linux-next/drivers/most/most_usb.c
Johan Hovold 63b3e810ef most: fix control-message timeouts
USB control-message timeouts are specified in milliseconds and should
specifically not vary with CONFIG_HZ.

Use the common control-message timeout defines for the five-second
timeouts.

Fixes: 97a6f772f36b ("drivers: most: add USB adapter driver")
Cc: stable@vger.kernel.org      # 5.9
Signed-off-by: Johan Hovold <johan@kernel.org>
Link: https://lore.kernel.org/r/20211025115811.5410-1-johan@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-26 19:12:01 +02:00

1172 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* usb.c - Hardware dependent module for USB
*
* Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/usb.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/sysfs.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/uaccess.h>
#include <linux/most.h>
#define USB_MTU 512
#define NO_ISOCHRONOUS_URB 0
#define AV_PACKETS_PER_XACT 2
#define BUF_CHAIN_SIZE 0xFFFF
#define MAX_NUM_ENDPOINTS 30
#define MAX_SUFFIX_LEN 10
#define MAX_STRING_LEN 80
#define MAX_BUF_SIZE 0xFFFF
#define USB_VENDOR_ID_SMSC 0x0424 /* VID: SMSC */
#define USB_DEV_ID_BRDG 0xC001 /* PID: USB Bridge */
#define USB_DEV_ID_OS81118 0xCF18 /* PID: USB OS81118 */
#define USB_DEV_ID_OS81119 0xCF19 /* PID: USB OS81119 */
#define USB_DEV_ID_OS81210 0xCF30 /* PID: USB OS81210 */
/* DRCI Addresses */
#define DRCI_REG_NI_STATE 0x0100
#define DRCI_REG_PACKET_BW 0x0101
#define DRCI_REG_NODE_ADDR 0x0102
#define DRCI_REG_NODE_POS 0x0103
#define DRCI_REG_MEP_FILTER 0x0140
#define DRCI_REG_HASH_TBL0 0x0141
#define DRCI_REG_HASH_TBL1 0x0142
#define DRCI_REG_HASH_TBL2 0x0143
#define DRCI_REG_HASH_TBL3 0x0144
#define DRCI_REG_HW_ADDR_HI 0x0145
#define DRCI_REG_HW_ADDR_MI 0x0146
#define DRCI_REG_HW_ADDR_LO 0x0147
#define DRCI_REG_BASE 0x1100
#define DRCI_COMMAND 0x02
#define DRCI_READ_REQ 0xA0
#define DRCI_WRITE_REQ 0xA1
/**
* struct most_dci_obj - Direct Communication Interface
* @kobj:position in sysfs
* @usb_device: pointer to the usb device
* @reg_addr: register address for arbitrary DCI access
*/
struct most_dci_obj {
struct device dev;
struct usb_device *usb_device;
u16 reg_addr;
};
#define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
struct most_dev;
struct clear_hold_work {
struct work_struct ws;
struct most_dev *mdev;
unsigned int channel;
int pipe;
};
#define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
/**
* struct most_dev - holds all usb interface specific stuff
* @usb_device: pointer to usb device
* @iface: hardware interface
* @cap: channel capabilities
* @conf: channel configuration
* @dci: direct communication interface of hardware
* @ep_address: endpoint address table
* @description: device description
* @suffix: suffix for channel name
* @channel_lock: synchronize channel access
* @padding_active: indicates channel uses padding
* @is_channel_healthy: health status table of each channel
* @busy_urbs: list of anchored items
* @io_mutex: synchronize I/O with disconnect
* @link_stat_timer: timer for link status reports
* @poll_work_obj: work for polling link status
*/
struct most_dev {
struct device dev;
struct usb_device *usb_device;
struct most_interface iface;
struct most_channel_capability *cap;
struct most_channel_config *conf;
struct most_dci_obj *dci;
u8 *ep_address;
char description[MAX_STRING_LEN];
char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
bool padding_active[MAX_NUM_ENDPOINTS];
bool is_channel_healthy[MAX_NUM_ENDPOINTS];
struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
struct usb_anchor *busy_urbs;
struct mutex io_mutex;
struct timer_list link_stat_timer;
struct work_struct poll_work_obj;
void (*on_netinfo)(struct most_interface *most_iface,
unsigned char link_state, unsigned char *addrs);
};
#define to_mdev(d) container_of(d, struct most_dev, iface)
#define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
#define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
static void wq_clear_halt(struct work_struct *wq_obj);
static void wq_netinfo(struct work_struct *wq_obj);
/**
* drci_rd_reg - read a DCI register
