linux-next/arch/x86/kernel/smpboot.c
Thomas Gleixner 3f874c9b2a x86/smp: Don't send INIT to non-present and non-booted CPUs
Vasant reported that kexec() can hang or reset the machine when it tries to
park CPUs via INIT. This happens when the kernel is using extended APIC,
but the present mask has APIC IDs >= 0x100 enumerated.

As extended APIC can only handle 8 bit of APIC ID sending INIT to APIC ID
0x100 sends INIT to APIC ID 0x0. That's the boot CPU which is special on
x86 and INIT causes the system to hang or resets the machine.

Prevent this by sending INIT only to those CPUs which have been booted
once.

Fixes: 45e34c8af5 ("x86/smp: Put CPUs into INIT on shutdown if possible")
Reported-by: Dheeraj Kumar Srivastava <dheerajkumar.srivastava@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/87cyzwjbff.ffs@tglx
2023-09-04 15:41:42 +02:00

1642 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
* (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
* Copyright 2001 Andi Kleen, SuSE Labs.
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
* Andi Kleen : Changed for SMP boot into long mode.
* Martin J. Bligh : Added support for multi-quad systems
* Dave Jones : Report invalid combinations of Athlon CPUs.
* Rusty Russell : Hacked into shape for new "hotplug" boot process.
* Andi Kleen : Converted to new state machine.
* Ashok Raj : CPU hotplug support
* Glauber Costa : i386 and x86_64 integration
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/nmi.h>
#include <linux/tboot.h>
#include <linux/gfp.h>
#include <linux/cpuidle.h>
#include <linux/kexec.h>
#include <linux/numa.h>
#include <linux/pgtable.h>
#include <linux/overflow.h>
#include <linux/stackprotector.h>
#include <linux/cpuhotplug.h>
#include <linux/mc146818rtc.h>
#include <asm/acpi.h>
#include <asm/cacheinfo.h>
#include <asm/desc.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/realmode.h>
#include <asm/cpu.h>
#include <asm/numa.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/mwait.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/fpu/api.h>
#include <asm/setup.h>
#include <asm/uv/uv.h>
#include <asm/microcode.h>
#include <asm/i8259.h>
#include <asm/misc.h>
#include <asm/qspinlock.h>
#include <asm/intel-family.h>
#include <asm/cpu_device_id.h>
#include <asm/spec-ctrl.h>
#include <asm/hw_irq.h>
#include <asm/stackprotector.h>
#include <asm/sev.h>
/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
/* representing HT and core siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
/* representing HT, core, and die siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
EXPORT_PER_CPU_SYMBOL(cpu_die_map);
/* Per CPU bogomips and other parameters */
DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
EXPORT_PER_CPU_SYMBOL(cpu_info);
/* CPUs which are the primary SMT threads */
struct cpumask __cpu_primary_thread_mask __read_mostly;
/* Representing CPUs for which sibling maps can be computed */
static cpumask_var_t cpu_sibling_setup_mask;
struct mwait_cpu_dead {
unsigned int control;
unsigned int status;
};
#define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
#define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
/*
* Cache line aligned data for mwait_play_dead(). Separate on purpose so
* that it's unlikely to be touched by other CPUs.
*/
static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
/* Logical package management. We might want to allocate that dynamically */
unsigned int __max_logical_packages __read_mostly;
EXPORT_SYMBOL(__max_logical_packages);
static unsigned int logical_packages __read_mostly;
static unsigned int logical_die __read_mostly;
/* Maximum number of SMT threads on any online core */
int __read_mostly __max_smt_threads = 1;
/* Flag to indicate if a complete sched domain rebuild is required */
bool x86_topology_update;
int arch_update_cpu_topology(void)
{
int retval = x86_topology_update;
x86_topology_update = false;
return retval;
}
static unsigned int smpboot_warm_reset_vector_count;
static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
if (!smpboot_warm_reset_vector_count++) {
CMOS_WRITE(0xa, 0xf);
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
}
spin_unlock_irqrestore(&rtc_lock, flags);
}
static inline void smpboot_restore_warm_reset_vector(void)
{
unsigned long flags;
/*
* Paranoid: Set warm reset code and vector here back
* to default values.
*/
spin_lock_irqsave(&rtc_lock, flags);
if (!--smpboot_warm_reset_vector_count) {
CMOS_WRITE(0, 0xf);
*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
}
spin_unlock_irqrestore(&rtc_lock, flags);
}
/* Run the next set of setup steps for the upcoming CPU */
static void ap_starting(void)
{
int cpuid = smp_processor_id();
/* Mop up eventual mwait_play_dead() wreckage */
this_cpu_write(mwait_cpu_dead.status, 0);
this_cpu_write(mwait_cpu_dead.control, 0);
/*
* If woken up by an INIT in an 82489DX configuration the alive
* synchronization guarantees that the CPU does not reach this
* point before an INIT_deassert IPI reaches the local APIC, so it
* is now safe to touch the local APIC.
