linux-next/kernel/resource.c
Linus Torvalds 617a814f14 ALong with the usual shower of singleton patches, notable patch series in
this pull request are:
 
 "Align kvrealloc() with krealloc()" from Danilo Krummrich.  Adds
 consistency to the APIs and behaviour of these two core allocation
 functions.  This also simplifies/enables Rustification.
 
 "Some cleanups for shmem" from Baolin Wang.  No functional changes - mode
 code reuse, better function naming, logic simplifications.
 
 "mm: some small page fault cleanups" from Josef Bacik.  No functional
 changes - code cleanups only.
 
 "Various memory tiering fixes" from Zi Yan.  A small fix and a little
 cleanup.
 
 "mm/swap: remove boilerplate" from Yu Zhao.  Code cleanups and
 simplifications and .text shrinkage.
 
 "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt.  This
 is a feature, it adds new feilds to /proc/vmstat such as
 
     $ grep kstack /proc/vmstat
     kstack_1k 3
     kstack_2k 188
     kstack_4k 11391
     kstack_8k 243
     kstack_16k 0
 
 which tells us that 11391 processes used 4k of stack while none at all
 used 16k.  Useful for some system tuning things, but partivularly useful
 for "the dynamic kernel stack project".
 
 "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov.
 Teaches kmemleak to detect leaksage of percpu memory.
 
 "mm: memcg: page counters optimizations" from Roman Gushchin.  "3
 independent small optimizations of page counters".
 
 "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David
 Hildenbrand.  Improves PTE/PMD splitlock detection, makes powerpc/8xx work
 correctly by design rather than by accident.
 
 "mm: remove arch_make_page_accessible()" from David Hildenbrand.  Some
 folio conversions which make arch_make_page_accessible() unneeded.
 
 "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel.
 Cleans up and fixes our handling of the resetting of the cgroup/process
 peak-memory-use detector.
 
 "Make core VMA operations internal and testable" from Lorenzo Stoakes.
 Rationalizaion and encapsulation of the VMA manipulation APIs.  With a
 view to better enable testing of the VMA functions, even from a
 userspace-only harness.
 
 "mm: zswap: fixes for global shrinker" from Takero Funaki.  Fix issues in
 the zswap global shrinker, resulting in improved performance.
 
 "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao.  Fill in
 some missing info in /proc/zoneinfo.
 
 "mm: replace follow_page() by folio_walk" from David Hildenbrand.  Code
 cleanups and rationalizations (conversion to folio_walk()) resulting in
 the removal of follow_page().
 
 "improving dynamic zswap shrinker protection scheme" from Nhat Pham.  Some
 tuning to improve zswap's dynamic shrinker.  Significant reductions in
 swapin and improvements in performance are shown.
 
 "mm: Fix several issues with unaccepted memory" from Kirill Shutemov.
 Improvements to the new unaccepted memory feature,
 
 "mm/mprotect: Fix dax puds" from Peter Xu.  Implements mprotect on DAX
 PUDs.  This was missing, although nobody seems to have notied yet.
 
 "Introduce a store type enum for the Maple tree" from Sidhartha Kumar.
 Cleanups and modest performance improvements for the maple tree library
 code.
 
 "memcg: further decouple v1 code from v2" from Shakeel Butt.  Move more
 cgroup v1 remnants away from the v2 memcg code.
 
 "memcg: initiate deprecation of v1 features" from Shakeel Butt.  Adds
 various warnings telling users that memcg v1 features are deprecated.
 
 "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li.
 Greatly improves the success rate of the mTHP swap allocation.
 
 "mm: introduce numa_memblks" from Mike Rapoport.  Moves various disparate
 per-arch implementations of numa_memblk code into generic code.
 
 "mm: batch free swaps for zap_pte_range()" from Barry Song.  Greatly
 improves the performance of munmap() of swap-filled ptes.
 
 "support large folio swap-out and swap-in for shmem" from Baolin Wang.
 With this series we no longer split shmem large folios into simgle-page
 folios when swapping out shmem.
 
 "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao.  Nice performance
 improvements and code reductions for gigantic folios.
 
 "support shmem mTHP collapse" from Baolin Wang.  Adds support for
 khugepaged's collapsing of shmem mTHP folios.
 
 "mm: Optimize mseal checks" from Pedro Falcato.  Fixes an mprotect()
 performance regression due to the addition of mseal().
 
 "Increase the number of bits available in page_type" from Matthew Wilcox.
 Increases the number of bits available in page_type!
 
 "Simplify the page flags a little" from Matthew Wilcox.  Many legacy page
 flags are now folio flags, so the page-based flags and their
 accessors/mutators can be removed.
 
 "mm: store zero pages to be swapped out in a bitmap" from Usama Arif.  An
 optimization which permits us to avoid writing/reading zero-filled zswap
 pages to backing store.
 
 "Avoid MAP_FIXED gap exposure" from Liam Howlett.  Fixes a race window
 which occurs when a MAP_FIXED operqtion is occurring during an unrelated
 vma tree walk.
 
 "mm: remove vma_merge()" from Lorenzo Stoakes.  Major rotorooting of the
 vma_merge() functionality, making ot cleaner, more testable and better
 tested.
 
 "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.  Minor
 fixups of DAMON selftests and kunit tests.
 
 "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.  Code
 cleanups and folio conversions.
 
 "Shmem mTHP controls and stats improvements" from Ryan Roberts.  Cleanups
 for shmem controls and stats.
 
 "mm: count the number of anonymous THPs per size" from Barry Song.  Expose
 additional anon THP stats to userspace for improved tuning.
 
 "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio
 conversions and removal of now-unused page-based APIs.
 
 "replace per-quota region priorities histogram buffer with per-context
 one" from SeongJae Park.  DAMON histogram rationalization.
 
 "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae
 Park.  DAMON documentation updates.
 
 "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve
 related doc and warn" from Jason Wang: fixes usage of page allocator
 __GFP_NOFAIL and GFP_ATOMIC flags.
 
 "mm: split underused THPs" from Yu Zhao.  Improve THP=always policy - this
 was overprovisioning THPs in sparsely accessed memory areas.
 
 "zram: introduce custom comp backends API" frm Sergey Senozhatsky.  Add
 support for zram run-time compression algorithm tuning.
 
 "mm: Care about shadow stack guard gap when getting an unmapped area" from
 Mark Brown.  Fix up the various arch_get_unmapped_area() implementations
 to better respect guard areas.
 
 "Improve mem_cgroup_iter()" from Kinsey Ho.  Improve the reliability of
 mem_cgroup_iter() and various code cleanups.
 
 "mm: Support huge pfnmaps" from Peter Xu.  Extends the usage of huge
 pfnmap support.
 
 "resource: Fix region_intersects() vs add_memory_driver_managed()" from
 Huang Ying.  Fix a bug in region_intersects() for systems with CXL memory.
 
 "mm: hwpoison: two more poison recovery" from Kefeng Wang.  Teaches a
 couple more code paths to correctly recover from the encountering of
 poisoned memry.
 
 "mm: enable large folios swap-in support" from Barry Song.  Support the
 swapin of mTHP memory into appropriately-sized folios, rather than into
 single-page folios.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA
 jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7
 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo=
 =s0T+
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Along with the usual shower of singleton patches, notable patch series
  in this pull request are:

   - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
     consistency to the APIs and behaviour of these two core allocation
     functions. This also simplifies/enables Rustification.

   - "Some cleanups for shmem" from Baolin Wang. No functional changes -
     mode code reuse, better function naming, logic simplifications.

   - "mm: some small page fault cleanups" from Josef Bacik. No
     functional changes - code cleanups only.

   - "Various memory tiering fixes" from Zi Yan. A small fix and a
     little cleanup.

   - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
     simplifications and .text shrinkage.

   - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
     Butt. This is a feature, it adds new feilds to /proc/vmstat such as

       $ grep kstack /proc/vmstat
       kstack_1k 3
       kstack_2k 188
       kstack_4k 11391
       kstack_8k 243
       kstack_16k 0

     which tells us that 11391 processes used 4k of stack while none at
     all used 16k. Useful for some system tuning things, but
     partivularly useful for "the dynamic kernel stack project".

   - "kmemleak: support for percpu memory leak detect" from Pavel
     Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.

   - "mm: memcg: page counters optimizations" from Roman Gushchin. "3
     independent small optimizations of page counters".

   - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
     David Hildenbrand. Improves PTE/PMD splitlock detection, makes
     powerpc/8xx work correctly by design rather than by accident.

   - "mm: remove arch_make_page_accessible()" from David Hildenbrand.
     Some folio conversions which make arch_make_page_accessible()
     unneeded.

   - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
     Finkel. Cleans up and fixes our handling of the resetting of the
     cgroup/process peak-memory-use detector.

   - "Make core VMA operations internal and testable" from Lorenzo
     Stoakes. Rationalizaion and encapsulation of the VMA manipulation
     APIs. With a view to better enable testing of the VMA functions,
     even from a userspace-only harness.

   - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
     issues in the zswap global shrinker, resulting in improved
     performance.

   - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
     in some missing info in /proc/zoneinfo.

   - "mm: replace follow_page() by folio_walk" from David Hildenbrand.
     Code cleanups and rationalizations (conversion to folio_walk())
     resulting in the removal of follow_page().

   - "improving dynamic zswap shrinker protection scheme" from Nhat
     Pham. Some tuning to improve zswap's dynamic shrinker. Significant
     reductions in swapin and improvements in performance are shown.

   - "mm: Fix several issues with unaccepted memory" from Kirill
     Shutemov. Improvements to the new unaccepted memory feature,

   - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
     DAX PUDs. This was missing, although nobody seems to have notied
     yet.

   - "Introduce a store type enum for the Maple tree" from Sidhartha
     Kumar. Cleanups and modest performance improvements for the maple
     tree library code.

   - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
     more cgroup v1 remnants away from the v2 memcg code.

   - "memcg: initiate deprecation of v1 features" from Shakeel Butt.
     Adds various warnings telling users that memcg v1 features are
     deprecated.

   - "mm: swap: mTHP swap allocator base on swap cluster order" from
     Chris Li. Greatly improves the success rate of the mTHP swap
     allocation.

   - "mm: introduce numa_memblks" from Mike Rapoport. Moves various
     disparate per-arch implementations of numa_memblk code into generic
     code.

   - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
     improves the performance of munmap() of swap-filled ptes.

   - "support large folio swap-out and swap-in for shmem" from Baolin
     Wang. With this series we no longer split shmem large folios into
     simgle-page folios when swapping out shmem.

   - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
     performance improvements and code reductions for gigantic folios.

   - "support shmem mTHP collapse" from Baolin Wang. Adds support for
     khugepaged's collapsing of shmem mTHP folios.

   - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
     performance regression due to the addition of mseal().

   - "Increase the number of bits available in page_type" from Matthew
     Wilcox. Increases the number of bits available in page_type!

   - "Simplify the page flags a little" from Matthew Wilcox. Many legacy
     page flags are now folio flags, so the page-based flags and their
     accessors/mutators can be removed.

   - "mm: store zero pages to be swapped out in a bitmap" from Usama
     Arif. An optimization which permits us to avoid writing/reading
     zero-filled zswap pages to backing store.

   - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
     window which occurs when a MAP_FIXED operqtion is occurring during
     an unrelated vma tree walk.

   - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
     the vma_merge() functionality, making ot cleaner, more testable and
     better tested.

   - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
     Minor fixups of DAMON selftests and kunit tests.

   - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
     Code cleanups and folio conversions.

   - "Shmem mTHP controls and stats improvements" from Ryan Roberts.
     Cleanups for shmem controls and stats.

   - "mm: count the number of anonymous THPs per size" from Barry Song.
     Expose additional anon THP stats to userspace for improved tuning.

   - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
     folio conversions and removal of now-unused page-based APIs.

   - "replace per-quota region priorities histogram buffer with
     per-context one" from SeongJae Park. DAMON histogram
     rationalization.

   - "Docs/damon: update GitHub repo URLs and maintainer-profile" from
     SeongJae Park. DAMON documentation updates.

   - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
     improve related doc and warn" from Jason Wang: fixes usage of page
     allocator __GFP_NOFAIL and GFP_ATOMIC flags.

   - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
     This was overprovisioning THPs in sparsely accessed memory areas.

   - "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
     Add support for zram run-time compression algorithm tuning.

   - "mm: Care about shadow stack guard gap when getting an unmapped
     area" from Mark Brown. Fix up the various arch_get_unmapped_area()
     implementations to better respect guard areas.

   - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
     of mem_cgroup_iter() and various code cleanups.

   - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
     pfnmap support.

   - "resource: Fix region_intersects() vs add_memory_driver_managed()"
     from Huang Ying. Fix a bug in region_intersects() for systems with
     CXL memory.

   - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
     a couple more code paths to correctly recover from the encountering
     of poisoned memry.

   - "mm: enable large folios swap-in support" from Barry Song. Support
     the swapin of mTHP memory into appropriately-sized folios, rather
     than into single-page folios"

* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
  zram: free secondary algorithms names
  uprobes: turn xol_area->pages[2] into xol_area->page
  uprobes: introduce the global struct vm_special_mapping xol_mapping
  Revert "uprobes: use vm_special_mapping close() functionality"
  mm: support large folios swap-in for sync io devices
  mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
  mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
  mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
  set_memory: add __must_check to generic stubs
  mm/vma: return the exact errno in vms_gather_munmap_vmas()
  memcg: cleanup with !CONFIG_MEMCG_V1
  mm/show_mem.c: report alloc tags in human readable units
  mm: support poison recovery from copy_present_page()
  mm: support poison recovery from do_cow_fault()
  resource, kunit: add test case for region_intersects()
  resource: make alloc_free_mem_region() works for iomem_resource
  mm: z3fold: deprecate CONFIG_Z3FOLD
  vfio/pci: implement huge_fault support
  mm/arm64: support large pfn mappings
  mm/x86: support large pfn mappings
  ...
2024-09-21 07:29:05 -07:00

