigned int filled_blocks =
F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
unsigned int io_size = F2FS_IO_SIZE(sbi);
unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
/* IOs in bio is aligned and left space of vectors is not enough */
if (!(filled_blocks % io_size) && left_vecs < io_size)
return false;
}
if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
return false;
return io_type_is_mergeable(io, fio);
}
static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
struct page *page, enum temp_type temp)
{
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
struct bio_entry *be;
be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
be->bio = bio;
bio_get(bio);
if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
f2fs_bug_on(sbi, 1);
f2fs_down_write(&io->bio_list_lock);
list_add_tail(&be->list, &io->bio_list);
f2fs_up_write(&io->bio_list_lock);
}
static void del_bio_entry(struct bio_entry *be)
{
list_del(&be->list);
kmem_cache_free(bio_entry_slab, be);
}
static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
struct page *page)
{
struct f2fs_sb_info *sbi = fio->sbi;
enum temp_type temp;
bool found = false;
int ret = -EAGAIN;
for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
struct list_head *head = &io->bio_list;
struct bio_entry *be;
f2fs_down_write(&io->bio_list_lock);
list_for_each_entry(be, head, list) {
if (be->bio != *bio)
continue;
found = true;
f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
*fio->last_block,
fio->new_blkaddr));
if (f2fs_crypt_mergeable_bio(*bio,
fio->page->mapping->host,
fio->page->index, fio) &&
bio_add_page(*bio, page, PAGE_SIZE, 0) ==
PAGE_SIZE) {
ret = 0;
break;
}
/* page can't be merged into bio; submit the bio */
del_bio_entry(be);
__submit_bio(sbi, *bio, DATA);
break;
}
f2fs_up_write(&io->bio_list_lock);
}
if (ret) {
bio_put(*bio);
*bio = NULL;
}
return ret;
}
void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
struct bio **bio, struct page *page)
{
enum temp_type temp;
bool found = false;
struct bio *target = bio ? *bio : NULL;
for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
struct list_head *head = &io->bio_list;
struct bio_entry *be;
if (list_empty(head))
continue;
f2fs_down_read(&io->bio_list_lock);
list_for_each_entry(be, head, list) {
if (target)
found = (target == be->bio);
else
found = __has_merged_page(be->bio, NULL,
page, 0);
if (found)
break;
}
f2fs_up_read(&io->bio_list_lock);
if (!found)
continue;
found = false;
f2fs_down_write(&io->bio_list_lock);
list_for_each_entry(be, head, list) {
if (target)
found = (target == be->bio);
else
found = __has_merged_page(be->bio, NULL,
page, 0);
if (found) {
target = be->bio;
del_bio_entry(be);
break;
}
}
f2fs_up_write(&io->bio_list_lock);
}
if (found)
__submit_bio(sbi, target, DATA);
if (bio && *bio) {
bio_put(*bio);
*bio = NULL;
}
}
int f2fs_merge_page_bio(struct f2fs_io_info *fio)
{
struct bio *bio = *fio->bio;
struct page *page = fio->encrypted_page ?
fio->encrypted_page : fio->page;
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
return -EFSCORRUPTED;
trace_f2fs_submit_page_bio(page, fio);
if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
fio->new_blkaddr))
f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
alloc_new:
if (!bio) {
bio = __bio_alloc(fio, BIO_MAX_VECS);
f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
fio->page->index, fio, GFP_NOIO);
add_bio_entry(fio->sbi, bio, page, fio->temp);
} else {
if (add_ipu_page(fio, &bio, page))
goto alloc_new;
}
if (fio->io_wbc)
wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
inc_page_count(fio->sbi, WB_DATA_TYPE(page));
*fio->last_block = fio->new_blkaddr;
*fio->bio = bio;
return 0;
}
void f2fs_submit_page_write(struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = fio->sbi;
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
struct page *bio_page;
f2fs_bug_on(sbi, is_read_io(fio->op));
f2fs_down_write(&io->io_rwsem);
next:
if (fio->in_list) {
spin_lock(&io->io_lock);
if (list_empty(&io->io_list)) {
spin_unlock(&io->io_lock);
goto out;
}
fio = list_first_entry(&io->io_list,
struct f2fs_io_info, list);
list_del(&fio->list);
spin_unlock(&io->io_lock);
}
verify_fio_blkaddr(fio);
if (fio->encrypted_page)
bio_page = fio->encrypted_page;
else if (fio->compressed_page)
bio_page = fio->compressed_page;
else
bio_page = fio->page;
/* set submitted = true as a return value */
fio->submitted = true;
inc_page_count(sbi, WB_DATA_TYPE(bio_page));
if (io->bio &&
(!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
fio->new_blkaddr) ||
!f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
bio_page->index, fio)))
__submit_merged_bio(io);
alloc_new:
if (io->bio == NULL) {
if (F2FS_IO_ALIGNED(sbi) &&
(fio->type == DATA || fio->type == NODE) &&
fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
dec_page_count(sbi, WB_DATA_TYPE(bio_page));
fio->retry = true;
goto skip;
}
io->bio = __bio_alloc(fio, BIO_MAX_VECS);
f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
bio_page->index, fio, GFP_NOIO);
io->fio = *fio;
}
if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
__submit_merged_bio(io);
goto alloc_new;
}
if (fio->io_wbc)
wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
io->last_block_in_bio = fio->new_blkaddr;
trace_f2fs_submit_page_write(fio->page, fio);
skip:
if (fio->in_list)
goto next;
out:
if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
!f2fs_is_checkpoint_ready(sbi))
__submit_merged_bio(io);
f2fs_up_write(&io->io_rwsem);
}
static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
unsigned nr_pages, unsigned op_flag,
pgoff_t first_idx, bool for_write)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct bio *bio;
struct bio_post_read_ctx *ctx = NULL;
unsigned int post_read_steps = 0;
sector_t sector;
struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
REQ_OP_READ | op_flag,
for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
if (!bio)
return ERR_PTR(-ENOMEM);
bio->bi_iter.bi_sector = sector;
f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
bio->bi_end_io = f2fs_read_end_io;
if (fscrypt_inode_uses_fs_layer_crypto(inode))
post_read_steps |= STEP_DECRYPT;
if (f2fs_need_verity(inode, first_idx))
post_read_steps |= STEP_VERITY;
/*
* STEP_DECOMPRESS is handled specially, since a compressed file might
* contain both compressed and uncompressed clusters. We'll allocate a
* bio_post_read_ctx if the file is compressed, but the caller is
* responsible for enabling STEP_DECOMPRESS if it's actually needed.
*/
if (post_read_steps || f2fs_compressed_file(inode)) {
/* Due to the mempool, this never fails. */
ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
ctx->bio = bio;
ctx->sbi = sbi;
ctx->enabled_steps = post_read_steps;
ctx->fs_blkaddr = blkaddr;
bio->bi_private = ctx;
}
iostat_alloc_and_bind_ctx(sbi, bio, ctx);
return bio;
}
/* This can handle encryption stuffs */
static int f2fs_submit_page_read(struct inode *inode, struct page *page,
block_t blkaddr, int op_flags, bool for_write)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct bio *bio;
bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
page->index, for_write);
if (IS_ERR(bio))
return PTR_ERR(bio);
/* wait for GCed page writeback via META_MAPPING */
f2fs_wait_on_block_writeback(inode, blkaddr);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
bio_put(bio);
return -EFAULT;
}
ClearPageError(page);
inc_page_count(sbi, F2FS_RD_DATA);
f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
__submit_bio(sbi, bio, DATA);
return 0;
}
static void __set_data_blkaddr(struct dnode_of_data *dn)
{
struct f2fs_node *rn = F2FS_NODE(dn->node_page);
__le32 *addr_array;
int base = 0;
if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
base = get_extra_isize(dn->inode);
/* Get physical address of data block */
addr_array = blkaddr_in_node(rn);
addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
}
/*
* Lock ordering for the change of data block address:
* ->data_page
* ->node_page
* update block addresses in the node page
*/
void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
{
f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
__set_data_blkaddr(dn);
if (set_page_dirty(dn->node_page))
dn->node_changed = true;
}
void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
{
dn->data_blkaddr = blkaddr;
f2fs_set_data_blkaddr(dn);
f2fs_update_extent_cache(dn);
}
/* dn->ofs_in_node will be returned with up-to-date last block pointer */
int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
int err;
if (!count)
return 0;
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
return -EPERM;
if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
return err;
trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
dn->ofs_in_node, count);
f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
for (; count > 0; dn->ofs_in_node++) {
block_t blkaddr = f2fs_data_blkaddr(dn);
if (blkaddr == NULL_ADDR) {
dn->data_blkaddr = NEW_ADDR;
__set_data_blkaddr(dn);
count--;
}
}
if (set_page_dirty(dn->node_page))
dn->node_changed = true;
return 0;
}
/* Should keep dn->ofs_in_node unchanged */
int f2fs_reserve_new_block(struct dnode_of_data *dn)
{
unsigned int ofs_in_node = dn->ofs_in_node;
int ret;
ret = f2fs_reserve_new_blocks(dn, 1);
dn->ofs_in_node = ofs_in_node;
return ret;
}
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
{
bool need_put = dn->inode_page ? false : true;
int err;
err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
if (err)
return err;
if (dn->data_blkaddr == NULL_ADDR)
err = f2fs_reserve_new_block(dn);
if (err || need_put)
f2fs_put_dnode(dn);
return err;
}
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
{
struct extent_info ei = {0, };
struct inode *inode = dn->inode;
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn->data_blkaddr = ei.blk + index - ei.fofs;
return 0;
}
return f2fs_reserve_block(dn, index);
}
struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
int op_flags, bool for_write)
{
struct address_space *mapping = inode->i_mapping;
struct dnode_of_data dn;
struct page *page;
struct extent_info ei = {0, };
int err;
page = f2fs_grab_cache_page(mapping, index, for_write);
if (!page)
return ERR_PTR(-ENOMEM);
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
DATA_GENERIC_ENHANCE_READ)) {
err = -EFSCORRUPTED;
goto put_err;
}
goto got_it;
}
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err)
goto put_err;
f2fs_put_dnode(&dn);
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
err = -ENOENT;
goto put_err;
}
if (dn.data_blkaddr != NEW_ADDR &&
!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
dn.data_blkaddr,
DATA_GENERIC_ENHANCE)) {
err = -EFSCORRUPTED;
goto put_err;
}
got_it:
if (PageUptodate(page)) {
unlock_page(page);
return page;
}
/*
* A new dentry page is allocated but not able to be written, since its
* new inode page couldn't be allocated due to -ENOSPC.