*
* Set up this CPU, first the APIC, which is probably redundant on
* most boards.
*/
apic_ap_setup();
/* Save the processor parameters. */
smp_store_cpu_info(cpuid);
/*
* The topology information must be up to date before
* notify_cpu_starting().
*/
set_cpu_sibling_map(cpuid);
ap_init_aperfmperf();
pr_debug("Stack at about %p\n", &cpuid);
wmb();
/*
* This runs the AP through all the cpuhp states to its target
* state CPUHP_ONLINE.
*/
notify_cpu_starting(cpuid);
}
static void ap_calibrate_delay(void)
{
/*
* Calibrate the delay loop and update loops_per_jiffy in cpu_data.
* smp_store_cpu_info() stored a value that is close but not as
* accurate as the value just calculated.
*
* As this is invoked after the TSC synchronization check,
* calibrate_delay_is_known() will skip the calibration routine
* when TSC is synchronized across sockets.
*/
calibrate_delay();
cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
}
/*
* Activate a secondary processor.
*/
static void notrace start_secondary(void *unused)
{
/*
* Don't put *anything* except direct CPU state initialization
* before cpu_init(), SMP booting is too fragile that we want to
* limit the things done here to the most necessary things.
*/
cr4_init();
/*
* 32-bit specific. 64-bit reaches this code with the correct page
* table established. Yet another historical divergence.
*/
if (IS_ENABLED(CONFIG_X86_32)) {
/* switch away from the initial page table */
load_cr3(swapper_pg_dir);
__flush_tlb_all();
}
cpu_init_exception_handling();
/*
* 32-bit systems load the microcode from the ASM startup code for
* historical reasons.
*
* On 64-bit systems load it before reaching the AP alive
* synchronization point below so it is not part of the full per
* CPU serialized bringup part when "parallel" bringup is enabled.
*
* That's even safe when hyperthreading is enabled in the CPU as
* the core code starts the primary threads first and leaves the
* secondary threads waiting for SIPI. Loading microcode on
* physical cores concurrently is a safe operation.
*
* This covers both the Intel specific issue that concurrent
* microcode loading on SMT siblings must be prohibited and the
* vendor independent issue`that microcode loading which changes
* CPUID, MSRs etc. must be strictly serialized to maintain
* software state correctness.
*/
if (IS_ENABLED(CONFIG_X86_64))
load_ucode_ap();
/*
* Synchronization point with the hotplug core. Sets this CPUs
* synchronization state to ALIVE and spin-waits for the control CPU to
* release this CPU for further bringup.
*/
cpuhp_ap_sync_alive();
cpu_init();
fpu__init_cpu();
rcu_cpu_starting(raw_smp_processor_id());
x86_cpuinit.early_percpu_clock_init();
ap_starting();
/* Check TSC synchronization with the control CPU. */
check_tsc_sync_target();
/*
* Calibrate the delay loop after the TSC synchronization check.
* This allows to skip the calibration when TSC is synchronized
* across sockets.
*/
ap_calibrate_delay();
speculative_store_bypass_ht_init();
/*
* Lock vector_lock, set CPU online and bring the vector
* allocator online. Online must be set with vector_lock held
* to prevent a concurrent irq setup/teardown from seeing a
* half valid vector space.