* @dev: usb device
* @reg: register address
* @buf: buffer to store data
*
* This is reads data from INIC's direct register communication interface
*/
static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
{
int retval;
__le16 *dma_buf;
u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
if (!dma_buf)
return -ENOMEM;
retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
DRCI_READ_REQ, req_type,
0x0000,
reg, dma_buf, sizeof(*dma_buf),
USB_CTRL_GET_TIMEOUT);
*buf = le16_to_cpu(*dma_buf);
kfree(dma_buf);
if (retval < 0)
return retval;
return 0;
}
/**
* drci_wr_reg - write a DCI register
* @dev: usb device
* @reg: register address
* @data: data to write
*
* This is writes data to INIC's direct register communication interface
*/
static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
{
return usb_control_msg(dev,
usb_sndctrlpipe(dev, 0),
DRCI_WRITE_REQ,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
data,
reg,
NULL,
0,
USB_CTRL_SET_TIMEOUT);
}
static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
{
return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
}
/**
* get_stream_frame_size - calculate frame size of current configuration
* @dev: device structure
* @cfg: channel configuration
*/
static unsigned int get_stream_frame_size(struct device *dev,
struct most_channel_config *cfg)
{
unsigned int frame_size;
unsigned int sub_size = cfg->subbuffer_size;
if (!sub_size) {
dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
return 0;
}
switch (cfg->data_type) {
case MOST_CH_ISOC:
frame_size = AV_PACKETS_PER_XACT * sub_size;
break;
case MOST_CH_SYNC:
if (cfg->packets_per_xact == 0) {
dev_warn(dev, "Misconfig: Packets per XACT zero\n");
frame_size = 0;
} else if (cfg->packets_per_xact == 0xFF) {
frame_size = (USB_MTU / sub_size) * sub_size;
} else {
frame_size = cfg->packets_per_xact * sub_size;
}
break;
default:
dev_warn(dev, "Query frame size of non-streaming channel\n");
frame_size = 0;
break;
}
return frame_size;
}
/**
* hdm_poison_channel - mark buffers of this channel as invalid
* @iface: pointer to the interface
* @channel: channel ID
*
* This unlinks all URBs submitted to the HCD,
* calls the associated completion function of the core and removes
* them from the list.
*
* Returns 0 on success or error code otherwise.
*/
static int hdm_poison_channel(struct most_interface *iface, int channel)
{
struct most_dev *mdev = to_mdev(iface);
unsigned long flags;
spinlock_t *lock; /* temp. lock */
if (channel < 0 || channel >= iface->num_channels) {
dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
return -ECHRNG;
}
lock = mdev->channel_lock + channel;
spin_lock_irqsave(lock, flags);
mdev->is_channel_healthy[channel] = false;
spin_unlock_irqrestore(lock, flags);
cancel_work_sync(&mdev->clear_work[channel].ws);
mutex_lock(&mdev->io_mutex);
usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
if (mdev->padding_active[channel])
mdev->padding_active[channel] = false;
if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
del_timer_sync(&mdev->link_stat_timer);
cancel_work_sync(&mdev->poll_work_obj);
}
mutex_unlock(&mdev->io_mutex);
return 0;
}
/**
* hdm_add_padding - add padding bytes
* @mdev: most device
* @channel: channel ID
* @mbo: buffer object
*
* This inserts the INIC hardware specific padding bytes into a streaming
* channel's buffer
*/
static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
{
struct most_channel_config *conf = &mdev->conf[channel];
unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
unsigned int j, num_frames;
if (!frame_size)
return -EINVAL;
num_frames = mbo->buffer_length / frame_size;
if (num_frames < 1) {
dev_err(&mdev->usb_device->dev,
"Missed minimal transfer unit.\n");
return -EINVAL;
}
for (j = num_frames - 1; j > 0; j--)
memmove(mbo->virt_address + j * USB_MTU,
mbo->virt_address + j * frame_size,
frame_size);
mbo->buffer_length = num_frames * USB_MTU;
return 0;
}
/**
* hdm_remove_padding - remove padding bytes
* @mdev: most device
* @channel: channel ID
* @mbo: buffer object
*
* This takes the INIC hardware specific padding bytes off a streaming
* channel's buffer.