* In such the case, its blkaddr can be remained as NEW_ADDR.
* see, f2fs_add_link -> f2fs_get_new_data_page ->
* f2fs_init_inode_metadata.
*/
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_SIZE);
if (!PageUptodate(page))
SetPageUptodate(page);
unlock_page(page);
return page;
}
err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
op_flags, for_write);
if (err)
goto put_err;
return page;
put_err:
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
page = find_get_page(mapping, index);
if (page && PageUptodate(page))
return page;
f2fs_put_page(page, 0);
page = f2fs_get_read_data_page(inode, index, 0, false);
if (IS_ERR(page))
return page;
if (PageUptodate(page))
return page;
wait_on_page_locked(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 0);
return ERR_PTR(-EIO);
}
return page;
}
/*
* If it tries to access a hole, return an error.
* Because, the callers, functions in dir.c and GC, should be able to know
* whether this page exists or not.
*/
struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
bool for_write)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
repeat:
page = f2fs_get_read_data_page(inode, index, 0, for_write);
if (IS_ERR(page))
return page;
/* wait for read completion */
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
return page;
}
/*
* Caller ensures that this data page is never allocated.
* A new zero-filled data page is allocated in the page cache.
*
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
* Note that, ipage is set only by make_empty_dir, and if any error occur,
* ipage should be released by this function.
*/
struct page *f2fs_get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
struct dnode_of_data dn;
int err;
page = f2fs_grab_cache_page(mapping, index, true);
if (!page) {
/*
* before exiting, we should make sure ipage will be released
* if any error occur.
*/
f2fs_put_page(ipage, 1);
return ERR_PTR(-ENOMEM);
}
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, index);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
if (!ipage)
f2fs_put_dnode(&dn);
if (PageUptodate(page))
goto got_it;
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_SIZE);
if (!PageUptodate(page))
SetPageUptodate(page);
} else {
f2fs_put_page(page, 1);
/* if ipage exists, blkaddr should be NEW_ADDR */
f2fs_bug_on(F2FS_I_SB(inode), ipage);
page = f2fs_get_lock_data_page(inode, index, true);
if (IS_ERR(page))
return page;
}
got_it:
if (new_i_size && i_size_read(inode) <
((loff_t)(index + 1) << PAGE_SHIFT))
f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
return page;
}
static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_summary sum;
struct node_info ni;
block_t old_blkaddr;
blkcnt_t count = 1;
int err;
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
return -EPERM;
err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
if (err)
return err;
dn->data_blkaddr = f2fs_data_blkaddr(dn);
if (dn->data_blkaddr != NULL_ADDR)
goto alloc;
if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
return err;
alloc:
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
old_blkaddr = dn->data_blkaddr;
f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
&sum, seg_type, NULL);
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
invalidate_mapping_pages(META_MAPPING(sbi),
old_blkaddr, old_blkaddr);
f2fs_invalidate_compress_page(sbi, old_blkaddr);
}
f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
return 0;
}
void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
{
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
if (lock)
f2fs_down_read(&sbi->node_change);
else
f2fs_up_read(&sbi->node_change);
} else {
if (lock)
f2fs_lock_op(sbi);
else
f2fs_unlock_op(sbi);
}
}
/*
* f2fs_map_blocks() tries to find or build mapping relationship which
* maps continuous logical blocks to physical blocks, and return such
* info via f2fs_map_blocks structure.
*/
int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
int create, int flag)
{
unsigned int maxblocks = map->m_len;
struct dnode_of_data dn;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
pgoff_t pgofs, end_offset, end;
int err = 0, ofs = 1;
unsigned int ofs_in_node, last_ofs_in_node;
blkcnt_t prealloc;
struct extent_info ei = {0, };
block_t blkaddr;
unsigned int start_pgofs;
int bidx = 0;
if (!maxblocks)
return 0;
map->m_bdev = inode->i_sb->s_bdev;
map->m_multidev_dio =
f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
map->m_len = 0;
map->m_flags = 0;
/* it only supports block size == page size */
pgofs = (pgoff_t)map->m_lblk;
end = pgofs + maxblocks;
if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
map->m_may_create)
goto next_dnode;
map->m_pblk = ei.blk + pgofs - ei.fofs;
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
map->m_flags = F2FS_MAP_MAPPED;
if (map->m_next_extent)
*map->m_next_extent = pgofs + map->m_len;
/* for hardware encryption, but to avoid potential issue in future */
if (flag == F2FS_GET_BLOCK_DIO)
f2fs_wait_on_block_writeback_range(inode,
map->m_pblk, map->m_len);
if (map->m_multidev_dio) {
block_t blk_addr = map->m_pblk;
bidx = f2fs_target_device_index(sbi, map->m_pblk);
map->m_bdev = FDEV(bidx).bdev;
map->m_pblk -= FDEV(bidx).start_blk;
map->m_len = min(map->m_len,
FDEV(bidx).end_blk + 1 - map->m_pblk);
if (map->m_may_create)
f2fs_update_device_state(sbi, inode->i_ino,
blk_addr, map->m_len);
}
goto out;
}
next_dnode:
if (map->m_may_create)
f2fs_do_map_lock(sbi, flag, true);
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (flag == F2FS_GET_BLOCK_BMAP)
map->m_pblk = 0;
if (err == -ENOENT) {
/*
* There is one exceptional case that read_node_page()
* may return -ENOENT due to filesystem has been
* shutdown or cp_error, so force to convert error
* number to EIO for such case.
*/
if (map->m_may_create &&
(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
f2fs_cp_error(sbi))) {
err = -EIO;
goto unlock_out;
}
err = 0;
if (map->m_next_pgofs)
*map->m_next_pgofs =
f2fs_get_next_page_offset(&dn, pgofs);
if (map->m_next_extent)
*map->m_next_extent =
f2fs_get_next_page_offset(&dn, pgofs);
}
goto unlock_out;
}
start_pgofs = pgofs;
prealloc = 0;
last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
next_block:
blkaddr = f2fs_data_blkaddr(&dn);
if (__is_valid_data_blkaddr(blkaddr) &&
!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
err = -EFSCORRUPTED;
goto sync_out;
}
if (__is_valid_data_blkaddr(blkaddr)) {
/* use out-place-update for driect IO under LFS mode */
if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
map->m_may_create) {
err = __allocate_data_block(&dn, map->m_seg_type);
if (err)
goto sync_out;
blkaddr = dn.data_blkaddr;
set_inode_flag(inode, FI_APPEND_WRITE);
}
} else {
if (create) {
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto sync_out;
}
if (flag == F2FS_GET_BLOCK_PRE_AIO) {
if (blkaddr == NULL_ADDR) {
prealloc++;
last_ofs_in_node = dn.ofs_in_node;
}
} else {
WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
flag != F2FS_GET_BLOCK_DIO);
err = __allocate_data_block(&dn,
map->m_seg_type);
if (!err) {
if (flag == F2FS_GET_BLOCK_PRE_DIO)
file_need_truncate(inode);
set_inode_flag(inode, FI_APPEND_WRITE);
}
}
if (err)
goto sync_out;
map->m_flags |= F2FS_MAP_NEW;
blkaddr = dn.data_blkaddr;
} else {
if (f2fs_compressed_file(inode) &&
f2fs_sanity_check_cluster(&dn) &&
(flag != F2FS_GET_BLOCK_FIEMAP ||
IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
err = -EFSCORRUPTED;
goto sync_out;
}
if (flag == F2FS_GET_BLOCK_BMAP) {
map->m_pblk = 0;
goto sync_out;
}
if (flag == F2FS_GET_BLOCK_PRECACHE)
goto sync_out;
if (flag == F2FS_GET_BLOCK_FIEMAP &&
blkaddr == NULL_ADDR) {
if (map->m_next_pgofs)
*map->m_next_pgofs = pgofs + 1;
goto sync_out;
}
if (flag != F2FS_GET_BLOCK_FIEMAP) {
/* for defragment case */
if (map->m_next_pgofs)
*map->m_next_pgofs = pgofs + 1;
goto sync_out;
}
}
}
if (flag == F2FS_GET_BLOCK_PRE_AIO)
goto skip;
if (map->m_multidev_dio)
bidx = f2fs_target_device_index(sbi, blkaddr);
if (map->m_len == 0) {
/* preallocated unwritten block should be mapped for fiemap. */
if (blkaddr == NEW_ADDR)
map->m_flags |= F2FS_MAP_UNWRITTEN;
map->m_flags |= F2FS_MAP_MAPPED;
map->m_pblk = blkaddr;
map->m_len = 1;
if (map->m_multidev_dio)
map->m_bdev = FDEV(bidx).bdev;
} else if ((map->m_pblk != NEW_ADDR &&
blkaddr == (map->m_pblk + ofs)) ||
(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
flag == F2FS_GET_BLOCK_PRE_DIO) {
if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
goto sync_out;
ofs++;
map->m_len++;
} else {