*/
lock_vector_lock();
set_cpu_online(smp_processor_id(), true);
lapic_online();
unlock_vector_lock();
x86_platform.nmi_init();
/* enable local interrupts */
local_irq_enable();
x86_cpuinit.setup_percpu_clockev();
wmb();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
/**
* topology_phys_to_logical_pkg - Map a physical package id to a logical
* @phys_pkg: The physical package id to map
*
* Returns logical package id or -1 if not found
*/
int topology_phys_to_logical_pkg(unsigned int phys_pkg)
{
int cpu;
for_each_possible_cpu(cpu) {
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->initialized && c->phys_proc_id == phys_pkg)
return c->logical_proc_id;
}
return -1;
}
EXPORT_SYMBOL(topology_phys_to_logical_pkg);
/**
* topology_phys_to_logical_die - Map a physical die id to logical
* @die_id: The physical die id to map
* @cur_cpu: The CPU for which the mapping is done
*
* Returns logical die id or -1 if not found
*/
static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
{
int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
for_each_possible_cpu(cpu) {
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->initialized && c->cpu_die_id == die_id &&
c->phys_proc_id == proc_id)
return c->logical_die_id;
}
return -1;
}
/**
* topology_update_package_map - Update the physical to logical package map
* @pkg: The physical package id as retrieved via CPUID
* @cpu: The cpu for which this is updated
*/
int topology_update_package_map(unsigned int pkg, unsigned int cpu)
{
int new;
/* Already available somewhere? */
new = topology_phys_to_logical_pkg(pkg);
if (new >= 0)
goto found;
new = logical_packages++;
if (new != pkg) {
pr_info("CPU %u Converting physical %u to logical package %u\n",
cpu, pkg, new);
}
found:
cpu_data(cpu).logical_proc_id = new;
return 0;
}
/**
* topology_update_die_map - Update the physical to logical die map
* @die: The die id as retrieved via CPUID
* @cpu: The cpu for which this is updated
*/
int topology_update_die_map(unsigned int die, unsigned int cpu)
{
int new;
/* Already available somewhere? */
new = topology_phys_to_logical_die(die, cpu);
if (new >= 0)
goto found;
new = logical_die++;
if (new != die) {
pr_info("CPU %u Converting physical %u to logical die %u\n",
cpu, die, new);
}
found:
cpu_data(cpu).logical_die_id = new;
return 0;
}
static void __init smp_store_boot_cpu_info(void)
{
int id = 0; /* CPU 0 */
struct cpuinfo_x86 *c = &cpu_data(id);
*c = boot_cpu_data;
c->cpu_index = id;
topology_update_package_map(c->phys_proc_id, id);
topology_update_die_map(c->cpu_die_id, id);
c->initialized = true;
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = &cpu_data(id);
/* Copy boot_cpu_data only on the first bringup */
if (!c->initialized)
*c = boot_cpu_data;
c->cpu_index = id;
/*
* During boot time, CPU0 has this setup already. Save the info when
* bringing up an AP.
*/
identify_secondary_cpu(c);
c->initialized = true;
}
static bool
topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
}
static bool
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return !WARN_ONCE(!topology_same_node(c, o),
"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
"[node: %d != %d]. Ignoring dependency.\n",
cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
}
#define link_mask(mfunc, c1, c2) \
do { \
cpumask_set_cpu((c1), mfunc(c2)); \
cpumask_set_cpu((c2), mfunc(c1)); \
} while (0)
static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_die_id == o->cpu_die_id &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
if (c->cpu_core_id == o->cpu_core_id)
return topology_sane(c, o, "smt");
if ((c->cu_id != 0xff) &&
(o->cu_id != 0xff) &&
(c->cu_id == o->cu_id))
return topology_sane(c, o, "smt");
}
} else if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_die_id == o->cpu_die_id &&
c->cpu_core_id == o->cpu_core_id) {
return topology_sane(c, o, "smt");
}
return false;
}
static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_die_id == o->cpu_die_id)
return true;
return false;
}
static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
/* If the arch didn't set up l2c_id, fall back to SMT */
if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
return match_smt(c, o);
/* Do not match if L2 cache id does not match: */
if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
return false;
return topology_sane(c, o, "l2c");
}
/*
* Unlike the other levels, we do not enforce keeping a
* multicore group inside a NUMA node. If this happens, we will
* discard the MC level of the topology later.
*/
static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (c->phys_proc_id == o->phys_proc_id)
return true;
return false;
}
/*
* Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
*
* Any Intel CPU that has multiple nodes per package and does not
* match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
*
* When in SNC mode, these CPUs enumerate an LLC that is shared
* by multiple NUMA nodes. The LLC is shared for off-package data
* access but private to the NUMA node (half of the package) for
* on-package access. CPUID (the source of the information about
* the LLC) can only enumerate the cache as shared or unshared,
* but not this particular configuration.
*/
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
bool intel_snc = id && id->driver_data;
/* Do not match if we do not have a valid APICID for cpu: */
if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
return false;
/* Do not match if LLC id does not match: */
if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
return false;
/*
* Allow the SNC topology without warning. Return of false
* means 'c' does not share the LLC of 'o'. This will be
* reflected to userspace.
*/
if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
return false;
return topology_sane(c, o, "llc");
}
#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
static inline int x86_sched_itmt_flags(void)
{
return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
}
#ifdef CONFIG_SCHED_MC
static int x86_core_flags(void)
{
return cpu_core_flags() | x86_sched_itmt_flags();
}
#endif
#ifdef CONFIG_SCHED_SMT
static int x86_smt_flags(void)
{
return cpu_smt_flags();
}
#endif
#ifdef CONFIG_SCHED_CLUSTER
static int x86_cluster_flags(void)
{
return cpu_cluster_flags() | x86_sched_itmt_flags();
}
#endif
#endif
/*
* Set if a package/die has multiple NUMA nodes inside.