*/
static int hdm_remove_padding(struct most_dev *mdev, int channel,
struct mbo *mbo)
{
struct most_channel_config *const conf = &mdev->conf[channel];
unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
unsigned int j, num_frames;
if (!frame_size)
return -EINVAL;
num_frames = mbo->processed_length / USB_MTU;
for (j = 1; j < num_frames; j++)
memmove(mbo->virt_address + frame_size * j,
mbo->virt_address + USB_MTU * j,
frame_size);
mbo->processed_length = frame_size * num_frames;
return 0;
}
/**
* hdm_write_completion - completion function for submitted Tx URBs
* @urb: the URB that has been completed
*
* This checks the status of the completed URB. In case the URB has been
* unlinked before, it is immediately freed. On any other error the MBO
* transfer flag is set. On success it frees allocated resources and calls
* the completion function.
*
* Context: interrupt!
*/
static void hdm_write_completion(struct urb *urb)
{
struct mbo *mbo = urb->context;
struct most_dev *mdev = to_mdev(mbo->ifp);
unsigned int channel = mbo->hdm_channel_id;
spinlock_t *lock = mdev->channel_lock + channel;
unsigned long flags;
spin_lock_irqsave(lock, flags);
mbo->processed_length = 0;
mbo->status = MBO_E_INVAL;
if (likely(mdev->is_channel_healthy[channel])) {
switch (urb->status) {
case 0:
case -ESHUTDOWN:
mbo->processed_length = urb->actual_length;
mbo->status = MBO_SUCCESS;
break;
case -EPIPE:
dev_warn(&mdev->usb_device->dev,
"Broken pipe on ep%02x\n",
mdev->ep_address[channel]);
mdev->is_channel_healthy[channel] = false;
mdev->clear_work[channel].pipe = urb->pipe;
schedule_work(&mdev->clear_work[channel].ws);
break;
case -ENODEV:
case -EPROTO:
mbo->status = MBO_E_CLOSE;
break;
}
}
spin_unlock_irqrestore(lock, flags);
if (likely(mbo->complete))
mbo->complete(mbo);
usb_free_urb(urb);
}
/**
* hdm_read_completion - completion function for submitted Rx URBs
* @urb: the URB that has been completed
*
* This checks the status of the completed URB. In case the URB has been
* unlinked before it is immediately freed. On any other error the MBO transfer
* flag is set. On success it frees allocated resources, removes
* padding bytes -if necessary- and calls the completion function.
*
* Context: interrupt!
*/
static void hdm_read_completion(struct urb *urb)
{
struct mbo *mbo = urb->context;
struct most_dev *mdev = to_mdev(mbo->ifp);
unsigned int channel = mbo->hdm_channel_id;
struct device *dev = &mdev->usb_device->dev;
spinlock_t *lock = mdev->channel_lock + channel;
unsigned long flags;
spin_lock_irqsave(lock, flags);
mbo->processed_length = 0;
mbo->status = MBO_E_INVAL;
if (likely(mdev->is_channel_healthy[channel])) {
switch (urb->status) {
case 0:
case -ESHUTDOWN:
mbo->processed_length = urb->actual_length;
mbo->status = MBO_SUCCESS;
if (mdev->padding_active[channel] &&
hdm_remove_padding(mdev, channel, mbo)) {
mbo->processed_length = 0;
mbo->status = MBO_E_INVAL;
}
break;
case -EPIPE:
dev_warn(dev, "Broken pipe on ep%02x\n",
mdev->ep_address[channel]);
mdev->is_channel_healthy[channel] = false;
mdev->clear_work[channel].pipe = urb->pipe;
schedule_work(&mdev->clear_work[channel].ws);
break;
case -ENODEV:
case -EPROTO:
mbo->status = MBO_E_CLOSE;
break;
case -EOVERFLOW:
dev_warn(dev, "Babble on ep%02x\n",
mdev->ep_address[channel]);
break;
}
}
spin_unlock_irqrestore(lock, flags);
if (likely(mbo->complete))
mbo->complete(mbo);
usb_free_urb(urb);
}
/**
* hdm_enqueue - receive a buffer to be used for data transfer
* @iface: interface to enqueue to
* @channel: ID of the channel
* @mbo: pointer to the buffer object
*
* This allocates a new URB and fills it according to the channel
* that is being used for transmission of data. Before the URB is
* submitted it is stored in the private anchor list.