2109 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/resource.c
*
* Copyright (C) 1999 Linus Torvalds
* Copyright (C) 1999 Martin Mares <mj@ucw.cz>
*
* Arbitrary resource management.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/pseudo_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/device.h>
#include <linux/pfn.h>
#include <linux/mm.h>
#include <linux/mount.h>
#include <linux/resource_ext.h>
#include <uapi/linux/magic.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <asm/io.h>
struct resource ioport_resource = {
.name = "PCI IO",
.start = 0,
.end = IO_SPACE_LIMIT,
.flags = IORESOURCE_IO,
};
EXPORT_SYMBOL(ioport_resource);
struct resource iomem_resource = {
.name = "PCI mem",
.start = 0,
.end = -1,
.flags = IORESOURCE_MEM,
};
EXPORT_SYMBOL(iomem_resource);
static DEFINE_RWLOCK(resource_lock);
static struct resource *next_resource(struct resource *p, bool skip_children)
{
if (!skip_children && p->child)
return p->child;
while (!p->sibling && p->parent)
p = p->parent;
return p->sibling;
}
#define for_each_resource(_root, _p, _skip_children) \
for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
#ifdef CONFIG_PROC_FS
enum { MAX_IORES_LEVEL = 5 };
static void *r_start(struct seq_file *m, loff_t *pos)
__acquires(resource_lock)
{
struct resource *root = pde_data(file_inode(m->file));
struct resource *p;
loff_t l = *pos;
read_lock(&resource_lock);
for_each_resource(root, p, false) {
if (l-- == 0)
break;
}
return p;
}
static void *r_next(struct seq_file *m, void *v, loff_t *pos)
{
struct resource *p = v;
(*pos)++;
return (void *)next_resource(p, false);
}
static void r_stop(struct seq_file *m, void *v)
__releases(resource_lock)
{
read_unlock(&resource_lock);
}
static int r_show(struct seq_file *m, void *v)
{
struct resource *root = pde_data(file_inode(m->file));
struct resource *r = v, *p;
unsigned long long start, end;
int width = root->end < 0x10000 ? 4 : 8;
int depth;
for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
if (p->parent == root)
break;
if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
start = r->start;
end = r->end;
} else {
start = end = 0;
}
seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
depth * 2, "",
width, start,
width, end,
r->name ? r->name : "<BAD>");
return 0;
}
static const struct seq_operations resource_op = {
.start = r_start,
.next = r_next,
.stop = r_stop,
.show = r_show,
};
static int __init ioresources_init(void)
{
proc_create_seq_data("ioports", 0, NULL, &resource_op,
&ioport_resource);
proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
return 0;
}
__initcall(ioresources_init);
#endif /* CONFIG_PROC_FS */
static void free_resource(struct resource *res)
{
/**
* If the resource was allocated using memblock early during boot
* we'll leak it here: we can only return full pages back to the
* buddy and trying to be smart and reusing them eventually in
* alloc_resource() overcomplicates resource handling.
*/
if (res && PageSlab(virt_to_head_page(res)))
kfree(res);
}
static struct resource *alloc_resource(gfp_t flags)
{
return kzalloc(sizeof(struct resource), flags);
}
/* Return the conflict entry if you can't request it */
static struct resource * __request_resource(struct resource *root, struct resource *new)
{
resource_size_t start = new->start;
resource_size_t end = new->end;
struct resource *tmp, **p;
if (end < start)
return root;
if (start < root->start)
return root;
if (end > root->end)
return root;
p = &root->child;
for (;;) {
tmp = *p;
if (!tmp || tmp->start > end) {
new->sibling = tmp;
*p = new;
new->parent = root;
return NULL;
}
p = &tmp->sibling;
if (tmp->end < start)
continue;
return tmp;
}
}
static int __release_resource(struct resource *old, bool release_child)
{
struct resource *tmp, **p, *chd;
p = &old->parent->child;
for (;;) {
tmp = *p;
if (!tmp)
break;
if (tmp == old) {
if (release_child || !(tmp->child)) {
*p = tmp->sibling;
} else {
for (chd = tmp->child;; chd = chd->sibling) {
chd->parent = tmp->parent;
if (!(chd->sibling))
break;
}
*p = tmp->child;
chd->sibling = tmp->sibling;
}
old->parent = NULL;
return 0;
}
p = &tmp->sibling;
}
return -EINVAL;
}
static void __release_child_resources(struct resource *r)
{
struct resource *tmp, *p;
resource_size_t size;
p = r->child;
r->child = NULL;
while (p) {
tmp = p;
p = p->sibling;
tmp->parent = NULL;
tmp->sibling = NULL;
__release_child_resources(tmp);
printk(KERN_DEBUG "release child resource %pR\n", tmp);
/* need to restore size, and keep flags */
size = resource_size(tmp);
tmp->start = 0;
tmp->end = size - 1;
}
}
void release_child_resources(struct resource *r)
{
write_lock(&resource_lock);
__release_child_resources(r);
write_unlock(&resource_lock);
}
/**
* request_resource_conflict - request and reserve an I/O or memory resource
* @root: root resource descriptor
* @new: resource descriptor desired by caller
*
* Returns 0 for success, conflict resource on error.
*/
struct resource *request_resource_conflict(struct resource *root, struct resource *new)
{
struct resource *conflict;
write_lock(&resource_lock);
conflict = __request_resource(root, new);
write_unlock(&resource_lock);
return conflict;
}
/**
* request_resource - request and reserve an I/O or memory resource
* @root: root resource descriptor
* @new: resource descriptor desired by caller
*
* Returns 0 for success, negative error code on error.
*/
int request_resource(struct resource *root, struct resource *new)
{
struct resource *conflict;
conflict = request_resource_conflict(root, new);
return conflict ? -EBUSY : 0;
}
EXPORT_SYMBOL(request_resource);
/**
* release_resource - release a previously reserved resource
* @old: resource pointer
*/
int release_resource(struct resource *old)
{
int retval;
write_lock(&resource_lock);
retval = __release_resource(old, true);
write_unlock(&resource_lock);
return retval;
}
EXPORT_SYMBOL(release_resource);
/**
* find_next_iomem_res - Finds the lowest iomem resource that covers part of
* [@start..@end].
*
* If a resource is found, returns 0 and @*res is overwritten with the part
* of the resource that's within [@start..@end]; if none is found, returns
* -ENODEV. Returns -EINVAL for invalid parameters.
*
* @start: start address of the resource searched for
* @end: end address of same resource
* @flags: flags which the resource must have
* @desc: descriptor the resource must have
* @res: return ptr, if resource found
*
* The caller must specify @start, @end, @flags, and @desc
* (which may be IORES_DESC_NONE).
*/
static int find_next_iomem_res(resource_size_t start, resource_size_t end,
unsigned long flags, unsigned long desc,
struct resource *res)
{
struct resource *p;
if (!res)
return -EINVAL;
if (start >= end)
return -EINVAL;
read_lock(&resource_lock);
for_each_resource(&iomem_resource, p, false) {
/* If we passed the resource we are looking for, stop */
if (p->start > end) {
p = NULL;
break;
}
/* Skip until we find a range that matches what we look for */
if (p->end < start)
continue;
if ((p->flags & flags) != flags)
continue;
if ((desc != IORES_DESC_NONE) && (desc != p->desc))
continue;
/* Found a match, break */
break;
}
if (p) {
/* copy data */
*res = (struct resource) {
.start = max(start, p->start),
.end = min(end, p->end),
.flags = p->flags,
.desc = p->desc,
.parent = p->parent,
};
}
read_unlock(&resource_lock);
return p ? 0 : -ENODEV;
}
static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
unsigned long flags, unsigned long desc,
void *arg,
int (*func)(struct resource *, void *))
{
struct resource res;
int ret = -EINVAL;
while (start < end &&
!find_next_iomem_res(start, end, flags, desc, &res)) {
ret = (*func)(&res, arg);
if (ret)
break;
start = res.end + 1;
}
return ret;
}
/**
* walk_iomem_res_desc - Walks through iomem resources and calls func()
* with matching resource ranges.
* *
* @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
* @flags: I/O resource flags
* @start: start addr
* @end: end addr
* @arg: function argument for the callback @func
* @func: callback function that is called for each qualifying resource area
*
* All the memory ranges which overlap start,end and also match flags and
* desc are valid candidates.
*
* NOTE: For a new descriptor search, define a new IORES_DESC in
* <linux/ioport.h> and set it in 'desc' of a target resource entry.
*/
int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