* AMD Magny-Cours, Intel Cluster-on-Die, and Intel
* Sub-NUMA Clustering have this.
*/
static bool x86_has_numa_in_package;
static struct sched_domain_topology_level x86_topology[6];
static void __init build_sched_topology(void)
{
int i = 0;
#ifdef CONFIG_SCHED_SMT
x86_topology[i++] = (struct sched_domain_topology_level){
cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
};
#endif
#ifdef CONFIG_SCHED_CLUSTER
x86_topology[i++] = (struct sched_domain_topology_level){
cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
};
#endif
#ifdef CONFIG_SCHED_MC
x86_topology[i++] = (struct sched_domain_topology_level){
cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
};
#endif
/*
* When there is NUMA topology inside the package skip the DIE domain
* since the NUMA domains will auto-magically create the right spanning
* domains based on the SLIT.
*/
if (!x86_has_numa_in_package) {
x86_topology[i++] = (struct sched_domain_topology_level){
cpu_cpu_mask, SD_INIT_NAME(DIE)
};
}
/*
* There must be one trailing NULL entry left.
*/
BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
set_sched_topology(x86_topology);
}
void set_cpu_sibling_map(int cpu)
{
bool has_smt = smp_num_siblings > 1;
bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct cpuinfo_x86 *o;
int i, threads;
cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
if (!has_mp) {
cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
c->booted_cores = 1;
return;
}
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if (match_pkg(c, o) && !topology_same_node(c, o))
x86_has_numa_in_package = true;
if ((i == cpu) || (has_smt && match_smt(c, o)))
link_mask(topology_sibling_cpumask, cpu, i);
if ((i == cpu) || (has_mp && match_llc(c, o)))
link_mask(cpu_llc_shared_mask, cpu, i);
if ((i == cpu) || (has_mp && match_l2c(c, o)))
link_mask(cpu_l2c_shared_mask, cpu, i);
if ((i == cpu) || (has_mp && match_die(c, o)))
link_mask(topology_die_cpumask, cpu, i);
}
threads = cpumask_weight(topology_sibling_cpumask(cpu));
if (threads > __max_smt_threads)
__max_smt_threads = threads;
for_each_cpu(i, topology_sibling_cpumask(cpu))
cpu_data(i).smt_active = threads > 1;
/*
* This needs a separate iteration over the cpus because we rely on all
* topology_sibling_cpumask links to be set-up.
*/
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if ((i == cpu) || (has_mp && match_pkg(c, o))) {
link_mask(topology_core_cpumask, cpu, i);
/*
* Does this new cpu bringup a new core?
*/
if (threads == 1) {
/*
* for each core in package, increment
* the booted_cores for this new cpu
*/
if (cpumask_first(
topology_sibling_cpumask(i)) == i)
c->booted_cores++;
/*
* increment the core count for all
* the other cpus in this package
*/
if (i != cpu)
cpu_data(i).booted_cores++;
} else if (i != cpu && !c->booted_cores)
c->booted_cores = cpu_data(i).booted_cores;
}
}
}
/* maps the cpu to the sched domain representing multi-core */
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return cpu_llc_shared_mask(cpu);
}
const struct cpumask *cpu_clustergroup_mask(int cpu)
{
return cpu_l2c_shared_mask(cpu);
}
static void impress_friends(void)
{
int cpu;
unsigned long bogosum = 0;
/*
* Allow the user to impress friends.
*/
pr_debug("Before bogomips\n");
for_each_online_cpu(cpu)
bogosum += cpu_data(cpu).loops_per_jiffy;
pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
num_online_cpus(),
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
pr_debug("Before bogocount - setting activated=1\n");
}
/*
* The Multiprocessor Specification 1.4 (1997) example code suggests
* that there should be a 10ms delay between the BSP asserting INIT
* and de-asserting INIT, when starting a remote processor.
* But that slows boot and resume on modern processors, which include
* many cores and don't require that delay.
*
* Cmdline "init_cpu_udelay=" is available to over-ride this delay.
* Modern processor families are quirked to remove the delay entirely.