*
* Returns 0 on success. On any error the URB is freed and a error code
* is returned.
*
* Context: Could in _some_ cases be interrupt!
*/
static int hdm_enqueue(struct most_interface *iface, int channel,
struct mbo *mbo)
{
struct most_dev *mdev = to_mdev(iface);
struct most_channel_config *conf;
int retval = 0;
struct urb *urb;
unsigned long length;
void *virt_address;
if (!mbo)
return -EINVAL;
if (iface->num_channels <= channel || channel < 0)
return -ECHRNG;
urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
if (!urb)
return -ENOMEM;
conf = &mdev->conf[channel];
mutex_lock(&mdev->io_mutex);
if (!mdev->usb_device) {
retval = -ENODEV;
goto err_free_urb;
}
if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
hdm_add_padding(mdev, channel, mbo)) {
retval = -EINVAL;
goto err_free_urb;
}
urb->transfer_dma = mbo->bus_address;
virt_address = mbo->virt_address;
length = mbo->buffer_length;
if (conf->direction & MOST_CH_TX) {
usb_fill_bulk_urb(urb, mdev->usb_device,
usb_sndbulkpipe(mdev->usb_device,
mdev->ep_address[channel]),
virt_address,
length,
hdm_write_completion,
mbo);
if (conf->data_type != MOST_CH_ISOC &&
conf->data_type != MOST_CH_SYNC)
urb->transfer_flags |= URB_ZERO_PACKET;
} else {
usb_fill_bulk_urb(urb, mdev->usb_device,
usb_rcvbulkpipe(mdev->usb_device,
mdev->ep_address[channel]),
virt_address,
length + conf->extra_len,
hdm_read_completion,
mbo);
}
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
retval = usb_submit_urb(urb, GFP_KERNEL);
if (retval) {
dev_err(&mdev->usb_device->dev,
"URB submit failed with error %d.\n", retval);
goto err_unanchor_urb;
}
mutex_unlock(&mdev->io_mutex);
return 0;
err_unanchor_urb:
usb_unanchor_urb(urb);
err_free_urb:
usb_free_urb(urb);
mutex_unlock(&mdev->io_mutex);
return retval;
}
static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
{
struct most_dev *mdev = to_mdev(mbo->ifp);
return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
&mbo->bus_address);
}
static void hdm_dma_free(struct mbo *mbo, u32 size)
{
struct most_dev *mdev = to_mdev(mbo->ifp);
usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
mbo->bus_address);
}
/**
* hdm_configure_channel - receive channel configuration from core
* @iface: interface
* @channel: channel ID
* @conf: structure that holds the configuration information
*
* The attached network interface controller (NIC) supports a padding mode
* to avoid short packets on USB, hence increasing the performance due to a
* lower interrupt load. This mode is default for synchronous data and can
* be switched on for isochronous data. In case padding is active the
* driver needs to know the frame size of the payload in order to calculate
* the number of bytes it needs to pad when transmitting or to cut off when
* receiving data.