u64 end, void *arg, int (*func)(struct resource *, void *))
{
return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
}
EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
/*
* This function calls the @func callback against all memory ranges of type
* System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
* Now, this function is only for System RAM, it deals with full ranges and
* not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
* ranges.
*/
int walk_system_ram_res(u64 start, u64 end, void *arg,
int (*func)(struct resource *, void *))
{
unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
func);
}
/*
* This function, being a variant of walk_system_ram_res(), calls the @func
* callback against all memory ranges of type System RAM which are marked as
* IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
* higher to lower.
*/
int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
int (*func)(struct resource *, void *))
{
struct resource res, *rams;
int rams_size = 16, i;
unsigned long flags;
int ret = -1;
/* create a list */
rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
if (!rams)
return ret;
flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
i = 0;
while ((start < end) &&
(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
if (i >= rams_size) {
/* re-alloc */
struct resource *rams_new;
rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
GFP_KERNEL);
if (!rams_new)
goto out;
rams = rams_new;
rams_size += 16;
}
rams[i].start = res.start;
rams[i++].end = res.end;
start = res.end + 1;
}
/* go reverse */
for (i--; i >= 0; i--) {
ret = (*func)(&rams[i], arg);
if (ret)
break;
}
out:
kvfree(rams);
return ret;
}
/*
* This function calls the @func callback against all memory ranges, which
* are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
*/
int walk_mem_res(u64 start, u64 end, void *arg,
int (*func)(struct resource *, void *))
{
unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
func);
}
/*
* This function calls the @func callback against all memory ranges of type
* System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
* It is to be used only for System RAM.
*/
int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
void *arg, int (*func)(unsigned long, unsigned long, void *))
{
resource_size_t start, end;
unsigned long flags;
struct resource res;
unsigned long pfn, end_pfn;
int ret = -EINVAL;
start = (u64) start_pfn << PAGE_SHIFT;
end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
while (start < end &&
!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
pfn = PFN_UP(res.start);
end_pfn = PFN_DOWN(res.end + 1);
if (end_pfn > pfn)
ret = (*func)(pfn, end_pfn - pfn, arg);
if (ret)
break;
start = res.end + 1;
}
return ret;
}
static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
{
return 1;
}
/*
* This generic page_is_ram() returns true if specified address is
* registered as System RAM in iomem_resource list.
*/
int __weak page_is_ram(unsigned long pfn)
{
return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
}
EXPORT_SYMBOL_GPL(page_is_ram);
static int __region_intersects(struct resource *parent, resource_size_t start,
size_t size, unsigned long flags,
unsigned long desc)
{
resource_size_t ostart, oend;
int type = 0; int other = 0;
struct resource *p, *dp;
bool is_type, covered;
struct resource res;
res.start = start;
res.end = start + size - 1;
for (p = parent->child; p ; p = p->sibling) {
if (!resource_overlaps(p, &res))
continue;
is_type = (p->flags & flags) == flags &&
(desc == IORES_DESC_NONE || desc == p->desc);
if (is_type) {
type++;
continue;
}
/*
* Continue to search in descendant resources as if the
* matched descendant resources cover some ranges of 'p'.
*
* |------------- "CXL Window 0" ------------|
* |-- "System RAM" --|
*
* will behave similar as the following fake resource
* tree when searching "System RAM".
*
* |-- "System RAM" --||-- "CXL Window 0a" --|
*/
covered = false;
ostart = max(res.start, p->start);
oend = min(res.end, p->end);
for_each_resource(p, dp, false) {
if (!resource_overlaps(dp, &res))
continue;
is_type = (dp->flags & flags) == flags &&
(desc == IORES_DESC_NONE || desc == dp->desc);
if (is_type) {
type++;
/*
* Range from 'ostart' to 'dp->start'
* isn't covered by matched resource.
*/
if (dp->start > ostart)
break;
if (dp->end >= oend) {
covered = true;
break;
}
/* Remove covered range */
ostart = max(ostart, dp->end + 1);
}
}
if (!covered)
other++;
}
if (type == 0)
return REGION_DISJOINT;
if (other == 0)
return REGION_INTERSECTS;
return REGION_MIXED;
}
/**
* region_intersects() - determine intersection of region with known resources
* @start: region start address
* @size: size of region
* @flags: flags of resource (in iomem_resource)
* @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
*
* Check if the specified region partially overlaps or fully eclipses a
* resource identified by @flags and @desc (optional with IORES_DESC_NONE).
* Return REGION_DISJOINT if the region does not overlap @flags/@desc,
* return REGION_MIXED if the region overlaps @flags/@desc and another
* resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
* and no other defined resource. Note that REGION_INTERSECTS is also
* returned in the case when the specified region overlaps RAM and undefined
* memory holes.
*
* region_intersect() is used by memory remapping functions to ensure
* the user is not remapping RAM and is a vast speed up over walking
* through the resource table page by page.
*/
int region_intersects(resource_size_t start, size_t size, unsigned long flags,
unsigned long desc)
{
int ret;
read_lock(&resource_lock);
ret = __region_intersects(&iomem_resource, start, size, flags, desc);
read_unlock(&resource_lock);
return ret;
}
EXPORT_SYMBOL_GPL(region_intersects);
void __weak arch_remove_reservations(struct resource *avail)
{
}
static void resource_clip(struct resource *res, resource_size_t min,
resource_size_t max)
{
if (res->start < min)
res->start = min;
if (res->end > max)
res->end = max;
}
/*
* Find empty space in the resource tree with the given range and
* alignment constraints
*/
static int __find_resource_space(struct resource *root, struct resource *old,
struct resource *new, resource_size_t size,
struct resource_constraint *constraint)
{
struct resource *this = root->child;
struct resource tmp = *new, avail, alloc;
resource_alignf alignf = constraint->alignf;
tmp.start = root->start;
/*
* Skip past an allocated resource that starts at 0, since the assignment
* of this->start - 1 to tmp->end below would cause an underflow.
*/
if (this && this->start == root->start) {
tmp.start = (this == old) ? old->start : this->end + 1;
this = this->sibling;
}
for(;;) {
if (this)
tmp.end = (this == old) ? this->end : this->start - 1;
else
tmp.end = root->end;
if (tmp.end < tmp.start)
goto next;
resource_clip(&tmp, constraint->min, constraint->max);
arch_remove_reservations(&tmp);
/* Check for overflow after ALIGN() */
avail.start = ALIGN(tmp.start, constraint->align);
avail.end = tmp.end;
avail.flags = new->flags & ~IORESOURCE_UNSET;
if (avail.start >= tmp.start) {
alloc.flags = avail.flags;
if (alignf) {
alloc.start = alignf(constraint->alignf_data,
&avail, size, constraint->align);
} else {
alloc.start = avail.start;
}
alloc.end = alloc.start + size - 1;
if (alloc.start <= alloc.end &&
resource_contains(&avail, &alloc)) {
new->start = alloc.start;
new->end = alloc.end;
return 0;
}
}
next: if (!this || this->end == root->end)
break;
if (this != old)
tmp.start = this->end + 1;
this = this->sibling;
}
return -EBUSY;
}
/**
* find_resource_space - Find empty space in the resource tree
* @root: Root resource descriptor
* @new: Resource descriptor awaiting an empty resource space
* @size: The minimum size of the empty space
* @constraint: The range and alignment constraints to be met
*
* Finds an empty space under @root in the resource tree satisfying range and
* alignment @constraints.
*
* Return:
* * %0 - if successful, @new members start, end, and flags are altered.
* * %-EBUSY - if no empty space was found.
*/
int find_resource_space(struct resource *root, struct resource *new,
resource_size_t size,
struct resource_constraint *constraint)
{
return __find_resource_space(root, NULL, new, size, constraint);
}
EXPORT_SYMBOL_GPL(find_resource_space);
/**
* reallocate_resource - allocate a slot in the resource tree given range & alignment.