*/
#define UDELAY_10MS_DEFAULT 10000
static unsigned int init_udelay = UINT_MAX;
static int __init cpu_init_udelay(char *str)
{
get_option(&str, &init_udelay);
return 0;
}
early_param("cpu_init_udelay", cpu_init_udelay);
static void __init smp_quirk_init_udelay(void)
{
/* if cmdline changed it from default, leave it alone */
if (init_udelay != UINT_MAX)
return;
/* if modern processor, use no delay */
if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
init_udelay = 0;
return;
}
/* else, use legacy delay */
init_udelay = UDELAY_10MS_DEFAULT;
}
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*/
static void send_init_sequence(int phys_apicid)
{
int maxlvt = lapic_get_maxlvt();
/* Be paranoid about clearing APIC errors. */
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
/* Due to the Pentium erratum 3AP. */
if (maxlvt > 3)
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
/* Assert INIT on the target CPU */
apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
safe_apic_wait_icr_idle();
udelay(init_udelay);
/* Deassert INIT on the target CPU */
apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
safe_apic_wait_icr_idle();
}
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*/
static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
{
unsigned long send_status = 0, accept_status = 0;
int num_starts, j, maxlvt;
preempt_disable();
maxlvt = lapic_get_maxlvt();
send_init_sequence(phys_apicid);
mb();
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(boot_cpu_apic_version))
num_starts = 2;
else
num_starts = 0;
/*
* Run STARTUP IPI loop.
*/
pr_debug("#startup loops: %d\n", num_starts);
for (j = 1; j <= num_starts; j++) {
pr_debug("Sending STARTUP #%d\n", j);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
pr_debug("After apic_write\n");
/*
* STARTUP IPI
*/
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
phys_apicid);
/*
* Give the other CPU some time to accept the IPI.
*/
if (init_udelay == 0)
udelay(10);
else
udelay(300);
pr_debug("Startup point 1\n");
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
if (init_udelay == 0)
udelay(10);
else
udelay(200);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
pr_debug("After Startup\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
preempt_enable();
return (send_status | accept_status);
}
/* reduce the number of lines printed when booting a large cpu count system */
static void announce_cpu(int cpu, int apicid)
{
static int width, node_width, first = 1;
static int current_node = NUMA_NO_NODE;
int node = early_cpu_to_node(cpu);
if (!width)
width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
if (!node_width)
node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
if (system_state < SYSTEM_RUNNING) {
if (first)
pr_info("x86: Booting SMP configuration:\n");
if (node != current_node) {
if (current_node > (-1))
pr_cont("\n");
current_node = node;
printk(KERN_INFO ".... node %*s#%d, CPUs: ",
node_width - num_digits(node), " ", node);
}
/* Add padding for the BSP */
if (first)
pr_cont("%*s", width + 1, " ");
first = 0;
pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
} else
pr_info("Booting Node %d Processor %d APIC 0x%x\n",
node, cpu, apicid);
}
int common_cpu_up(unsigned int cpu, struct task_struct *idle)
{
int ret;
/* Just in case we booted with a single CPU. */
alternatives_enable_smp();
per_cpu(pcpu_hot.current_task, cpu) = idle;
cpu_init_stack_canary(cpu, idle);
/* Initialize the interrupt stack(s) */
ret = irq_init_percpu_irqstack(cpu);
if (ret)
return ret;
#ifdef CONFIG_X86_32
/* Stack for startup_32 can be just as for start_secondary onwards */
per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
#endif
return 0;
}
/*
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
* Returns zero if startup was successfully sent, else error code from
* ->wakeup_secondary_cpu.
*/
static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
{
unsigned long start_ip = real_mode_header->trampoline_start;
int ret;
#ifdef CONFIG_X86_64
/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
if (apic->wakeup_secondary_cpu_64)
start_ip = real_mode_header->trampoline_start64;
#endif
idle->thread.sp = (unsigned long)task_pt_regs(idle);
initial_code = (unsigned long)start_secondary;
if (IS_ENABLED(CONFIG_X86_32)) {
early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
initial_stack = idle->thread.sp;
} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
smpboot_control = cpu;
}
/* Enable the espfix hack for this CPU */
init_espfix_ap(cpu);
/* So we see what's up */
announce_cpu(cpu, apicid);
/*
* This grunge runs the startup process for
* the targeted processor.
*/
if (x86_platform.legacy.warm_reset) {
pr_debug("Setting warm reset code and vector.\n");
smpboot_setup_warm_reset_vector(start_ip);
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
}
smp_mb();
/*
* Wake up a CPU in difference cases:
* - Use a method from the APIC driver if one defined, with wakeup
* straight to 64-bit mode preferred over wakeup to RM.