*
*/
static int hdm_configure_channel(struct most_interface *iface, int channel,
struct most_channel_config *conf)
{
unsigned int num_frames;
unsigned int frame_size;
struct most_dev *mdev = to_mdev(iface);
struct device *dev = &mdev->usb_device->dev;
if (!conf) {
dev_err(dev, "Bad config pointer.\n");
return -EINVAL;
}
if (channel < 0 || channel >= iface->num_channels) {
dev_err(dev, "Channel ID out of range.\n");
return -EINVAL;
}
mdev->is_channel_healthy[channel] = true;
mdev->clear_work[channel].channel = channel;
mdev->clear_work[channel].mdev = mdev;
INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
if (!conf->num_buffers || !conf->buffer_size) {
dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
return -EINVAL;
}
if (conf->data_type != MOST_CH_SYNC &&
!(conf->data_type == MOST_CH_ISOC &&
conf->packets_per_xact != 0xFF)) {
mdev->padding_active[channel] = false;
/*
* Since the NIC's padding mode is not going to be
* used, we can skip the frame size calculations and
* move directly on to exit.
*/
goto exit;
}
mdev->padding_active[channel] = true;
frame_size = get_stream_frame_size(&mdev->dev, conf);
if (frame_size == 0 || frame_size > USB_MTU) {
dev_warn(dev, "Misconfig: frame size wrong\n");
return -EINVAL;
}
num_frames = conf->buffer_size / frame_size;
if (conf->buffer_size % frame_size) {
u16 old_size = conf->buffer_size;
conf->buffer_size = num_frames * frame_size;
dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
mdev->suffix[channel], old_size, conf->buffer_size);
}
/* calculate extra length to comply w/ HW padding */
conf->extra_len = num_frames * (USB_MTU - frame_size);
exit:
mdev->conf[channel] = *conf;
if (conf->data_type == MOST_CH_ASYNC) {
u16 ep = mdev->ep_address[channel];
if (start_sync_ep(mdev->usb_device, ep) < 0)
dev_warn(dev, "sync for ep%02x failed", ep);
}
return 0;
}
/**
* hdm_request_netinfo - request network information
* @iface: pointer to interface
* @channel: channel ID
*
* This is used as trigger to set up the link status timer that
* polls for the NI state of the INIC every 2 seconds.
*
*/
static void hdm_request_netinfo(struct most_interface *iface, int channel,
void (*on_netinfo)(struct most_interface *,
unsigned char,
unsigned char *))
{
struct most_dev *mdev = to_mdev(iface);
mdev->on_netinfo = on_netinfo;
if (!on_netinfo)
return;
mdev->link_stat_timer.expires = jiffies + HZ;
mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
}
/**
* link_stat_timer_handler - schedule work obtaining mac address and link status
* @data: pointer to USB device instance
*
* The handler runs in interrupt context. That's why we need to defer the
* tasks to a work queue.
*/
static void link_stat_timer_handler(struct timer_list *t)
{
struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
schedule_work(&mdev->poll_work_obj);
mdev->link_stat_timer.expires = jiffies + (2 * HZ);
add_timer(&mdev->link_stat_timer);
}
/**
* wq_netinfo - work queue function to deliver latest networking information
* @wq_obj: object that holds data for our deferred work to do
*
* This retrieves the network interface status of the USB INIC
*/
static void wq_netinfo(struct work_struct *wq_obj)
{
struct most_dev *mdev = to_mdev_from_work(wq_obj);
struct usb_device *usb_device = mdev->usb_device;
struct device *dev = &usb_device->dev;
u16 hi, mi, lo, link;
u8 hw_addr[6];
if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
return;
}
if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
return;
}
if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
return;
}
if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
dev_err(dev, "Vendor request 'link status' failed\n");
return;
}
hw_addr[0] = hi >> 8;
hw_addr[1] = hi;
hw_addr[2] = mi >> 8;
hw_addr[3] = mi;
hw_addr[4] = lo >> 8;
hw_addr[5] = lo;
if (mdev->on_netinfo)
mdev->on_netinfo(&mdev->iface, link, hw_addr);
}
/**
* wq_clear_halt - work queue function
* @wq_obj: work_struct object to execute
*
* This sends a clear_halt to the given USB pipe.