* The resource will be relocated if the new size cannot be reallocated in the
* current location.
*
* @root: root resource descriptor
* @old: resource descriptor desired by caller
* @newsize: new size of the resource descriptor
* @constraint: the size and alignment constraints to be met.
*/
static int reallocate_resource(struct resource *root, struct resource *old,
resource_size_t newsize,
struct resource_constraint *constraint)
{
int err=0;
struct resource new = *old;
struct resource *conflict;
write_lock(&resource_lock);
if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
goto out;
if (resource_contains(&new, old)) {
old->start = new.start;
old->end = new.end;
goto out;
}
if (old->child) {
err = -EBUSY;
goto out;
}
if (resource_contains(old, &new)) {
old->start = new.start;
old->end = new.end;
} else {
__release_resource(old, true);
*old = new;
conflict = __request_resource(root, old);
BUG_ON(conflict);
}
out:
write_unlock(&resource_lock);
return err;
}
/**
* allocate_resource - allocate empty slot in the resource tree given range & alignment.
* The resource will be reallocated with a new size if it was already allocated
* @root: root resource descriptor
* @new: resource descriptor desired by caller
* @size: requested resource region size
* @min: minimum boundary to allocate
* @max: maximum boundary to allocate
* @align: alignment requested, in bytes
* @alignf: alignment function, optional, called if not NULL
* @alignf_data: arbitrary data to pass to the @alignf function
*/
int allocate_resource(struct resource *root, struct resource *new,
resource_size_t size, resource_size_t min,
resource_size_t max, resource_size_t align,
resource_alignf alignf,
void *alignf_data)
{
int err;
struct resource_constraint constraint;
constraint.min = min;
constraint.max = max;
constraint.align = align;
constraint.alignf = alignf;
constraint.alignf_data = alignf_data;
if ( new->parent ) {
/* resource is already allocated, try reallocating with
the new constraints */
return reallocate_resource(root, new, size, &constraint);
}
write_lock(&resource_lock);
err = find_resource_space(root, new, size, &constraint);
if (err >= 0 && __request_resource(root, new))
err = -EBUSY;
write_unlock(&resource_lock);
return err;
}
EXPORT_SYMBOL(allocate_resource);
/**
* lookup_resource - find an existing resource by a resource start address
* @root: root resource descriptor
* @start: resource start address
*
* Returns a pointer to the resource if found, NULL otherwise
*/
struct resource *lookup_resource(struct resource *root, resource_size_t start)
{
struct resource *res;
read_lock(&resource_lock);
for (res = root->child; res; res = res->sibling) {
if (res->start == start)
break;
}
read_unlock(&resource_lock);
return res;
}
/*
* Insert a resource into the resource tree. If successful, return NULL,
* otherwise return the conflicting resource (compare to __request_resource())
*/
static struct resource * __insert_resource(struct resource *parent, struct resource *new)
{
struct resource *first, *next;
for (;; parent = first) {
first = __request_resource(parent, new);
if (!first)
return first;
if (first == parent)
return first;
if (WARN_ON(first == new)) /* duplicated insertion */
return first;
if ((first->start > new->start) || (first->end < new->end))
break;
if ((first->start == new->start) && (first->end == new->end))
break;
}
for (next = first; ; next = next->sibling) {
/* Partial overlap? Bad, and unfixable */
if (next->start < new->start || next->end > new->end)
return next;
if (!next->sibling)
break;
if (next->sibling->start > new->end)
break;
}
new->parent = parent;
new->sibling = next->sibling;
new->child = first;
next->sibling = NULL;
for (next = first; next; next = next->sibling)
next->parent = new;
if (parent->child == first) {
parent->child = new;
} else {
next = parent->child;
while (next->sibling != first)
next = next->sibling;
next->sibling = new;
}
return NULL;
}
/**
* insert_resource_conflict - Inserts resource in the resource tree
* @parent: parent of the new resource
* @new: new resource to insert
*
* Returns 0 on success, conflict resource if the resource can't be inserted.
*
* This function is equivalent to request_resource_conflict when no conflict
* happens. If a conflict happens, and the conflicting resources
* entirely fit within the range of the new resource, then the new
* resource is inserted and the conflicting resources become children of
* the new resource.
*
* This function is intended for producers of resources, such as FW modules
* and bus drivers.
*/
struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
{
struct resource *conflict;
write_lock(&resource_lock);
conflict = __insert_resource(parent, new);
write_unlock(&resource_lock);
return conflict;
}
/**
* insert_resource - Inserts a resource in the resource tree
* @parent: parent of the new resource
* @new: new resource to insert
*
* Returns 0 on success, -EBUSY if the resource can't be inserted.
*
* This function is intended for producers of resources, such as FW modules
* and bus drivers.
*/
int insert_resource(struct resource *parent, struct resource *new)
{
struct resource *conflict;
conflict = insert_resource_conflict(parent, new);
return conflict ? -EBUSY : 0;
}
EXPORT_SYMBOL_GPL(insert_resource);
/**
* insert_resource_expand_to_fit - Insert a resource into the resource tree
* @root: root resource descriptor
* @new: new resource to insert
*
* Insert a resource into the resource tree, possibly expanding it in order
* to make it encompass any conflicting resources.
*/
void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
{
if (new->parent)
return;
write_lock(&resource_lock);
for (;;) {
struct resource *conflict;
conflict = __insert_resource(root, new);
if (!conflict)
break;
if (conflict == root)
break;
/* Ok, expand resource to cover the conflict, then try again .. */
if (conflict->start < new->start)
new->start = conflict->start;
if (conflict->end > new->end)
new->end = conflict->end;
pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
}
write_unlock(&resource_lock);
}
/*
* Not for general consumption, only early boot memory map parsing, PCI
* resource discovery, and late discovery of CXL resources are expected
* to use this interface. The former are built-in and only the latter,
* CXL, is a module.
*/
EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
/**
* remove_resource - Remove a resource in the resource tree
* @old: resource to remove
*
* Returns 0 on success, -EINVAL if the resource is not valid.
*
* This function removes a resource previously inserted by insert_resource()
* or insert_resource_conflict(), and moves the children (if any) up to
* where they were before. insert_resource() and insert_resource_conflict()
* insert a new resource, and move any conflicting resources down to the
* children of the new resource.
*
* insert_resource(), insert_resource_conflict() and remove_resource() are
* intended for producers of resources, such as FW modules and bus drivers.
*/
int remove_resource(struct resource *old)
{
int retval;
write_lock(&resource_lock);
retval = __release_resource(old, false);
write_unlock(&resource_lock);
return retval;
}
EXPORT_SYMBOL_GPL(remove_resource);
static int __adjust_resource(struct resource *res, resource_size_t start,
resource_size_t size)
{
struct resource *tmp, *parent = res->parent;
resource_size_t end = start + size - 1;
int result = -EBUSY;
if (!parent)
goto skip;
if ((start < parent->start) || (end > parent->end))
goto out;
if (res->sibling && (res->sibling->start <= end))
goto out;
tmp = parent->child;
if (tmp != res) {
while (tmp->sibling != res)
tmp = tmp->sibling;
if (start <= tmp->end)
goto out;
}
skip:
for (tmp = res->child; tmp; tmp = tmp->sibling)
if ((tmp->start < start) || (tmp->end > end))
goto out;
res->start = start;
res->end = end;
result = 0;
out:
return result;
}
/**
* adjust_resource - modify a resource's start and size
* @res: resource to modify
* @start: new start value
* @size: new size
*
* Given an existing resource, change its start and size to match the
* arguments. Returns 0 on success, -EBUSY if it can't fit.
* Existing children of the resource are assumed to be immutable.
*/
int adjust_resource(struct resource *res, resource_size_t start,
resource_size_t size)
{
int result;
write_lock(&resource_lock);
result = __adjust_resource(res, start, size);