* Otherwise,
* - Use an INIT boot APIC message
*/
if (apic->wakeup_secondary_cpu_64)
ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
else if (apic->wakeup_secondary_cpu)
ret = apic->wakeup_secondary_cpu(apicid, start_ip);
else
ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
/* If the wakeup mechanism failed, cleanup the warm reset vector */
if (ret)
arch_cpuhp_cleanup_kick_cpu(cpu);
return ret;
}
int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
{
int apicid = apic->cpu_present_to_apicid(cpu);
int err;
lockdep_assert_irqs_enabled();
pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
!apic_id_valid(apicid)) {
pr_err("%s: bad cpu %d\n", __func__, cpu);
return -EINVAL;
}
/*
* Save current MTRR state in case it was changed since early boot
* (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
*/
mtrr_save_state();
/* the FPU context is blank, nobody can own it */
per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
err = common_cpu_up(cpu, tidle);
if (err)
return err;
err = do_boot_cpu(apicid, cpu, tidle);
if (err)
pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
return err;
}
int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
{
return smp_ops.kick_ap_alive(cpu, tidle);
}
void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
{
/* Cleanup possible dangling ends... */
if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
smpboot_restore_warm_reset_vector();
}
void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
{
if (smp_ops.cleanup_dead_cpu)
smp_ops.cleanup_dead_cpu(cpu);
if (system_state == SYSTEM_RUNNING)
pr_info("CPU %u is now offline\n", cpu);
}
void arch_cpuhp_sync_state_poll(void)
{
if (smp_ops.poll_sync_state)
smp_ops.poll_sync_state();
}
/**
* arch_disable_smp_support() - Disables SMP support for x86 at boottime
*/
void __init arch_disable_smp_support(void)
{
disable_ioapic_support();
}
/*
* Fall back to non SMP mode after errors.
*
* RED-PEN audit/test this more. I bet there is more state messed up here.
*/
static __init void disable_smp(void)
{
pr_info("SMP disabled\n");
disable_ioapic_support();
init_cpu_present(cpumask_of(0));
init_cpu_possible(cpumask_of(0));
if (smp_found_config)
physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
else
physid_set_mask_of_physid(0, &phys_cpu_present_map);
cpumask_set_cpu(0, topology_sibling_cpumask(0));
cpumask_set_cpu(0, topology_core_cpumask(0));
cpumask_set_cpu(0, topology_die_cpumask(0));
}
static void __init smp_cpu_index_default(void)
{
int i;
struct cpuinfo_x86 *c;
for_each_possible_cpu(i) {
c = &cpu_data(i);
/* mark all to hotplug */
c->cpu_index = nr_cpu_ids;
}
}
void __init smp_prepare_cpus_common(void)
{
unsigned int i;
smp_cpu_index_default();
/*
* Setup boot CPU information
*/
smp_store_boot_cpu_info(); /* Final full version of the data */
mb();
for_each_possible_cpu(i) {
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
}
set_cpu_sibling_map(0);
}
#ifdef CONFIG_X86_64
/* Establish whether parallel bringup can be supported. */
bool __init arch_cpuhp_init_parallel_bringup(void)
{
if (!x86_cpuinit.parallel_bringup) {
pr_info("Parallel CPU startup disabled by the platform\n");
return false;
}
smpboot_control = STARTUP_READ_APICID;
pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
return true;
}
#endif
/*
* Prepare for SMP bootup.
* @max_cpus: configured maximum number of CPUs, It is a legacy parameter
* for common interface support.
*/
void __init native_smp_prepare_cpus(unsigned int max_cpus)
{
smp_prepare_cpus_common();
switch (apic_intr_mode) {
case APIC_PIC:
case APIC_VIRTUAL_WIRE_NO_CONFIG:
disable_smp();
return;
case APIC_SYMMETRIC_IO_NO_ROUTING:
disable_smp();
/* Setup local timer */
x86_init.timers.setup_percpu_clockev();
return;
case APIC_VIRTUAL_WIRE:
case APIC_SYMMETRIC_IO:
break;
}
/* Setup local timer */
x86_init.timers.setup_percpu_clockev();
pr_info("CPU0: ");
print_cpu_info(&cpu_data(0));
uv_system_init();
smp_quirk_init_udelay();
speculative_store_bypass_ht_init();
snp_set_wakeup_secondary_cpu();
}
void arch_thaw_secondary_cpus_begin(void)
{
set_cache_aps_delayed_init(true);
}
void arch_thaw_secondary_cpus_end(void)
{
cache_aps_init();
}
bool smp_park_other_cpus_in_init(void)
{
unsigned int cpu, this_cpu = smp_processor_id();
unsigned int apicid;
if (apic->wakeup_secondary_cpu_64 || apic->wakeup_secondary_cpu)
return false;
/*
* If this is a crash stop which does not execute on the boot CPU,
* then this cannot use the INIT mechanism because INIT to the boot
* CPU will reset the machine.