goto sync_out;
}
skip:
dn.ofs_in_node++;
pgofs++;
/* preallocate blocks in batch for one dnode page */
if (flag == F2FS_GET_BLOCK_PRE_AIO &&
(pgofs == end || dn.ofs_in_node == end_offset)) {
dn.ofs_in_node = ofs_in_node;
err = f2fs_reserve_new_blocks(&dn, prealloc);
if (err)
goto sync_out;
map->m_len += dn.ofs_in_node - ofs_in_node;
if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
err = -ENOSPC;
goto sync_out;
}
dn.ofs_in_node = end_offset;
}
if (pgofs >= end)
goto sync_out;
else if (dn.ofs_in_node < end_offset)
goto next_block;
if (flag == F2FS_GET_BLOCK_PRECACHE) {
if (map->m_flags & F2FS_MAP_MAPPED) {
unsigned int ofs = start_pgofs - map->m_lblk;
f2fs_update_extent_cache_range(&dn,
start_pgofs, map->m_pblk + ofs,
map->m_len - ofs);
}
}
f2fs_put_dnode(&dn);
if (map->m_may_create) {
f2fs_do_map_lock(sbi, flag, false);
f2fs_balance_fs(sbi, dn.node_changed);
}
goto next_dnode;
sync_out:
if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
/*
* for hardware encryption, but to avoid potential issue
* in future
*/
f2fs_wait_on_block_writeback_range(inode,
map->m_pblk, map->m_len);
invalidate_mapping_pages(META_MAPPING(sbi),
map->m_pblk, map->m_pblk);
if (map->m_multidev_dio) {
block_t blk_addr = map->m_pblk;
bidx = f2fs_target_device_index(sbi, map->m_pblk);
map->m_bdev = FDEV(bidx).bdev;
map->m_pblk -= FDEV(bidx).start_blk;
if (map->m_may_create)
f2fs_update_device_state(sbi, inode->i_ino,
blk_addr, map->m_len);
f2fs_bug_on(sbi, blk_addr + map->m_len >
FDEV(bidx).end_blk + 1);
}
}
if (flag == F2FS_GET_BLOCK_PRECACHE) {
if (map->m_flags & F2FS_MAP_MAPPED) {
unsigned int ofs = start_pgofs - map->m_lblk;
f2fs_update_extent_cache_range(&dn,
start_pgofs, map->m_pblk + ofs,
map->m_len - ofs);
}
if (map->m_next_extent)
*map->m_next_extent = pgofs + 1;
}
f2fs_put_dnode(&dn);
unlock_out:
if (map->m_may_create) {
f2fs_do_map_lock(sbi, flag, false);
f2fs_balance_fs(sbi, dn.node_changed);
}
out:
trace_f2fs_map_blocks(inode, map, create, flag, err);
return err;
}
bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
{
struct f2fs_map_blocks map;
block_t last_lblk;
int err;
if (pos + len > i_size_read(inode))
return false;
map.m_lblk = F2FS_BYTES_TO_BLK(pos);
map.m_next_pgofs = NULL;
map.m_next_extent = NULL;
map.m_seg_type = NO_CHECK_TYPE;
map.m_may_create = false;
last_lblk = F2FS_BLK_ALIGN(pos + len);
while (map.m_lblk < last_lblk) {
map.m_len = last_lblk - map.m_lblk;
err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
if (err || map.m_len == 0)
return false;
map.m_lblk += map.m_len;
}
return true;
}
static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
{
return (bytes >> inode->i_blkbits);
}
static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
{
return (blks << inode->i_blkbits);
}
static int f2fs_xattr_fiemap(struct inode *inode,
struct fiemap_extent_info *fieinfo)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page;
struct node_info ni;
__u64 phys = 0, len;
__u32 flags;
nid_t xnid = F2FS_I(inode)->i_xattr_nid;
int err = 0;
if (f2fs_has_inline_xattr(inode)) {
int offset;
page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
inode->i_ino, false);
if (!page)
return -ENOMEM;
err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
if (err) {
f2fs_put_page(page, 1);
return err;
}
phys = blks_to_bytes(inode, ni.blk_addr);
offset = offsetof(struct f2fs_inode, i_addr) +
sizeof(__le32) * (DEF_ADDRS_PER_INODE -
get_inline_xattr_addrs(inode));
phys += offset;
len = inline_xattr_size(inode);
f2fs_put_page(page, 1);
flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
if (!xnid)
flags |= FIEMAP_EXTENT_LAST;
err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
if (err || err == 1)
return err;
}
if (xnid) {
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
if (!page)
return -ENOMEM;
err = f2fs_get_node_info(sbi, xnid, &ni, false);
if (err) {
f2fs_put_page(page, 1);
return err;
}
phys = blks_to_bytes(inode, ni.blk_addr);
len = inode->i_sb->s_blocksize;
f2fs_put_page(page, 1);
flags = FIEMAP_EXTENT_LAST;
}
if (phys) {
err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
}
return (err < 0 ? err : 0);
}
static loff_t max_inode_blocks(struct inode *inode)
{
loff_t result = ADDRS_PER_INODE(inode);
loff_t leaf_count = ADDRS_PER_BLOCK(inode);
/* two direct node blocks */
result += (leaf_count * 2);
/* two indirect node blocks */
leaf_count *= NIDS_PER_BLOCK;
result += (leaf_count * 2);
/* one double indirect node block */
leaf_count *= NIDS_PER_BLOCK;
result += leaf_count;
return result;
}
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len)
{
struct f2fs_map_blocks map;
sector_t start_blk, last_blk;
pgoff_t next_pgofs;
u64 logical = 0, phys = 0, size = 0;
u32 flags = 0;
int ret = 0;
bool compr_cluster = false, compr_appended;
unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
unsigned int count_in_cluster = 0;
loff_t maxbytes;
if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
ret = f2fs_precache_extents(inode);
if (ret)
return ret;
}
ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
if (ret)
return ret;
inode_lock(inode);
maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
if (start > maxbytes) {
ret = -EFBIG;
goto out;
}
if (len > maxbytes || (maxbytes - len) < start)
len = maxbytes - start;
if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
ret = f2fs_xattr_fiemap(inode, fieinfo);
goto out;
}
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
if (ret != -EAGAIN)
goto out;
}
if (bytes_to_blks(inode, len) == 0)
len = blks_to_bytes(inode, 1);
start_blk = bytes_to_blks(inode, start);
last_blk = bytes_to_blks(inode, start + len - 1);
next:
memset(&map, 0, sizeof(map));
map.m_lblk = start_blk;
map.m_len = bytes_to_blks(inode, len);
map.m_next_pgofs = &next_pgofs;
map.m_seg_type = NO_CHECK_TYPE;
if (compr_cluster) {
map.m_lblk += 1;
map.m_len = cluster_size - count_in_cluster;
}
ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
if (ret)
goto out;
/* HOLE */
if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
start_blk = next_pgofs;
if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
max_inode_blocks(inode)))
goto prep_next;
flags |= FIEMAP_EXTENT_LAST;
}
compr_appended = false;
/* In a case of compressed cluster, append this to the last extent */
if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
!(map.m_flags & F2FS_MAP_FLAGS))) {
compr_appended = true;
goto skip_fill;
}
if (size) {
flags |= FIEMAP_EXTENT_MERGED;
if (IS_ENCRYPTED(inode))
flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
if (ret)
goto out;
size = 0;
}
if (start_blk > last_blk)
goto out;
skip_fill:
if (map.m_pblk == COMPRESS_ADDR) {
compr_cluster = true;
count_in_cluster = 1;
} else if (compr_appended) {
unsigned int appended_blks = cluster_size -
count_in_cluster + 1;
size += blks_to_bytes(inode, appended_blks);
start_blk += appended_blks;
compr_cluster = false;
} else {
logical = blks_to_bytes(inode, start_blk);
phys = __is_valid_data_blkaddr(map.m_pblk) ?
blks_to_bytes(inode, map.m_pblk) : 0;
size = blks_to_bytes(inode, map.m_len);
flags = 0;
if (compr_cluster) {
flags = FIEMAP_EXTENT_ENCODED;
count_in_cluster += map.m_len;
if (count_in_cluster == cluster_size) {
compr_cluster = false;
size += blks_to_bytes(inode, 1);
}
} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
flags = FIEMAP_EXTENT_UNWRITTEN;
}
start_blk += bytes_to_blks(inode, size);
}
prep_next:
cond_resched();
if (fatal_signal_pending(current))
ret = -EINTR;
else
goto next;
out:
if (ret == 1)
ret = 0;
inode_unlock(inode);
return ret;
}
static inline loff_t f2fs_readpage_limit(struct inode *inode)
{
if (IS_ENABLED(CONFIG_FS_VERITY) &&
(IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
return inode->i_sb->s_maxbytes;
return i_size_read(inode);
}
static int f2fs_read_single_page(struct inode *inode, struct page *page,
unsigned nr_pages,
struct f2fs_map_blocks *map,
struct bio **bio_ret,
sector_t *last_block_in_bio,
bool is_readahead)
{
struct bio *bio = *bio_ret;
const unsigned blocksize = blks_to_bytes(inode, 1);
sector_t block_in_file;
sector_t last_block;
sector_t last_block_in_file;
sector_t block_nr;
int ret = 0;
block_in_file = (sector_t)page_index(page);
last_block = block_in_file + nr_pages;
last_block_in_file = bytes_to_blks(inode,
f2fs_readpage_limit(inode) + blocksize - 1);
if (last_block > last_block_in_file)
last_block = last_block_in_file;
/* just zeroing out page which is beyond EOF */
if (block_in_file >= last_block)
goto zero_out;
/*
* Map blocks using the previous result first.