*/
static void wq_clear_halt(struct work_struct *wq_obj)
{
struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
struct most_dev *mdev = clear_work->mdev;
unsigned int channel = clear_work->channel;
int pipe = clear_work->pipe;
int snd_pipe;
int peer;
mutex_lock(&mdev->io_mutex);
most_stop_enqueue(&mdev->iface, channel);
usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
if (usb_clear_halt(mdev->usb_device, pipe))
dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
/* If the functional Stall condition has been set on an
* asynchronous rx channel, we need to clear the tx channel
* too, since the hardware runs its clean-up sequence on both
* channels, as they are physically one on the network.
*
* The USB interface that exposes the asynchronous channels
* contains always two endpoints, and two only.
*/
if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
mdev->conf[channel].direction == MOST_CH_RX) {
if (channel == 0)
peer = 1;
else
peer = 0;
snd_pipe = usb_sndbulkpipe(mdev->usb_device,
mdev->ep_address[peer]);
usb_clear_halt(mdev->usb_device, snd_pipe);
}
mdev->is_channel_healthy[channel] = true;
most_resume_enqueue(&mdev->iface, channel);
mutex_unlock(&mdev->io_mutex);
}
/**
* hdm_usb_fops - file operation table for USB driver
*/
static const struct file_operations hdm_usb_fops = {
.owner = THIS_MODULE,
};
/**
* usb_device_id - ID table for HCD device probing
*/
static const struct usb_device_id usbid[] = {
{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
{ } /* Terminating entry */
};
struct regs {
const char *name;
u16 reg;
};
static const struct regs ro_regs[] = {
{ "ni_state", DRCI_REG_NI_STATE },
{ "packet_bandwidth", DRCI_REG_PACKET_BW },
{ "node_address", DRCI_REG_NODE_ADDR },
{ "node_position", DRCI_REG_NODE_POS },
};
static const struct regs rw_regs[] = {
{ "mep_filter", DRCI_REG_MEP_FILTER },
{ "mep_hash0", DRCI_REG_HASH_TBL0 },
{ "mep_hash1", DRCI_REG_HASH_TBL1 },
{ "mep_hash2", DRCI_REG_HASH_TBL2 },
{ "mep_hash3", DRCI_REG_HASH_TBL3 },
{ "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
{ "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
{ "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
};
static int get_stat_reg_addr(const struct regs *regs, int size,
const char *name, u16 *reg_addr)
{
int i;
for (i = 0; i < size; i++) {
if (sysfs_streq(name, regs[i].name)) {
*reg_addr = regs[i].reg;
return 0;
}
}
return -EINVAL;
}
#define get_static_reg_addr(regs, name, reg_addr) \
get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
static ssize_t value_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
const char *name = attr->attr.name;
struct most_dci_obj *dci_obj = to_dci_obj(dev);
u16 val;
u16 reg_addr;
int err;
if (sysfs_streq(name, "arb_address"))
return snprintf(buf, PAGE_SIZE, "%04x\n", dci_obj->reg_addr);
if (sysfs_streq(name, "arb_value"))
reg_addr = dci_obj->reg_addr;
else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
get_static_reg_addr(rw_regs, name, &reg_addr))
return -EINVAL;
err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
if (err < 0)
return err;
return snprintf(buf, PAGE_SIZE, "%04x\n", val);
}
static ssize_t value_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u16 val;
u16 reg_addr;
const char *name = attr->attr.name;
struct most_dci_obj *dci_obj = to_dci_obj(dev);
struct usb_device *usb_dev = dci_obj->usb_device;
int err;
err = kstrtou16(buf, 16, &val);
if (err)
return err;
if (sysfs_streq(name, "arb_address")) {
dci_obj->reg_addr = val;
return count;
}
if (sysfs_streq(name, "arb_value"))
err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
else if (sysfs_streq(name, "sync_ep"))
err = start_sync_ep(usb_dev, val);
else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
err = drci_wr_reg(usb_dev, reg_addr, val);
else
return -EINVAL;
if (err < 0)
return err;
return count;
}
static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
static DEVICE_ATTR(node_address, 0444, value_show, NULL);
static DEVICE_ATTR(node_position, 0444, value_show, NULL);
static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
static struct attribute *dci_attrs[] = {
&dev_attr_ni_state.attr,
&dev_attr_packet_bandwidth.attr,
&dev_attr_node_address.attr,
&dev_attr_node_position.attr,
&dev_attr_sync_ep.attr,
&dev_attr_mep_filter.attr,
&dev_attr_mep_hash0.attr,
&dev_attr_mep_hash1.attr,
&dev_attr_mep_hash2.attr,
&dev_attr_mep_hash3.attr,
&dev_attr_mep_eui48_hi.attr,
&dev_attr_mep_eui48_mi.attr,
&dev_attr_mep_eui48_lo.attr,
&dev_attr_arb_address.attr,
&dev_attr_arb_value.attr,
NULL,
};
ATTRIBUTE_GROUPS(dci);
static void release_dci(struct device *dev)
{
struct most_dci_obj *dci = to_dci_obj(dev);
put_device(dev->parent);
kfree(dci);
}
static void release_mdev(struct device *dev)
{
struct most_dev *mdev = to_mdev_from_dev(dev);
kfree(mdev);
}
/**
* hdm_probe - probe function of USB device driver
* @interface: Interface of the attached USB device
* @id: Pointer to the USB ID table.