*/
if (this_cpu)
return false;
for_each_cpu_and(cpu, &cpus_booted_once_mask, cpu_present_mask) {
if (cpu == this_cpu)
continue;
apicid = apic->cpu_present_to_apicid(cpu);
if (apicid == BAD_APICID)
continue;
send_init_sequence(apicid);
}
return true;
}
/*
* Early setup to make printk work.
*/
void __init native_smp_prepare_boot_cpu(void)
{
int me = smp_processor_id();
/* SMP handles this from setup_per_cpu_areas() */
if (!IS_ENABLED(CONFIG_SMP))
switch_gdt_and_percpu_base(me);
native_pv_lock_init();
}
void __init calculate_max_logical_packages(void)
{
int ncpus;
/*
* Today neither Intel nor AMD support heterogeneous systems so
* extrapolate the boot cpu's data to all packages.
*/
ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
pr_info("Max logical packages: %u\n", __max_logical_packages);
}
void __init native_smp_cpus_done(unsigned int max_cpus)
{
pr_debug("Boot done\n");
calculate_max_logical_packages();
build_sched_topology();
nmi_selftest();
impress_friends();
cache_aps_init();
}
static int __initdata setup_possible_cpus = -1;
static int __init _setup_possible_cpus(char *str)
{
get_option(&str, &setup_possible_cpus);
return 0;
}
early_param("possible_cpus", _setup_possible_cpus);
/*
* cpu_possible_mask should be static, it cannot change as cpu's
* are onlined, or offlined. The reason is per-cpu data-structures
* are allocated by some modules at init time, and don't expect to
* do this dynamically on cpu arrival/departure.
* cpu_present_mask on the other hand can change dynamically.
* In case when cpu_hotplug is not compiled, then we resort to current
* behaviour, which is cpu_possible == cpu_present.
* - Ashok Raj
*
* Three ways to find out the number of additional hotplug CPUs:
* - If the BIOS specified disabled CPUs in ACPI/mptables use that.
* - The user can overwrite it with possible_cpus=NUM
* - Otherwise don't reserve additional CPUs.
* We do this because additional CPUs waste a lot of memory.
* -AK
*/
__init void prefill_possible_map(void)
{
int i, possible;
i = setup_max_cpus ?: 1;
if (setup_possible_cpus == -1) {
possible = num_processors;
#ifdef CONFIG_HOTPLUG_CPU
if (setup_max_cpus)
possible += disabled_cpus;
#else
if (possible > i)
possible = i;
#endif
} else
possible = setup_possible_cpus;
total_cpus = max_t(int, possible, num_processors + disabled_cpus);
/* nr_cpu_ids could be reduced via nr_cpus= */
if (possible > nr_cpu_ids) {
pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
possible, nr_cpu_ids);
possible = nr_cpu_ids;
}
#ifdef CONFIG_HOTPLUG_CPU
if (!setup_max_cpus)
#endif
if (possible > i) {
pr_warn("%d Processors exceeds max_cpus limit of %u\n",
possible, setup_max_cpus);
possible = i;
}
set_nr_cpu_ids(possible);
pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
possible, max_t(int, possible - num_processors, 0));
reset_cpu_possible_mask();
for (i = 0; i < possible; i++)
set_cpu_possible(i, true);
}
/* correctly size the local cpu masks */
void __init setup_cpu_local_masks(void)
{
alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
}
#ifdef CONFIG_HOTPLUG_CPU
/* Recompute SMT state for all CPUs on offline */
static void recompute_smt_state(void)
{
int max_threads, cpu;
max_threads = 0;
for_each_online_cpu (cpu) {
int threads = cpumask_weight(topology_sibling_cpumask(cpu));
if (threads > max_threads)
max_threads = threads;
}
__max_smt_threads = max_threads;
}
static void remove_siblinginfo(int cpu)
{
int sibling;
struct cpuinfo_x86 *c = &cpu_data(cpu);
for_each_cpu(sibling, topology_core_cpumask(cpu)) {
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
/*/
* last thread sibling in this cpu core going down
*/
if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
cpu_data(sibling).booted_cores--;
}
for_each_cpu(sibling, topology_die_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
cpu_data(sibling).smt_active = false;
}
for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
cpumask_clear(cpu_llc_shared_mask(cpu));
cpumask_clear(cpu_l2c_shared_mask(cpu));
cpumask_clear(topology_sibling_cpumask(cpu));
cpumask_clear(topology_core_cpumask(cpu));
cpumask_clear(topology_die_cpumask(cpu));
c->cpu_core_id = 0;
c->booted_cores = 0;
cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
recompute_smt_state();
}
static void remove_cpu_from_maps(int cpu)
{
set_cpu_online(cpu, false);
numa_remove_cpu(cpu);
}
void cpu_disable_common(void)
{
int cpu = smp_processor_id();
remove_siblinginfo(cpu);
/* It's now safe to remove this processor from the online map */
lock_vector_lock();
remove_cpu_from_maps(cpu);
unlock_vector_lock();
fixup_irqs();
lapic_offline();
}
int native_cpu_disable(void)
{
int ret;
ret = lapic_can_unplug_cpu();
if (ret)
return ret;
cpu_disable_common();
/*
* Disable the local APIC. Otherwise IPI broadcasts will reach
* it. It still responds normally to INIT, NMI, SMI, and SIPI
* messages.