*/
if ((map->m_flags & F2FS_MAP_MAPPED) &&
block_in_file > map->m_lblk &&
block_in_file < (map->m_lblk + map->m_len))
goto got_it;
/*
* Then do more f2fs_map_blocks() calls until we are
* done with this page.
*/
map->m_lblk = block_in_file;
map->m_len = last_block - block_in_file;
ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
if (ret)
goto out;
got_it:
if ((map->m_flags & F2FS_MAP_MAPPED)) {
block_nr = map->m_pblk + block_in_file - map->m_lblk;
SetPageMappedToDisk(page);
if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
DATA_GENERIC_ENHANCE_READ)) {
ret = -EFSCORRUPTED;
goto out;
}
} else {
zero_out:
zero_user_segment(page, 0, PAGE_SIZE);
if (f2fs_need_verity(inode, page->index) &&
!fsverity_verify_page(page)) {
ret = -EIO;
goto out;
}
if (!PageUptodate(page))
SetPageUptodate(page);
unlock_page(page);
goto out;
}
/*
* This page will go to BIO. Do we need to send this
* BIO off first?
*/
if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
*last_block_in_bio, block_nr) ||
!f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
submit_and_realloc:
__submit_bio(F2FS_I_SB(inode), bio, DATA);
bio = NULL;
}
if (bio == NULL) {
bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
is_readahead ? REQ_RAHEAD : 0, page->index,
false);
if (IS_ERR(bio)) {
ret = PTR_ERR(bio);
bio = NULL;
goto out;
}
}
/*
* If the page is under writeback, we need to wait for
* its completion to see the correct decrypted data.
*/
f2fs_wait_on_block_writeback(inode, block_nr);
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
goto submit_and_realloc;
inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
ClearPageError(page);
*last_block_in_bio = block_nr;
goto out;
out:
*bio_ret = bio;
return ret;
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
unsigned nr_pages, sector_t *last_block_in_bio,
bool is_readahead, bool for_write)
{
struct dnode_of_data dn;
struct inode *inode = cc->inode;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct bio *bio = *bio_ret;
unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
sector_t last_block_in_file;
const unsigned blocksize = blks_to_bytes(inode, 1);
struct decompress_io_ctx *dic = NULL;
struct extent_info ei = {0, };
bool from_dnode = true;
int i;
int ret = 0;
f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
last_block_in_file = bytes_to_blks(inode,
f2fs_readpage_limit(inode) + blocksize - 1);
/* get rid of pages beyond EOF */
for (i = 0; i < cc->cluster_size; i++) {
struct page *page = cc->rpages[i];
if (!page)
continue;
if ((sector_t)page->index >= last_block_in_file) {
zero_user_segment(page, 0, PAGE_SIZE);
if (!PageUptodate(page))
SetPageUptodate(page);
} else if (!PageUptodate(page)) {
continue;
}
unlock_page(page);
if (for_write)
put_page(page);
cc->rpages[i] = NULL;
cc->nr_rpages--;
}
/* we are done since all pages are beyond EOF */
if (f2fs_cluster_is_empty(cc))
goto out;
if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
from_dnode = false;
if (!from_dnode)
goto skip_reading_dnode;
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
if (ret)
goto out;
f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
skip_reading_dnode:
for (i = 1; i < cc->cluster_size; i++) {
block_t blkaddr;
blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
dn.ofs_in_node + i) :
ei.blk + i - 1;
if (!__is_valid_data_blkaddr(blkaddr))
break;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
ret = -EFAULT;
goto out_put_dnode;
}
cc->nr_cpages++;
if (!from_dnode && i >= ei.c_len)
break;
}
/* nothing to decompress */
if (cc->nr_cpages == 0) {
ret = 0;
goto out_put_dnode;
}
dic = f2fs_alloc_dic(cc);
if (IS_ERR(dic)) {
ret = PTR_ERR(dic);
goto out_put_dnode;
}
for (i = 0; i < cc->nr_cpages; i++) {
struct page *page = dic->cpages[i];
block_t blkaddr;
struct bio_post_read_ctx *ctx;
blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
dn.ofs_in_node + i + 1) :
ei.blk + i;
f2fs_wait_on_block_writeback(inode, blkaddr);
if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
if (atomic_dec_and_test(&dic->remaining_pages))
f2fs_decompress_cluster(dic);
continue;
}
if (bio && (!page_is_mergeable(sbi, bio,
*last_block_in_bio, blkaddr) ||
!f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
submit_and_realloc:
__submit_bio(sbi, bio, DATA);
bio = NULL;
}
if (!bio) {
bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
is_readahead ? REQ_RAHEAD : 0,
page->index, for_write);
if (IS_ERR(bio)) {
ret = PTR_ERR(bio);
f2fs_decompress_end_io(dic, ret);
f2fs_put_dnode(&dn);
*bio_ret = NULL;
return ret;
}
}
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
goto submit_and_realloc;
ctx = get_post_read_ctx(bio);
ctx->enabled_steps |= STEP_DECOMPRESS;
refcount_inc(&dic->refcnt);
inc_page_count(sbi, F2FS_RD_DATA);
f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
ClearPageError(page);
*last_block_in_bio = blkaddr;
}
if (from_dnode)
f2fs_put_dnode(&dn);
*bio_ret = bio;
return 0;
out_put_dnode:
if (from_dnode)
f2fs_put_dnode(&dn);
out:
for (i = 0; i < cc->cluster_size; i++) {
if (cc->rpages[i]) {
ClearPageUptodate(cc->rpages[i]);
ClearPageError(cc->rpages[i]);
unlock_page(cc->rpages[i]);
}
}
*bio_ret = bio;
return ret;
}
#endif
/*
* This function was originally taken from fs/mpage.c, and customized for f2fs.
* Major change was from block_size == page_size in f2fs by default.
*/
static int f2fs_mpage_readpages(struct inode *inode,
struct readahead_control *rac, struct page *page)
{
struct bio *bio = NULL;
sector_t last_block_in_bio = 0;
struct f2fs_map_blocks map;
#ifdef CONFIG_F2FS_FS_COMPRESSION
struct compress_ctx cc = {
.inode = inode,
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
.cluster_size = F2FS_I(inode)->i_cluster_size,
.cluster_idx = NULL_CLUSTER,
.rpages = NULL,
.cpages = NULL,
.nr_rpages = 0,
.nr_cpages = 0,
};
pgoff_t nc_cluster_idx = NULL_CLUSTER;
#endif
unsigned nr_pages = rac ? readahead_count(rac) : 1;
unsigned max_nr_pages = nr_pages;
int ret = 0;
map.m_pblk = 0;
map.m_lblk = 0;
map.m_len = 0;
map.m_flags = 0;
map.m_next_pgofs = NULL;
map.m_next_extent = NULL;
map.m_seg_type = NO_CHECK_TYPE;
map.m_may_create = false;
for (; nr_pages; nr_pages--) {
if (rac) {
page = readahead_page(rac);
prefetchw(&page->flags);
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_compressed_file(inode)) {
/* there are remained comressed pages, submit them */
if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
ret = f2fs_read_multi_pages(&cc, &bio,
max_nr_pages,
&last_block_in_bio,
rac != NULL, false);
f2fs_destroy_compress_ctx(&cc, false);
if (ret)
goto set_error_page;
}
if (cc.cluster_idx == NULL_CLUSTER) {
if (nc_cluster_idx ==
page->index >> cc.log_cluster_size) {
goto read_single_page;
}
ret = f2fs_is_compressed_cluster(inode, page->index);
if (ret < 0)
goto set_error_page;
else if (!ret) {
nc_cluster_idx =
page->index >> cc.log_cluster_size;
goto read_single_page;
}
nc_cluster_idx = NULL_CLUSTER;
}
ret = f2fs_init_compress_ctx(&cc);
if (ret)
goto set_error_page;
f2fs_compress_ctx_add_page(&cc, page);
goto next_page;
}
read_single_page:
#endif
ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
&bio, &last_block_in_bio, rac);
if (ret) {
#ifdef CONFIG_F2FS_FS_COMPRESSION
set_error_page:
#endif
SetPageError(page);
zero_user_segment(page, 0, PAGE_SIZE);
unlock_page(page);
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
next_page:
#endif
if (rac)
put_page(page);
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_compressed_file(inode)) {
/* last page */
if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
ret = f2fs_read_multi_pages(&cc, &bio,
max_nr_pages,
&last_block_in_bio,
rac != NULL, false);
f2fs_destroy_compress_ctx(&cc, false);
}
}
#endif
}
if (bio)
__submit_bio(F2FS_I_SB(inode), bio, DATA);
return ret;
}
static int f2fs_read_data_folio(struct file *file, struct folio *folio)
{
struct page *page = &folio->page;
struct inode *inode = page_file_mapping(page)->host;
int ret = -EAGAIN;
trace_f2fs_readpage(page, DATA);
if (!f2fs_is_compress_backend_ready(inode)) {
unlock_page(page);
return -EOPNOTSUPP;
}
/* If the file has inline data, try to read it directly */
if (f2fs_has_inline_data(inode))
ret = f2fs_read_inline_data(inode, page);
if (ret == -EAGAIN)
ret = f2fs_mpage_readpages(inode, NULL, page);
return ret;
}
static void f2fs_readahead(struct readahead_control *rac)
{
struct inode *inode = rac->mapping->host;
trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
if (!f2fs_is_compress_backend_ready(inode))
return;
/* If the file has inline data, skip readahead */
if (f2fs_has_inline_data(inode))
return;
f2fs_mpage_readpages(inode, rac, NULL);
}
int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
{
struct inode *inode = fio->page->mapping->host;
struct page *mpage, *page;
gfp_t gfp_flags = GFP_NOFS;
if (!f2fs_encrypted_file(inode))
return 0;
page = fio->compressed_page ? fio->compressed_page : fio->page;
/* wait for GCed page writeback via META_MAPPING */
f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
if (fscrypt_inode_uses_inline_crypto(inode))
return 0;
retry_encrypt:
fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