write_unlock(&resource_lock);
return result;
}
EXPORT_SYMBOL(adjust_resource);
static void __init
__reserve_region_with_split(struct resource *root, resource_size_t start,
resource_size_t end, const char *name)
{
struct resource *parent = root;
struct resource *conflict;
struct resource *res = alloc_resource(GFP_ATOMIC);
struct resource *next_res = NULL;
int type = resource_type(root);
if (!res)
return;
res->name = name;
res->start = start;
res->end = end;
res->flags = type | IORESOURCE_BUSY;
res->desc = IORES_DESC_NONE;
while (1) {
conflict = __request_resource(parent, res);
if (!conflict) {
if (!next_res)
break;
res = next_res;
next_res = NULL;
continue;
}
/* conflict covered whole area */
if (conflict->start <= res->start &&
conflict->end >= res->end) {
free_resource(res);
WARN_ON(next_res);
break;
}
/* failed, split and try again */
if (conflict->start > res->start) {
end = res->end;
res->end = conflict->start - 1;
if (conflict->end < end) {
next_res = alloc_resource(GFP_ATOMIC);
if (!next_res) {
free_resource(res);
break;
}
next_res->name = name;
next_res->start = conflict->end + 1;
next_res->end = end;
next_res->flags = type | IORESOURCE_BUSY;
next_res->desc = IORES_DESC_NONE;
}
} else {
res->start = conflict->end + 1;
}
}
}
void __init
reserve_region_with_split(struct resource *root, resource_size_t start,
resource_size_t end, const char *name)
{
int abort = 0;
write_lock(&resource_lock);
if (root->start > start || root->end < end) {
pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
(unsigned long long)start, (unsigned long long)end,
root);
if (start > root->end || end < root->start)
abort = 1;
else {
if (end > root->end)
end = root->end;
if (start < root->start)
start = root->start;
pr_err("fixing request to [0x%llx-0x%llx]\n",
(unsigned long long)start,
(unsigned long long)end);
}
dump_stack();
}
if (!abort)
__reserve_region_with_split(root, start, end, name);
write_unlock(&resource_lock);
}
/**
* resource_alignment - calculate resource's alignment
* @res: resource pointer
*
* Returns alignment on success, 0 (invalid alignment) on failure.
*/
resource_size_t resource_alignment(struct resource *res)
{
switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
case IORESOURCE_SIZEALIGN:
return resource_size(res);
case IORESOURCE_STARTALIGN:
return res->start;
default:
return 0;
}
}
/*
* This is compatibility stuff for IO resources.
*
* Note how this, unlike the above, knows about
* the IO flag meanings (busy etc).
*
* request_region creates a new busy region.
*
* release_region releases a matching busy region.
*/
static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
static struct inode *iomem_inode;
#ifdef CONFIG_IO_STRICT_DEVMEM
static void revoke_iomem(struct resource *res)
{
/* pairs with smp_store_release() in iomem_init_inode() */
struct inode *inode = smp_load_acquire(&iomem_inode);
/*
* Check that the initialization has completed. Losing the race
* is ok because it means drivers are claiming resources before
* the fs_initcall level of init and prevent iomem_get_mapping users
* from establishing mappings.
*/
if (!inode)
return;
/*
* The expectation is that the driver has successfully marked
* the resource busy by this point, so devmem_is_allowed()
* should start returning false, however for performance this
* does not iterate the entire resource range.
*/
if (devmem_is_allowed(PHYS_PFN(res->start)) &&
devmem_is_allowed(PHYS_PFN(res->end))) {
/*
* *cringe* iomem=relaxed says "go ahead, what's the
* worst that can happen?"
*/
return;
}
unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
}
#else
static void revoke_iomem(struct resource *res) {}
#endif
struct address_space *iomem_get_mapping(void)
{
/*
* This function is only called from file open paths, hence guaranteed
* that fs_initcalls have completed and no need to check for NULL. But
* since revoke_iomem can be called before the initcall we still need
* the barrier to appease checkers.
*/
return smp_load_acquire(&iomem_inode)->i_mapping;
}
static int __request_region_locked(struct resource *res, struct resource *parent,
resource_size_t start, resource_size_t n,
const char *name, int flags)
{
DECLARE_WAITQUEUE(wait, current);
res->name = name;
res->start = start;
res->end = start + n - 1;
for (;;) {
struct resource *conflict;
res->flags = resource_type(parent) | resource_ext_type(parent);
res->flags |= IORESOURCE_BUSY | flags;
res->desc = parent->desc;
conflict = __request_resource(parent, res);
if (!conflict)
break;
/*
* mm/hmm.c reserves physical addresses which then
* become unavailable to other users. Conflicts are
* not expected. Warn to aid debugging if encountered.
*/
if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
pr_warn("Unaddressable device %s %pR conflicts with %pR",
conflict->name, conflict, res);
}
if (conflict != parent) {
if (!(conflict->flags & IORESOURCE_BUSY)) {
parent = conflict;
continue;
}
}
if (conflict->flags & flags & IORESOURCE_MUXED) {
add_wait_queue(&muxed_resource_wait, &wait);
write_unlock(&resource_lock);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
remove_wait_queue(&muxed_resource_wait, &wait);
write_lock(&resource_lock);
continue;
}
/* Uhhuh, that didn't work out.. */
return -EBUSY;
}
return 0;
}
/**
* __request_region - create a new busy resource region
* @parent: parent resource descriptor
* @start: resource start address
* @n: resource region size
* @name: reserving caller's ID string
* @flags: IO resource flags
*/
struct resource *__request_region(struct resource *parent,
resource_size_t start, resource_size_t n,
const char *name, int flags)
{
struct resource *res = alloc_resource(GFP_KERNEL);
int ret;
if (!res)
return NULL;
write_lock(&resource_lock);
ret = __request_region_locked(res, parent, start, n, name, flags);
write_unlock(&resource_lock);
if (ret) {
free_resource(res);
return NULL;
}
if (parent == &iomem_resource)
revoke_iomem(res);
return res;
}
EXPORT_SYMBOL(__request_region);
/**
* __release_region - release a previously reserved resource region
* @parent: parent resource descriptor
* @start: resource start address
* @n: resource region size
*
* The described resource region must match a currently busy region.
*/
void __release_region(struct resource *parent, resource_size_t start,
resource_size_t n)
{
struct resource **p;
resource_size_t end;
p = &parent->child;
end = start + n - 1;
write_lock(&resource_lock);
for (;;) {
struct resource *res = *p;
if (!res)
break;
if (res->start <= start && res->end >= end) {
if (!(res->flags & IORESOURCE_BUSY)) {
p = &res->child;
continue;
}
if (res->start != start || res->end != end)
break;
*p = res->sibling;
write_unlock(&resource_lock);
if (res->flags & IORESOURCE_MUXED)
wake_up(&muxed_resource_wait);
free_resource(res);
return;
}
p = &res->sibling;
}
write_unlock(&resource_lock);
pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
}
EXPORT_SYMBOL(__release_region);
#ifdef CONFIG_MEMORY_HOTREMOVE
/**
* release_mem_region_adjustable - release a previously reserved memory region
* @start: resource start address
* @size: resource region size
*
* This interface is intended for memory hot-delete. The requested region
* is released from a currently busy memory resource. The requested region
* must either match exactly or fit into a single busy resource entry. In
* the latter case, the remaining resource is adjusted accordingly.
* Existing children of the busy memory resource must be immutable in the
* request.
*
* Note:
* - Additional release conditions, such as overlapping region, can be
* supported after they are confirmed as valid cases.
* - When a busy memory resource gets split into two entries, the code
* assumes that all children remain in the lower address entry for
* simplicity. Enhance this logic when necessary.
*/
void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
{
struct resource *parent = &iomem_resource;
struct resource *new_res = NULL;
bool alloc_nofail = false;
struct resource **p;
struct resource *res;
resource_size_t end;
end = start + size - 1;
if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
return;
/*
* We free up quite a lot of memory on memory hotunplug (esp., memap),
* just before releasing the region. This is highly unlikely to
* fail - let's play save and make it never fail as the caller cannot
* perform any error handling (e.g., trying to re-add memory will fail