*
* Disabling the APIC must happen after cpu_disable_common()
* which invokes fixup_irqs().
*
* Disabling the APIC preserves already set bits in IRR, but
* an interrupt arriving after disabling the local APIC does not
* set the corresponding IRR bit.
*
* fixup_irqs() scans IRR for set bits so it can raise a not
* yet handled interrupt on the new destination CPU via an IPI
* but obviously it can't do so for IRR bits which are not set.
* IOW, interrupts arriving after disabling the local APIC will
* be lost.
*/
apic_soft_disable();
return 0;
}
void play_dead_common(void)
{
idle_task_exit();
cpuhp_ap_report_dead();
local_irq_disable();
}
/*
* We need to flush the caches before going to sleep, lest we have
* dirty data in our caches when we come back up.
*/
static inline void mwait_play_dead(void)
{
struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
unsigned int eax, ebx, ecx, edx;
unsigned int highest_cstate = 0;
unsigned int highest_subcstate = 0;
int i;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
return;
if (!this_cpu_has(X86_FEATURE_MWAIT))
return;
if (!this_cpu_has(X86_FEATURE_CLFLUSH))
return;
if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
return;
eax = CPUID_MWAIT_LEAF;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
/*
* eax will be 0 if EDX enumeration is not valid.
* Initialized below to cstate, sub_cstate value when EDX is valid.
*/
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
eax = 0;
} else {
edx >>= MWAIT_SUBSTATE_SIZE;
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
if (edx & MWAIT_SUBSTATE_MASK) {
highest_cstate = i;
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
}
}
eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
(highest_subcstate - 1);
}
/* Set up state for the kexec() hack below */
md->status = CPUDEAD_MWAIT_WAIT;
md->control = CPUDEAD_MWAIT_WAIT;
wbinvd();
while (1) {
/*
* The CLFLUSH is a workaround for erratum AAI65 for
* the Xeon 7400 series. It's not clear it is actually
* needed, but it should be harmless in either case.
* The WBINVD is insufficient due to the spurious-wakeup
* case where we return around the loop.
*/
mb();
clflush(md);
mb();
__monitor(md, 0, 0);
mb();
__mwait(eax, 0);
if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
/*
* Kexec is about to happen. Don't go back into mwait() as
* the kexec kernel might overwrite text and data including
* page tables and stack. So mwait() would resume when the
* monitor cache line is written to and then the CPU goes
* south due to overwritten text, page tables and stack.
*
* Note: This does _NOT_ protect against a stray MCE, NMI,
* SMI. They will resume execution at the instruction
* following the HLT instruction and run into the problem
* which this is trying to prevent.
*/
WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
while(1)
native_halt();
}
}
}
/*
* Kick all "offline" CPUs out of mwait on kexec(). See comment in
* mwait_play_dead().
*/
void smp_kick_mwait_play_dead(void)
{
u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
struct mwait_cpu_dead *md;
unsigned int cpu, i;
for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
md = per_cpu_ptr(&mwait_cpu_dead, cpu);
/* Does it sit in mwait_play_dead() ? */
if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
continue;
/* Wait up to 5ms */
for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
/* Bring it out of mwait */
WRITE_ONCE(md->control, newstate);
udelay(5);
}
if (READ_ONCE(md->status) != newstate)
pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
}
}
void __noreturn hlt_play_dead(void)
{
if (__this_cpu_read(cpu_info.x86) >= 4)
wbinvd();
while (1)
native_halt();
}
void native_play_dead(void)
{
play_dead_common();
tboot_shutdown(TB_SHUTDOWN_WFS);
mwait_play_dead();
if (cpuidle_play_dead())
hlt_play_dead();
}
#else /* ... !CONFIG_HOTPLUG_CPU */
int native_cpu_disable(void)
{
return -ENOSYS;
}
void native_play_dead(void)
{
BUG();
}
#endif