PAGE_SIZE, 0, gfp_flags);
if (IS_ERR(fio->encrypted_page)) {
/* flush pending IOs and wait for a while in the ENOMEM case */
if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
f2fs_flush_merged_writes(fio->sbi);
memalloc_retry_wait(GFP_NOFS);
gfp_flags |= __GFP_NOFAIL;
goto retry_encrypt;
}
return PTR_ERR(fio->encrypted_page);
}
mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
if (mpage) {
if (PageUptodate(mpage))
memcpy(page_address(mpage),
page_address(fio->encrypted_page), PAGE_SIZE);
f2fs_put_page(mpage, 1);
}
return 0;
}
static inline bool check_inplace_update_policy(struct inode *inode,
struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int policy = SM_I(sbi)->ipu_policy;
if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
is_inode_flag_set(inode, FI_OPU_WRITE))
return false;
if (policy & (0x1 << F2FS_IPU_FORCE))
return true;
if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
return true;
if (policy & (0x1 << F2FS_IPU_UTIL) &&
utilization(sbi) > SM_I(sbi)->min_ipu_util)
return true;
if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
utilization(sbi) > SM_I(sbi)->min_ipu_util)
return true;
/*
* IPU for rewrite async pages
*/
if (policy & (0x1 << F2FS_IPU_ASYNC) &&
fio && fio->op == REQ_OP_WRITE &&
!(fio->op_flags & REQ_SYNC) &&
!IS_ENCRYPTED(inode))
return true;
/* this is only set during fdatasync */
if (policy & (0x1 << F2FS_IPU_FSYNC) &&
is_inode_flag_set(inode, FI_NEED_IPU))
return true;
if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
return true;
return false;
}
bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
{
/* swap file is migrating in aligned write mode */
if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
return false;
if (f2fs_is_pinned_file(inode))
return true;
/* if this is cold file, we should overwrite to avoid fragmentation */
if (file_is_cold(inode))
return true;
return check_inplace_update_policy(inode, fio);
}
bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
/* The below cases were checked when setting it. */
if (f2fs_is_pinned_file(inode))
return false;
if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
return true;
if (f2fs_lfs_mode(sbi))
return true;
if (S_ISDIR(inode->i_mode))
return true;
if (IS_NOQUOTA(inode))
return true;
if (f2fs_is_atomic_file(inode))
return true;
/* swap file is migrating in aligned write mode */
if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
return true;
if (is_inode_flag_set(inode, FI_OPU_WRITE))
return true;
if (fio) {
if (page_private_gcing(fio->page))
return true;
if (page_private_dummy(fio->page))
return true;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
return true;
}
return false;
}
static inline bool need_inplace_update(struct f2fs_io_info *fio)
{
struct inode *inode = fio->page->mapping->host;
if (f2fs_should_update_outplace(inode, fio))
return false;
return f2fs_should_update_inplace(inode, fio);
}
int f2fs_do_write_data_page(struct f2fs_io_info *fio)
{
struct page *page = fio->page;
struct inode *inode = page->mapping->host;
struct dnode_of_data dn;
struct extent_info ei = {0, };
struct node_info ni;
bool ipu_force = false;
int err = 0;
/* Use COW inode to make dnode_of_data for atomic write */
if (f2fs_is_atomic_file(inode))
set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
else
set_new_dnode(&dn, inode, NULL, NULL, 0);
if (need_inplace_update(fio) &&
f2fs_lookup_extent_cache(inode, page->index, &ei)) {
fio->old_blkaddr = ei.blk + page->index - ei.fofs;
if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
DATA_GENERIC_ENHANCE))
return -EFSCORRUPTED;
ipu_force = true;
fio->need_lock = LOCK_DONE;
goto got_it;
}
/* Deadlock due to between page->lock and f2fs_lock_op */
if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
return -EAGAIN;
err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
if (err)
goto out;
fio->old_blkaddr = dn.data_blkaddr;
/* This page is already truncated */
if (fio->old_blkaddr == NULL_ADDR) {
ClearPageUptodate(page);
clear_page_private_gcing(page);
goto out_writepage;
}
got_it:
if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
DATA_GENERIC_ENHANCE)) {
err = -EFSCORRUPTED;
goto out_writepage;
}
/*
* If current allocation needs SSR,
* it had better in-place writes for updated data.
*/
if (ipu_force ||
(__is_valid_data_blkaddr(fio->old_blkaddr) &&
need_inplace_update(fio))) {
err = f2fs_encrypt_one_page(fio);
if (err)
goto out_writepage;
set_page_writeback(page);
ClearPageError(page);
f2fs_put_dnode(&dn);
if (fio->need_lock == LOCK_REQ)
f2fs_unlock_op(fio->sbi);
err = f2fs_inplace_write_data(fio);
if (err) {
if (fscrypt_inode_uses_fs_layer_crypto(inode))
fscrypt_finalize_bounce_page(&fio->encrypted_page);
if (PageWriteback(page))
end_page_writeback(page);
} else {
set_inode_flag(inode, FI_UPDATE_WRITE);
}
trace_f2fs_do_write_data_page(fio->page, IPU);
return err;
}
if (fio->need_lock == LOCK_RETRY) {
if (!f2fs_trylock_op(fio->sbi)) {
err = -EAGAIN;
goto out_writepage;
}
fio->need_lock = LOCK_REQ;
}
err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
if (err)
goto out_writepage;
fio->version = ni.version;
err = f2fs_encrypt_one_page(fio);
if (err)
goto out_writepage;
set_page_writeback(page);
ClearPageError(page);
if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
/* LFS mode write path */
f2fs_outplace_write_data(&dn, fio);
trace_f2fs_do_write_data_page(page, OPU);
set_inode_flag(inode, FI_APPEND_WRITE);
if (page->index == 0)
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
out_writepage:
f2fs_put_dnode(&dn);
out:
if (fio->need_lock == LOCK_REQ)
f2fs_unlock_op(fio->sbi);
return err;
}
int f2fs_write_single_data_page(struct page *page, int *submitted,
struct bio **bio,
sector_t *last_block,
struct writeback_control *wbc,
enum iostat_type io_type,
int compr_blocks,
bool allow_balance)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = ((unsigned long long)i_size)
>> PAGE_SHIFT;
loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
unsigned offset = 0;
bool need_balance_fs = false;
int err = 0;
struct f2fs_io_info fio = {
.sbi = sbi,
.ino = inode->i_ino,
.type = DATA,
.op = REQ_OP_WRITE,
.op_flags = wbc_to_write_flags(wbc),
.old_blkaddr = NULL_ADDR,
.page = page,
.encrypted_page = NULL,
.submitted = false,
.compr_blocks = compr_blocks,
.need_lock = LOCK_RETRY,
.io_type = io_type,
.io_wbc = wbc,
.bio = bio,
.last_block = last_block,
};
trace_f2fs_writepage(page, DATA);
/* we should bypass data pages to proceed the kworkder jobs */
if (unlikely(f2fs_cp_error(sbi))) {
mapping_set_error(page->mapping, -EIO);
/*
* don't drop any dirty dentry pages for keeping lastest
* directory structure.
*/
if (S_ISDIR(inode->i_mode))
goto redirty_out;
goto out;
}
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (page->index < end_index ||
f2fs_verity_in_progress(inode) ||
compr_blocks)
goto write;
/*
* If the offset is out-of-range of file size,
* this page does not have to be written to disk.
*/
offset = i_size & (PAGE_SIZE - 1);
if ((page->index >= end_index + 1) || !offset)
goto out;
zero_user_segment(page, offset, PAGE_SIZE);
write:
if (f2fs_is_drop_cache(inode))
goto out;
/* Dentry/quota blocks are controlled by checkpoint */
if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
/*
* We need to wait for node_write to avoid block allocation during
* checkpoint. This can only happen to quota writes which can cause
* the below discard race condition.
*/
if (IS_NOQUOTA(inode))
f2fs_down_read(&sbi->node_write);
fio.need_lock = LOCK_DONE;
err = f2fs_do_write_data_page(&fio);
if (IS_NOQUOTA(inode))
f2fs_up_read(&sbi->node_write);
goto done;
}
if (!wbc->for_reclaim)
need_balance_fs = true;
else if (has_not_enough_free_secs(sbi, 0, 0))
goto redirty_out;
else
set_inode_flag(inode, FI_HOT_DATA);
err = -EAGAIN;
if (f2fs_has_inline_data(inode)) {
err = f2fs_write_inline_data(inode, page);
if (!err)
goto out;
}
if (err == -EAGAIN) {
err = f2fs_do_write_data_page(&fio);
if (err == -EAGAIN) {
fio.need_lock = LOCK_REQ;
err = f2fs_do_write_data_page(&fio);
}
}
if (err) {
file_set_keep_isize(inode);
} else {
spin_lock(&F2FS_I(inode)->i_size_lock);
if (F2FS_I(inode)->last_disk_size < psize)
F2FS_I(inode)->last_disk_size = psize;
spin_unlock(&F2FS_I(inode)->i_size_lock);
}
done:
if (err && err != -ENOENT)
goto redirty_out;
out:
inode_dec_dirty_pages(inode);
if (err) {
ClearPageUptodate(page);
clear_page_private_gcing(page);
}
if (wbc->for_reclaim) {
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
clear_inode_flag(inode, FI_HOT_DATA);
f2fs_remove_dirty_inode(inode);
submitted = NULL;
}
unlock_page(page);
if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
!F2FS_I(inode)->cp_task && allow_balance)
f2fs_balance_fs(sbi, need_balance_fs);
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_submit_merged_write(sbi, DATA);
f2fs_submit_merged_ipu_write(sbi, bio, NULL);
submitted = NULL;
}
if (submitted)
*submitted = fio.submitted ? 1 : 0;
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
/*
* pageout() in MM traslates EAGAIN, so calls handle_write_error()
* -> mapping_set_error() -> set_bit(AS_EIO, ...).