* similarly).
*/
retry:
new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
p = &parent->child;
write_lock(&resource_lock);
while ((res = *p)) {
if (res->start >= end)
break;
/* look for the next resource if it does not fit into */
if (res->start > start || res->end < end) {
p = &res->sibling;
continue;
}
if (!(res->flags & IORESOURCE_MEM))
break;
if (!(res->flags & IORESOURCE_BUSY)) {
p = &res->child;
continue;
}
/* found the target resource; let's adjust accordingly */
if (res->start == start && res->end == end) {
/* free the whole entry */
*p = res->sibling;
free_resource(res);
} else if (res->start == start && res->end != end) {
/* adjust the start */
WARN_ON_ONCE(__adjust_resource(res, end + 1,
res->end - end));
} else if (res->start != start && res->end == end) {
/* adjust the end */
WARN_ON_ONCE(__adjust_resource(res, res->start,
start - res->start));
} else {
/* split into two entries - we need a new resource */
if (!new_res) {
new_res = alloc_resource(GFP_ATOMIC);
if (!new_res) {
alloc_nofail = true;
write_unlock(&resource_lock);
goto retry;
}
}
new_res->name = res->name;
new_res->start = end + 1;
new_res->end = res->end;
new_res->flags = res->flags;
new_res->desc = res->desc;
new_res->parent = res->parent;
new_res->sibling = res->sibling;
new_res->child = NULL;
if (WARN_ON_ONCE(__adjust_resource(res, res->start,
start - res->start)))
break;
res->sibling = new_res;
new_res = NULL;
}
break;
}
write_unlock(&resource_lock);
free_resource(new_res);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#ifdef CONFIG_MEMORY_HOTPLUG
static bool system_ram_resources_mergeable(struct resource *r1,
struct resource *r2)
{
/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
return r1->flags == r2->flags && r1->end + 1 == r2->start &&
r1->name == r2->name && r1->desc == r2->desc &&
!r1->child && !r2->child;
}
/**
* merge_system_ram_resource - mark the System RAM resource mergeable and try to
* merge it with adjacent, mergeable resources
* @res: resource descriptor
*
* This interface is intended for memory hotplug, whereby lots of contiguous
* system ram resources are added (e.g., via add_memory*()) by a driver, and
* the actual resource boundaries are not of interest (e.g., it might be
* relevant for DIMMs). Only resources that are marked mergeable, that have the
* same parent, and that don't have any children are considered. All mergeable
* resources must be immutable during the request.
*
* Note:
* - The caller has to make sure that no pointers to resources that are
* marked mergeable are used anymore after this call - the resource might
* be freed and the pointer might be stale!
* - release_mem_region_adjustable() will split on demand on memory hotunplug
*/
void merge_system_ram_resource(struct resource *res)
{
const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
struct resource *cur;
if (WARN_ON_ONCE((res->flags & flags) != flags))
return;
write_lock(&resource_lock);
res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
/* Try to merge with next item in the list. */
cur = res->sibling;
if (cur && system_ram_resources_mergeable(res, cur)) {
res->end = cur->end;
res->sibling = cur->sibling;
free_resource(cur);
}
/* Try to merge with previous item in the list. */
cur = res->parent->child;
while (cur && cur->sibling != res)
cur = cur->sibling;
if (cur && system_ram_resources_mergeable(cur, res)) {
cur->end = res->end;
cur->sibling = res->sibling;
free_resource(res);
}
write_unlock(&resource_lock);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
/*
* Managed region resource
*/
static void devm_resource_release(struct device *dev, void *ptr)
{
struct resource **r = ptr;
release_resource(*r);
}
/**
* devm_request_resource() - request and reserve an I/O or memory resource
* @dev: device for which to request the resource
* @root: root of the resource tree from which to request the resource
* @new: descriptor of the resource to request
*
* This is a device-managed version of request_resource(). There is usually
* no need to release resources requested by this function explicitly since
* that will be taken care of when the device is unbound from its driver.
* If for some reason the resource needs to be released explicitly, because
* of ordering issues for example, drivers must call devm_release_resource()
* rather than the regular release_resource().
*
* When a conflict is detected between any existing resources and the newly
* requested resource, an error message will be printed.
*
* Returns 0 on success or a negative error code on failure.
*/
int devm_request_resource(struct device *dev, struct resource *root,
struct resource *new)
{
struct resource *conflict, **ptr;
ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return -ENOMEM;
*ptr = new;
conflict = request_resource_conflict(root, new);
if (conflict) {
dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
new, conflict->name, conflict);
devres_free(ptr);
return -EBUSY;
}
devres_add(dev, ptr);
return 0;
}
EXPORT_SYMBOL(devm_request_resource);
static int devm_resource_match(struct device *dev, void *res, void *data)
{
struct resource **ptr = res;
return *ptr == data;
}
/**
* devm_release_resource() - release a previously requested resource
* @dev: device for which to release the resource
* @new: descriptor of the resource to release
*
* Releases a resource previously requested using devm_request_resource().
*/
void devm_release_resource(struct device *dev, struct resource *new)
{
WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
new));
}
EXPORT_SYMBOL(devm_release_resource);
struct region_devres {
struct resource *parent;
resource_size_t start;
resource_size_t n;
};
static void devm_region_release(struct device *dev, void *res)
{
struct region_devres *this = res;
__release_region(this->parent, this->start, this->n);
}
static int devm_region_match(struct device *dev, void *res, void *match_data)
{
struct region_devres *this = res, *match = match_data;
return this->parent == match->parent &&
this->start == match->start && this->n == match->n;
}
struct resource *
__devm_request_region(struct device *dev, struct resource *parent,
resource_size_t start, resource_size_t n, const char *name)
{
struct region_devres *dr = NULL;
struct resource *res;
dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
GFP_KERNEL);
if (!dr)
return NULL;
dr->parent = parent;
dr->start = start;
dr->n = n;
res = __request_region(parent, start, n, name, 0);
if (res)
devres_add(dev, dr);
else
devres_free(dr);
return res;
}
EXPORT_SYMBOL(__devm_request_region);
void __devm_release_region(struct device *dev, struct resource *parent,
resource_size_t start, resource_size_t n)
{
struct region_devres match_data = { parent, start, n };
__release_region(parent, start, n);
WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
&match_data));
}
EXPORT_SYMBOL(__devm_release_region);
/*
* Reserve I/O ports or memory based on "reserve=" kernel parameter.
*/
#define MAXRESERVE 4
static int __init reserve_setup(char *str)
{
static int reserved;
static struct resource reserve[MAXRESERVE];
for (;;) {
unsigned int io_start, io_num;
int x = reserved;
struct resource *parent;
if (get_option(&str, &io_start) != 2)
break;
if (get_option(&str, &io_num) == 0)
break;
if (x < MAXRESERVE) {
struct resource *res = reserve + x;
/*
* If the region starts below 0x10000, we assume it's
* I/O port space; otherwise assume it's memory.
*/
if (io_start < 0x10000) {
res->flags = IORESOURCE_IO;
parent = &ioport_resource;
} else {
res->flags = IORESOURCE_MEM;
parent = &iomem_resource;
}
res->name = "reserved";
res->start = io_start;
res->end = io_start + io_num - 1;
res->flags |= IORESOURCE_BUSY;
res->desc = IORES_DESC_NONE;
res->child = NULL;
if (request_resource(parent, res) == 0)
reserved = x+1;
}
}
return 1;
}
__setup("reserve=", reserve_setup);
/*
* Check if the requested addr and size spans more than any slot in the
* iomem resource tree.
*/
int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
{
resource_size_t end = addr + size - 1;
struct resource *p;
int err = 0;
read_lock(&resource_lock);
for_each_resource(&iomem_resource, p, false) {
/*
* We can probably skip the resources without
* IORESOURCE_IO attribute?
*/
if (p->start > end)
continue;
if (p->end < addr)
continue;
if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
PFN_DOWN(p->end) >= PFN_DOWN(end))