* file_write_and_wait_range() will see EIO error, which is critical
* to return value of fsync() followed by atomic_write failure to user.
*/
if (!err || wbc->for_reclaim)
return AOP_WRITEPAGE_ACTIVATE;
unlock_page(page);
return err;
}
static int f2fs_write_data_page(struct page *page,
struct writeback_control *wbc)
{
#ifdef CONFIG_F2FS_FS_COMPRESSION
struct inode *inode = page->mapping->host;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
goto out;
if (f2fs_compressed_file(inode)) {
if (f2fs_is_compressed_cluster(inode, page->index)) {
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
}
out:
#endif
return f2fs_write_single_data_page(page, NULL, NULL, NULL,
wbc, FS_DATA_IO, 0, true);
}
/*
* This function was copied from write_cche_pages from mm/page-writeback.c.
* The major change is making write step of cold data page separately from
* warm/hot data page.
*/
static int f2fs_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc,
enum iostat_type io_type)
{
int ret = 0;
int done = 0, retry = 0;
struct pagevec pvec;
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
struct bio *bio = NULL;
sector_t last_block;
#ifdef CONFIG_F2FS_FS_COMPRESSION
struct inode *inode = mapping->host;
struct compress_ctx cc = {
.inode = inode,
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
.cluster_size = F2FS_I(inode)->i_cluster_size,
.cluster_idx = NULL_CLUSTER,
.rpages = NULL,
.nr_rpages = 0,
.cpages = NULL,
.valid_nr_cpages = 0,
.rbuf = NULL,
.cbuf = NULL,
.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
.private = NULL,
};
#endif
int nr_pages;
pgoff_t index;
pgoff_t end; /* Inclusive */
pgoff_t done_index;
int range_whole = 0;
xa_mark_t tag;
int nwritten = 0;
int submitted = 0;
int i;
pagevec_init(&pvec);
if (get_dirty_pages(mapping->host) <=
SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
set_inode_flag(mapping->host, FI_HOT_DATA);
else
clear_inode_flag(mapping->host, FI_HOT_DATA);
if (wbc->range_cyclic) {
index = mapping->writeback_index; /* prev offset */
end = -1;
} else {
index = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
}
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
retry:
retry = 0;
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, index, end);
done_index = index;
while (!done && !retry && (index <= end)) {
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
tag);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
bool need_readd;
readd:
need_readd = false;
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_compressed_file(inode)) {
void *fsdata = NULL;
struct page *pagep;
int ret2;
ret = f2fs_init_compress_ctx(&cc);
if (ret) {
done = 1;
break;
}
if (!f2fs_cluster_can_merge_page(&cc,
page->index)) {
ret = f2fs_write_multi_pages(&cc,
&submitted, wbc, io_type);
if (!ret)
need_readd = true;
goto result;
}
if (unlikely(f2fs_cp_error(sbi)))
goto lock_page;
if (!f2fs_cluster_is_empty(&cc))
goto lock_page;
ret2 = f2fs_prepare_compress_overwrite(
inode, &pagep,
page->index, &fsdata);
if (ret2 < 0) {
ret = ret2;
done = 1;
break;
} else if (ret2 &&
(!f2fs_compress_write_end(inode,
fsdata, page->index, 1) ||
!f2fs_all_cluster_page_loaded(&cc,
&pvec, i, nr_pages))) {
retry = 1;
break;
}
}
#endif
/* give a priority to WB_SYNC threads */
if (atomic_read(&sbi->wb_sync_req[DATA]) &&
wbc->sync_mode == WB_SYNC_NONE) {
done = 1;
break;
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
lock_page:
#endif
done_index = page->index;
retry_write:
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (PageWriteback(page)) {
if (wbc->sync_mode != WB_SYNC_NONE)
f2fs_wait_on_page_writeback(page,
DATA, true, true);
else
goto continue_unlock;
}
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_compressed_file(inode)) {
get_page(page);
f2fs_compress_ctx_add_page(&cc, page);
continue;
}
#endif
ret = f2fs_write_single_data_page(page, &submitted,
&bio, &last_block, wbc, io_type,
0, true);
if (ret == AOP_WRITEPAGE_ACTIVATE)
unlock_page(page);
#ifdef CONFIG_F2FS_FS_COMPRESSION
result:
#endif
nwritten += submitted;
wbc->nr_to_write -= submitted;
if (unlikely(ret)) {
/*
* keep nr_to_write, since vfs uses this to
* get # of written pages.
*/
if (ret == AOP_WRITEPAGE_ACTIVATE) {
ret = 0;
goto next;
} else if (ret == -EAGAIN) {
ret = 0;
if (wbc->sync_mode == WB_SYNC_ALL) {
f2fs_io_schedule_timeout(
DEFAULT_IO_TIMEOUT);
goto retry_write;
}
goto next;
}
done_index = page->index + 1;
done = 1;
break;
}
if (wbc->nr_to_write <= 0 &&
wbc->sync_mode == WB_SYNC_NONE) {
done = 1;
break;
}
next:
if (need_readd)
goto readd;
}
pagevec_release(&pvec);
cond_resched();
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
/* flush remained pages in compress cluster */
if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
nwritten += submitted;
wbc->nr_to_write -= submitted;
if (ret) {
done = 1;
retry = 0;
}
}
if (f2fs_compressed_file(inode))
f2fs_destroy_compress_ctx(&cc, false);
#endif
if (retry) {
index = 0;
end = -1;
goto retry;
}
if (wbc->range_cyclic && !done)
done_index = 0;
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
mapping->writeback_index = done_index;
if (nwritten)
f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
NULL, 0, DATA);
/* submit cached bio of IPU write */
if (bio)
f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
return ret;
}
static inline bool __should_serialize_io(struct inode *inode,
struct writeback_control *wbc)
{
/* to avoid deadlock in path of data flush */
if (F2FS_I(inode)->cp_task)
return false;
if (!S_ISREG(inode->i_mode))
return false;
if (IS_NOQUOTA(inode))
return false;
if (f2fs_need_compress_data(inode))
return true;
if (wbc->sync_mode != WB_SYNC_ALL)
return true;
if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
return true;
return false;
}
static int __f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc,
enum iostat_type io_type)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct blk_plug plug;
int ret;
bool locked = false;
/* deal with chardevs and other special file */
if (!mapping->a_ops->writepage)
return 0;
/* skip writing if there is no dirty page in this inode */
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
return 0;
/* during POR, we don't need to trigger writepage at all. */
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto skip_write;
if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
wbc->sync_mode == WB_SYNC_NONE &&
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
f2fs_available_free_memory(sbi, DIRTY_DENTS))
goto skip_write;
/* skip writing in file defragment preparing stage */
if (is_inode_flag_set(inode, FI_SKIP_WRITES))
goto skip_write;
trace_f2fs_writepages(mapping->host, wbc, DATA);
/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
if (wbc->sync_mode == WB_SYNC_ALL)
atomic_inc(&sbi->wb_sync_req[DATA]);
else if (atomic_read(&sbi->wb_sync_req[DATA])) {
/* to avoid potential deadlock */
if (current->plug)
blk_finish_plug(current->plug);
goto skip_write;
}
if (__should_serialize_io(inode, wbc)) {
mutex_lock(&sbi->writepages);
locked = true;
}
blk_start_plug(&plug);
ret = f2fs_write_cache_pages(mapping, wbc, io_type);
blk_finish_plug(&plug);
if (locked)
mutex_unlock(&sbi->writepages);
if (wbc->sync_mode == WB_SYNC_ALL)
atomic_dec(&sbi->wb_sync_req[DATA]);
/*
* if some pages were truncated, we cannot guarantee its mapping->host
* to detect pending bios.
*/
f2fs_remove_dirty_inode(inode);
return ret;
skip_write:
wbc->pages_skipped += get_dirty_pages(inode);
trace_f2fs_writepages(mapping->host, wbc, DATA);
return 0;
}
static int f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
return __f2fs_write_data_pages(mapping, wbc,
F2FS_I(inode)->cp_task == current ?
FS_CP_DATA_IO : FS_DATA_IO);
}
void f2fs_write_failed(struct inode *inode, loff_t to)
{
loff_t i_size = i_size_read(inode);
if (IS_NOQUOTA(inode))
return;
/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
if (to > i_size && !f2fs_verity_in_progress(inode)) {
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
truncate_pagecache(inode, i_size);
f2fs_truncate_blocks(inode, i_size, true);
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
}
}
static int prepare_write_begin(struct f2fs_sb_info *sbi,
struct page *page, loff_t pos, unsigned len,
block_t *blk_addr, bool *node_changed)
{
struct inode *inode = page->mapping->host;
pgoff_t index = page->index;
struct dnode_of_data dn;
struct page *ipage;
bool locked = false;
struct extent_info ei = {0, };
int err = 0;
int flag;
/*
* If a whole page is being written and we already preallocated all the
* blocks, then there is no need to get a block address now.
*/
if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
return 0;
/* f2fs_lock_op avoids race between write CP and convert_inline_page */
if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
flag = F2FS_GET_BLOCK_DEFAULT;
else
flag = F2FS_GET_BLOCK_PRE_AIO;
if (f2fs_has_inline_data(inode) ||
(pos & PAGE_MASK) >= i_size_read(inode)) {
f2fs_do_map_lock(sbi, flag, true);
locked = true;
}
restart:
/* check inline_data */
ipage = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto unlock_out;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_has_inline_data(inode)) {
if (pos + len <= MAX_INLINE_DATA(inode)) {
f2fs_do_read_inline_data(page, ipage);
set_inode_flag(inode, FI_DATA_EXIST);
if (inode->i_nlink)
set_page_private_inline(ipage);
} else {
err = f2fs_convert_inline_page(&dn, page);
if (err)
goto out;
if (dn.data_blkaddr == NULL_ADDR)
err = f2fs_get_block(&dn, index);
}
} else if (locked) {
err = f2fs_get_block(&dn, index);
} else {
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
} else {
/* hole case */
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err || dn.data_blkaddr == NULL_ADDR) {
f2fs_put_dnode(&dn);
f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
true);
WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
locked = true;
goto restart;
}
}
}
/* convert_inline_page can make node_changed */
*blk_addr = dn.data_blkaddr;
*node_changed = dn.node_changed;
out:
f2fs_put_dnode(&dn);
unlock_out:
if (locked)
f2fs_do_map_lock(sbi, flag, false);
return err;
}
static int __find_data_block(struct inode *inode, pgoff_t index,
block_t *blk_addr)
{
struct dnode_of_data dn;
struct page *ipage;
struct extent_info ei = {0, };
int err = 0;
ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
} else {
/* hole case */
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err) {
dn.data_blkaddr = NULL_ADDR;
err = 0;
}
}
*blk_addr = dn.data_blkaddr;
f2fs_put_dnode(&dn);
return err;
}
static int __reserve_data_block(struct inode *inode, pgoff_t index,
block_t *blk_addr, bool *node_changed)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
struct page *ipage;
int err = 0;
f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
ipage = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto unlock_out;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
err = f2fs_get_block(&dn, index);
*blk_addr = dn.data_blkaddr;
*node_changed = dn.node_changed;
f2fs_put_dnode(&dn);
unlock_out:
f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
return err;
}
static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
struct page *page, loff_t pos, unsigned int len,
block_t *blk_addr, bool *node_changed)
{
struct inode *inode = page->mapping->host;
struct inode *cow_inode = F2FS_I(inode)->cow_inode;
pgoff_t index = page->index;
int err = 0;
block_t ori_blk_addr;
/* If pos is beyond the end of file, reserve a new block in COW inode */
if ((pos & PAGE_MASK) >= i_size_read(inode))
return __reserve_data_block(cow_inode, index, blk_addr,
node_changed);
/* Look for the block in COW inode first */
err = __find_data_block(cow_inode, index, blk_addr);
if (err)
return err;
else if (*blk_addr != NULL_ADDR)
return 0;
/* Look for the block in the original inode */
err = __find_data_block(inode, index, &ori_blk_addr);
if (err)
return err;
/* Finally, we should reserve a new block in COW inode for the update */
err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
if (err)
return err;
if (ori_blk_addr != NULL_ADDR)
*blk_addr = ori_blk_addr;
return 0;
}
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page = NULL;
pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
bool need_balance = false;
block_t blkaddr = NULL_ADDR;
int err = 0;
trace_f2fs_write_begin(inode, pos, len);
if (!f2fs_is_checkpoint_ready(sbi)) {
err = -ENOSPC;
goto fail;
}
/*
* We should check this at this moment to avoid deadlock on inode page
* and #0 page. The locking rule for inline_data conversion should be:
* lock_page(page #0) -> lock_page(inode_page)
*/
if (index != 0) {
err = f2fs_convert_inline_inode(inode);
if (err)
goto fail;
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_compressed_file(inode)) {
int ret;
*fsdata = NULL;
if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
goto repeat;
ret = f2fs_prepare_compress_overwrite(inode, pagep,
index, fsdata);
if (ret < 0) {
err = ret;
goto fail;
} else if (ret) {
return 0;
}
}
#endif
repeat:
/*
* Do not use grab_cache_page_write_begin() to avoid deadlock due to
* wait_for_stable_page. Will wait that below with our IO control.
*/
page = f2fs_pagecache_get_page(mapping, index,
FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
if (!page) {
err = -ENOMEM;
goto fail;
}
/* TODO: cluster can be compressed due to race with .writepage */
*pagep = page;
if (f2fs_is_atomic_file(inode))
err = prepare_atomic_write_begin(sbi, page, pos, len,
&blkaddr, &need_balance);
else
err = prepare_write_begin(sbi, page, pos, len,
&blkaddr, &need_balance);
if (err)
goto fail;
if (need_balance && !IS_NOQUOTA(inode) &&
has_not_enough_free_secs(sbi, 0, 0)) {
unlock_page(page);
f2fs_balance_fs(sbi, true);
lock_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
f2fs_put_page(page, 1);
goto repeat;
}
}
f2fs_wait_on_page_writeback(page, DATA, false, true);
if (len == PAGE_SIZE || PageUptodate(page))
return 0;
if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
!f2fs_verity_in_progress(inode)) {
zero_user_segment(page, len, PAGE_SIZE);
return 0;
}
if (blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_SIZE);
SetPageUptodate(page);
} else {
if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
DATA_GENERIC_ENHANCE_READ)) {
err = -EFSCORRUPTED;
goto fail;
}
err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
if (err)
goto fail;
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
err = -EIO;
goto fail;
}
}
return 0;
fail:
f2fs_put_page(page, 1);
f2fs_write_failed(inode, pos + len);
return err;
}
static int f2fs_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
trace_f2fs_write_end(inode, pos, len, copied);
/*
* This should be come from len == PAGE_SIZE, and we expect copied
* should be PAGE_SIZE. Otherwise, we treat it with zero copied and
* let generic_perform_write() try to copy data again through copied=0.
*/
if (!PageUptodate(page)) {
if (unlikely(copied != len))
copied = 0;
else
SetPageUptodate(page);
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
/* overwrite compressed file */
if (f2fs_compressed_file(inode) && fsdata) {
f2fs_compress_write_end(inode, fsdata, page->index, copied);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
if (pos + copied > i_size_read(inode) &&
!f2fs_verity_in_progress(inode))
f2fs_i_size_write(inode, pos + copied);
return copied;
}
#endif
if (!copied)
goto unlock_out;
set_page_dirty(page);
if (pos + copied > i_size_read(inode) &&
!f2fs_verity_in_progress(inode)) {
f2fs_i_size_write(inode, pos + copied);
if (f2fs_is_atomic_file(inode))
f2fs_i_size_write(F2FS_I(inode)->cow_inode,
pos + copied);
}
unlock_out:
f2fs_put_page(page, 1);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return copied;
}
void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
{
struct inode *inode = folio->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
(offset || length != folio_size(folio)))
return;
if (folio_test_dirty(folio)) {
if (inode->i_ino == F2FS_META_INO(sbi)) {
dec_page_count(sbi, F2FS_DIRTY_META);
} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
dec_page_count(sbi, F2FS_DIRTY_NODES);
} else {
inode_dec_dirty_pages(inode);
f2fs_remove_dirty_inode(inode);
}
}
clear_page_private_gcing(&folio->page);
if (test_opt(sbi, COMPRESS_CACHE) &&
inode->i_ino == F2FS_COMPRESS_INO(sbi))
clear_page_private_data(&folio->page);
folio_detach_private(folio);
}
bool f2fs_release_folio(struct folio *folio, gfp_t wait)
{
struct f2fs_sb_info *sbi;
/* If this is dirty folio, keep private data */
if (folio_test_dirty(folio))
return false;
sbi = F2FS_M_SB(folio->mapping);
if (test_opt(sbi, COMPRESS_CACHE)) {
struct inode *inode = folio->mapping->host;
if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
clear_page_private_data(&folio->page);
}
clear_page_private_gcing(&folio->page);
folio_detach_private(folio);
return true;
}
static bool f2fs_dirty_data_folio(struct address_space *mapping,
struct folio *folio)
{
struct inode *inode = mapping->host;
trace_f2fs_set_page_dirty(&folio->page, DATA);
if (!folio_test_uptodate(folio))
folio_mark_uptodate(folio);
BUG_ON(folio_test_swapcache(folio));
if (!folio_test_dirty(folio)) {
filemap_dirty_folio(mapping, folio);
f2fs_update_dirty_folio(inode, folio);
return true;
}
return false;
}
static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
{
#ifdef CONFIG_F2FS_FS_COMPRESSION
struct dnode_of_data dn;
sector_t start_idx, blknr = 0;
int ret;
start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
if (ret)
return 0;
if (dn.data_blkaddr != COMPRESS_ADDR) {
dn.ofs_in_node += block - start_idx;
blknr = f2fs_data_blkaddr(&dn);
if (!__is_valid_data_blkaddr(blknr))
blknr = 0;
}
f2fs_put_dnode(&dn);
return blknr;
#else
return 0;
#endif
}
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
sector_t blknr = 0;
if (f2fs_has_inline_data(inode))
goto out;
/* make sure allocating whole blocks */
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
filemap_write_and_wait(mapping);
/* Block number less than F2FS MAX BLOCKS */
if (unlikely(block >= max_file_blocks(inode)))
goto out;
if (f2fs_compressed_file(inode)) {
blknr = f2fs_bmap_compress(inode, block);
} else {
struct f2fs_map_blocks map;
memset(&map, 0, sizeof(map));
map.m_lblk = block;
map.m_len = 1;
map.m_next_pgofs = NULL;
map.m_seg_type = NO_CHECK_TYPE;
if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
blknr = map.m_pblk;
}
out:
trace_f2fs_bmap(inode, block, blknr);
return blknr;
}
#ifdef CONFIG_MIGRATION
#include <linux/migrate.h>
int f2fs_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page, enum migrate_mode mode)
{
int rc, extra_count = 0;
BUG_ON(PageWriteback(page));
rc = migrate_page_move_mapping(mapping, newpage,
page, extra_count);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
/* guarantee to start from no stale private field */
set_page_private(newpage, 0);
if (PagePrivate(page)) {
set_page_private(newpage, page_private(page));
SetPagePrivate(newpage);
get_page(newpage);
set_page_private(page, 0);
ClearPagePrivate(page);
put_page(page);
}
if (mode != MIGRATE_SYNC_NO_COPY)
migrate_page_copy(newpage, page);
else
migrate_page_states(newpage, page);
return MIGRATEPAGE_SUCCESS;
}
#endif
#ifdef CONFIG_SWAP
static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
unsigned int blkcnt)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned int blkofs;
unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
unsigned int secidx = start_blk / blk_per_sec;
unsigned int end_sec = secidx + blkcnt / blk_per_sec;
int ret = 0;
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
set_inode_flag(inode, FI_ALIGNED_WRITE);
set_inode_flag(inode, FI_OPU_WRITE);
for (; secidx < end_sec; secidx++) {
f2fs_down_write(&sbi->pin_sem);
f2fs_lock_op(sbi);
f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
f2fs_unlock_op(sbi);
set_inode_flag(inode, FI_SKIP_WRITES);
for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
struct page *page;
unsigned int blkidx = secidx * blk_per_sec + blkofs;
page = f2fs_get_lock_data_page(inode, blkidx, true);
if (IS_ERR(page)) {
f2fs_up_write(&sbi->pin_sem);
ret = PTR_ERR(page);
goto done;
}
set_page_dirty(page);
f2fs_put_page(page, 1);
}
clear_inode_flag(inode, FI_SKIP_WRITES);
ret = filemap_fdatawrite(inode->i_mapping);
f2fs_up_write(&sbi->pin_sem);
if (ret)
break;
}
done:
clear_inode_flag(inode, FI_SKIP_WRITES);
clear_inode_flag(inode, FI_OPU_WRITE);
clear_inode_flag(inode, FI_ALIGNED_WRITE);
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
return ret;
}
static int check_swap_activate(struct swap_info_struct *sis,
struct file *swap_file, sector_t *span)
{
struct address_space *mapping = swap_file->f_mapping;
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
sector_t cur_lblock;
sector_t last_lblock;
sector_t pblock;
sector_t lowest_pblock = -1;
sector_t highest_pblock = 0;
int nr_extents = 0;
unsigned long nr_pblocks;
unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
unsigned int not_aligned = 0;
int ret = 0;
/*
* Map all the blocks into the extent list. This code doesn't try
* to be very smart.