continue;
/*
* if a resource is "BUSY", it's not a hardware resource
* but a driver mapping of such a resource; we don't want
* to warn for those; some drivers legitimately map only
* partial hardware resources. (example: vesafb)
*/
if (p->flags & IORESOURCE_BUSY)
continue;
pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
&addr, &end, p->name, p);
err = -1;
break;
}
read_unlock(&resource_lock);
return err;
}
#ifdef CONFIG_STRICT_DEVMEM
static int strict_iomem_checks = 1;
#else
static int strict_iomem_checks;
#endif
/*
* Check if an address is exclusive to the kernel and must not be mapped to
* user space, for example, via /dev/mem.
*
* Returns true if exclusive to the kernel, otherwise returns false.
*/
bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
{
const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
IORESOURCE_EXCLUSIVE;
bool skip_children = false, err = false;
struct resource *p;
read_lock(&resource_lock);
for_each_resource(root, p, skip_children) {
if (p->start >= addr + size)
break;
if (p->end < addr) {
skip_children = true;
continue;
}
skip_children = false;
/*
* IORESOURCE_SYSTEM_RAM resources are exclusive if
* IORESOURCE_EXCLUSIVE is set, even if they
* are not busy and even if "iomem=relaxed" is set. The
* responsible driver dynamically adds/removes system RAM within
* such an area and uncontrolled access is dangerous.
*/
if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
err = true;
break;
}
/*
* A resource is exclusive if IORESOURCE_EXCLUSIVE is set
* or CONFIG_IO_STRICT_DEVMEM is enabled and the
* resource is busy.
*/
if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
continue;
if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
|| p->flags & IORESOURCE_EXCLUSIVE) {
err = true;
break;
}
}
read_unlock(&resource_lock);
return err;
}
bool iomem_is_exclusive(u64 addr)
{
return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
PAGE_SIZE);
}
struct resource_entry *resource_list_create_entry(struct resource *res,
size_t extra_size)
{
struct resource_entry *entry;
entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
if (entry) {
INIT_LIST_HEAD(&entry->node);
entry->res = res ? res : &entry->__res;
}
return entry;
}
EXPORT_SYMBOL(resource_list_create_entry);
void resource_list_free(struct list_head *head)
{
struct resource_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, head, node)
resource_list_destroy_entry(entry);
}
EXPORT_SYMBOL(resource_list_free);
#ifdef CONFIG_GET_FREE_REGION
#define GFR_DESCENDING (1UL << 0)
#define GFR_REQUEST_REGION (1UL << 1)
#ifdef PA_SECTION_SHIFT
#define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
#else
#define GFR_DEFAULT_ALIGN PAGE_SIZE
#endif
static resource_size_t gfr_start(struct resource *base, resource_size_t size,
resource_size_t align, unsigned long flags)
{
if (flags & GFR_DESCENDING) {
resource_size_t end;
end = min_t(resource_size_t, base->end, PHYSMEM_END);
return end - size + 1;
}
return ALIGN(max(base->start, align), align);
}
static bool gfr_continue(struct resource *base, resource_size_t addr,
resource_size_t size, unsigned long flags)
{
if (flags & GFR_DESCENDING)
return addr > size && addr >= base->start;
/*
* In the ascend case be careful that the last increment by
* @size did not wrap 0.
*/
return addr > addr - size &&
addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
}
static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
unsigned long flags)
{
if (flags & GFR_DESCENDING)
return addr - size;
return addr + size;
}
static void remove_free_mem_region(void *_res)
{
struct resource *res = _res;
if (res->parent)
remove_resource(res);
free_resource(res);
}
static struct resource *
get_free_mem_region(struct device *dev, struct resource *base,
resource_size_t size, const unsigned long align,
const char *name, const unsigned long desc,
const unsigned long flags)
{
resource_size_t addr;
struct resource *res;
struct region_devres *dr = NULL;
size = ALIGN(size, align);
res = alloc_resource(GFP_KERNEL);
if (!res)
return ERR_PTR(-ENOMEM);
if (dev && (flags & GFR_REQUEST_REGION)) {
dr = devres_alloc(devm_region_release,
sizeof(struct region_devres), GFP_KERNEL);
if (!dr) {
free_resource(res);
return ERR_PTR(-ENOMEM);
}
} else if (dev) {
if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
return ERR_PTR(-ENOMEM);
}
write_lock(&resource_lock);
for (addr = gfr_start(base, size, align, flags);
gfr_continue(base, addr, align, flags);
addr = gfr_next(addr, align, flags)) {
if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
REGION_DISJOINT)
continue;
if (flags & GFR_REQUEST_REGION) {
if (__request_region_locked(res, &iomem_resource, addr,
size, name, 0))
break;
if (dev) {
dr->parent = &iomem_resource;
dr->start = addr;
dr->n = size;
devres_add(dev, dr);
}
res->desc = desc;
write_unlock(&resource_lock);
/*
* A driver is claiming this region so revoke any
* mappings.
*/
revoke_iomem(res);
} else {
res->start = addr;
res->end = addr + size - 1;
res->name = name;
res->desc = desc;
res->flags = IORESOURCE_MEM;
/*
* Only succeed if the resource hosts an exclusive
* range after the insert
*/
if (__insert_resource(base, res) || res->child)
break;
write_unlock(&resource_lock);
}
return res;
}
write_unlock(&resource_lock);
if (flags & GFR_REQUEST_REGION) {
free_resource(res);
devres_free(dr);
} else if (dev)
devm_release_action(dev, remove_free_mem_region, res);
return ERR_PTR(-ERANGE);
}
/**
* devm_request_free_mem_region - find free region for device private memory
*
* @dev: device struct to bind the resource to
* @size: size in bytes of the device memory to add
* @base: resource tree to look in
*
* This function tries to find an empty range of physical address big enough to
* contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
* memory, which in turn allocates struct pages.
*/
struct resource *devm_request_free_mem_region(struct device *dev,
struct resource *base, unsigned long size)
{
unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
dev_name(dev),
IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
}
EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
struct resource *request_free_mem_region(struct resource *base,
unsigned long size, const char *name)
{
unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
}
EXPORT_SYMBOL_GPL(request_free_mem_region);
/**
* alloc_free_mem_region - find a free region relative to @base
* @base: resource that will parent the new resource
* @size: size in bytes of memory to allocate from @base
* @align: alignment requirements for the allocation
* @name: resource name
*
* Buses like CXL, that can dynamically instantiate new memory regions,
* need a method to allocate physical address space for those regions.
* Allocate and insert a new resource to cover a free, unclaimed by a
* descendant of @base, range in the span of @base.
*/
struct resource *alloc_free_mem_region(struct resource *base,
unsigned long size, unsigned long align,
const char *name)
{
/* Default of ascending direction and insert resource */
unsigned long flags = 0;
return get_free_mem_region(NULL, base, size, align, name,
IORES_DESC_NONE, flags);
}
EXPORT_SYMBOL_GPL(alloc_free_mem_region);
#endif /* CONFIG_GET_FREE_REGION */
static int __init strict_iomem(char *str)
{
if (strstr(str, "relaxed"))
strict_iomem_checks = 0;
if (strstr(str, "strict"))
strict_iomem_checks = 1;
return 1;
}
static int iomem_fs_init_fs_context(struct fs_context *fc)
{
return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
}
static struct file_system_type iomem_fs_type = {
.name = "iomem",
.owner = THIS_MODULE,
.init_fs_context = iomem_fs_init_fs_context,
.kill_sb = kill_anon_super,
};
static int __init iomem_init_inode(void)
{
static struct vfsmount *iomem_vfs_mount;
static int iomem_fs_cnt;
struct inode *inode;
int rc;
rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
if (rc < 0) {
pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
return rc;
}
inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
if (IS_ERR(inode)) {
rc = PTR_ERR(inode);
pr_err("Cannot allocate inode for iomem: %d\n", rc);
simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
return rc;
}
/*
* Publish iomem revocation inode initialized.
* Pairs with smp_load_acquire() in revoke_iomem().
*/
smp_store_release(&iomem_inode, inode);
return 0;
}
fs_initcall(iomem_init_inode);
__setup("iomem=", strict_iomem);