*/
cur_lblock = 0;
last_lblock = bytes_to_blks(inode, i_size_read(inode));
while (cur_lblock < last_lblock && cur_lblock < sis->max) {
struct f2fs_map_blocks map;
retry:
cond_resched();
memset(&map, 0, sizeof(map));
map.m_lblk = cur_lblock;
map.m_len = last_lblock - cur_lblock;
map.m_next_pgofs = NULL;
map.m_next_extent = NULL;
map.m_seg_type = NO_CHECK_TYPE;
map.m_may_create = false;
ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
if (ret)
goto out;
/* hole */
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
f2fs_err(sbi, "Swapfile has holes");
ret = -EINVAL;
goto out;
}
pblock = map.m_pblk;
nr_pblocks = map.m_len;
if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
nr_pblocks & sec_blks_mask) {
not_aligned++;
nr_pblocks = roundup(nr_pblocks, blks_per_sec);
if (cur_lblock + nr_pblocks > sis->max)
nr_pblocks -= blks_per_sec;
if (!nr_pblocks) {
/* this extent is last one */
nr_pblocks = map.m_len;
f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
goto next;
}
ret = f2fs_migrate_blocks(inode, cur_lblock,
nr_pblocks);
if (ret)
goto out;
goto retry;
}
next:
if (cur_lblock + nr_pblocks >= sis->max)
nr_pblocks = sis->max - cur_lblock;
if (cur_lblock) { /* exclude the header page */
if (pblock < lowest_pblock)
lowest_pblock = pblock;
if (pblock + nr_pblocks - 1 > highest_pblock)
highest_pblock = pblock + nr_pblocks - 1;
}
/*
* We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
*/
ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
if (ret < 0)
goto out;
nr_extents += ret;
cur_lblock += nr_pblocks;
}
ret = nr_extents;
*span = 1 + highest_pblock - lowest_pblock;
if (cur_lblock == 0)
cur_lblock = 1; /* force Empty message */
sis->max = cur_lblock;
sis->pages = cur_lblock - 1;
sis->highest_bit = cur_lblock - 1;
out:
if (not_aligned)
f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
not_aligned, blks_per_sec * F2FS_BLKSIZE);
return ret;
}
static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
sector_t *span)
{
struct inode *inode = file_inode(file);
int ret;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (f2fs_readonly(F2FS_I_SB(inode)->sb))
return -EROFS;
if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
f2fs_err(F2FS_I_SB(inode),
"Swapfile not supported in LFS mode");
return -EINVAL;
}
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
if (!f2fs_disable_compressed_file(inode))
return -EINVAL;
f2fs_precache_extents(inode);
ret = check_swap_activate(sis, file, span);
if (ret < 0)
return ret;
set_inode_flag(inode, FI_PIN_FILE);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return ret;
}
static void f2fs_swap_deactivate(struct file *file)
{
struct inode *inode = file_inode(file);
clear_inode_flag(inode, FI_PIN_FILE);
}
#else
static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
sector_t *span)
{
return -EOPNOTSUPP;
}
static void f2fs_swap_deactivate(struct file *file)
{
}
#endif
const struct address_space_operations f2fs_dblock_aops = {
.read_folio = f2fs_read_data_folio,
.readahead = f2fs_readahead,
.writepage = f2fs_write_data_page,
.writepages = f2fs_write_data_pages,
.write_begin = f2fs_write_begin,
.write_end = f2fs_write_end,
.dirty_folio = f2fs_dirty_data_folio,
.invalidate_folio = f2fs_invalidate_folio,
.release_folio = f2fs_release_folio,
.direct_IO = noop_direct_IO,
.bmap = f2fs_bmap,
.swap_activate = f2fs_swap_activate,
.swap_deactivate = f2fs_swap_deactivate,
#ifdef CONFIG_MIGRATION
.migratepage = f2fs_migrate_page,
#endif
};
void f2fs_clear_page_cache_dirty_tag(struct page *page)
{
struct address_space *mapping = page_mapping(page);
unsigned long flags;
xa_lock_irqsave(&mapping->i_pages, flags);
__xa_clear_mark(&mapping->i_pages, page_index(page),
PAGECACHE_TAG_DIRTY);
xa_unlock_irqrestore(&mapping->i_pages, flags);
}
int __init f2fs_init_post_read_processing(void)
{
bio_post_read_ctx_cache =
kmem_cache_create("f2fs_bio_post_read_ctx",
sizeof(struct bio_post_read_ctx), 0, 0, NULL);
if (!bio_post_read_ctx_cache)
goto fail;
bio_post_read_ctx_pool =
mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
bio_post_read_ctx_cache);
if (!bio_post_read_ctx_pool)
goto fail_free_cache;
return 0;
fail_free_cache:
kmem_cache_destroy(bio_post_read_ctx_cache);
fail:
return -ENOMEM;
}
void f2fs_destroy_post_read_processing(void)
{
mempool_destroy(bio_post_read_ctx_pool);
kmem_cache_destroy(bio_post_read_ctx_cache);
}
int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
{
if (!f2fs_sb_has_encrypt(sbi) &&
!f2fs_sb_has_verity(sbi) &&
!f2fs_sb_has_compression(sbi))
return 0;
sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
WQ_UNBOUND | WQ_HIGHPRI,
num_online_cpus());
if (!sbi->post_read_wq)
return -ENOMEM;
return 0;
}
void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
{
if (sbi->post_read_wq)
destroy_workqueue(sbi->post_read_wq);
}
int __init f2fs_init_bio_entry_cache(void)
{
bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
sizeof(struct bio_entry));
if (!bio_entry_slab)
return -ENOMEM;
return 0;
}
void f2fs_destroy_bio_entry_cache(void)
{
kmem_cache_destroy(bio_entry_slab);
}
static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
unsigned int flags, struct iomap *iomap,
struct iomap *srcmap)
{
struct f2fs_map_blocks map = {};
pgoff_t next_pgofs = 0;
int err;
map.m_lblk = bytes_to_blks(inode, offset);
map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
map.m_next_pgofs = &next_pgofs;
map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
if (flags & IOMAP_WRITE)
map.m_may_create = true;
err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
F2FS_GET_BLOCK_DIO);
if (err)
return err;
iomap->offset = blks_to_bytes(inode, map.m_lblk);
/*
* When inline encryption is enabled, sometimes I/O to an encrypted file
* has to be broken up to guarantee DUN contiguity. Handle this by
* limiting the length of the mapping returned.
*/
map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
iomap->length = blks_to_bytes(inode, map.m_len);
if (map.m_flags & F2FS_MAP_MAPPED) {
iomap->type = IOMAP_MAPPED;
iomap->flags |= IOMAP_F_MERGED;
} else {
iomap->type = IOMAP_UNWRITTEN;
}
if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
return -EINVAL;
iomap->bdev = map.m_bdev;
iomap->addr = blks_to_bytes(inode, map.m_pblk);
} else {
iomap->length = blks_to_bytes(inode, next_pgofs) -
iomap->offset;
iomap->type = IOMAP_HOLE;
iomap->addr = IOMAP_NULL_ADDR;
}
if (map.m_flags & F2FS_MAP_NEW)
iomap->flags |= IOMAP_F_NEW;
if ((inode->i_state & I_DIRTY_DATASYNC) ||
offset + length > i_size_read(inode))
iomap->flags |= IOMAP_F_DIRTY;
return 0;
}
const struct iomap_ops f2fs_iomap_ops = {
.iomap_begin = f2fs_iomap_begin,
};