*
* This allocates and initializes the device instance, adds the new
* entry to the internal list, scans the USB descriptors and registers
* the interface with the core.
* Additionally, the DCI objects are created and the hardware is sync'd.
*
* Return 0 on success. In case of an error a negative number is returned.
*/
static int
hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
struct usb_device *usb_dev = interface_to_usbdev(interface);
struct device *dev = &usb_dev->dev;
struct most_dev *mdev;
unsigned int i;
unsigned int num_endpoints;
struct most_channel_capability *tmp_cap;
struct usb_endpoint_descriptor *ep_desc;
int ret = -ENOMEM;
mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
if (!mdev)
return -ENOMEM;
usb_set_intfdata(interface, mdev);
num_endpoints = usb_iface_desc->desc.bNumEndpoints;
if (num_endpoints > MAX_NUM_ENDPOINTS) {
kfree(mdev);
return -EINVAL;
}
mutex_init(&mdev->io_mutex);
INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
mdev->usb_device = usb_dev;
mdev->link_stat_timer.expires = jiffies + (2 * HZ);
mdev->iface.mod = hdm_usb_fops.owner;
mdev->iface.dev = &mdev->dev;
mdev->iface.driver_dev = &interface->dev;
mdev->iface.interface = ITYPE_USB;
mdev->iface.configure = hdm_configure_channel;
mdev->iface.request_netinfo = hdm_request_netinfo;
mdev->iface.enqueue = hdm_enqueue;
mdev->iface.poison_channel = hdm_poison_channel;
mdev->iface.dma_alloc = hdm_dma_alloc;
mdev->iface.dma_free = hdm_dma_free;
mdev->iface.description = mdev->description;
mdev->iface.num_channels = num_endpoints;
snprintf(mdev->description, sizeof(mdev->description),
"%d-%s:%d.%d",
usb_dev->bus->busnum,
usb_dev->devpath,
usb_dev->config->desc.bConfigurationValue,
usb_iface_desc->desc.bInterfaceNumber);
mdev->dev.init_name = mdev->description;
mdev->dev.parent = &interface->dev;
mdev->dev.release = release_mdev;
mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
if (!mdev->conf)
goto err_free_mdev;
mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
if (!mdev->cap)
goto err_free_conf;
mdev->iface.channel_vector = mdev->cap;
mdev->ep_address =
kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
if (!mdev->ep_address)
goto err_free_cap;
mdev->busy_urbs =
kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
if (!mdev->busy_urbs)
goto err_free_ep_address;
tmp_cap = mdev->cap;
for (i = 0; i < num_endpoints; i++) {
ep_desc = &usb_iface_desc->endpoint[i].desc;
mdev->ep_address[i] = ep_desc->bEndpointAddress;
mdev->padding_active[i] = false;
mdev->is_channel_healthy[i] = true;
snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
mdev->ep_address[i]);
tmp_cap->name_suffix = &mdev->suffix[i][0];
tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
MOST_CH_ISOC | MOST_CH_SYNC;
if (usb_endpoint_dir_in(ep_desc))
tmp_cap->direction = MOST_CH_RX;
else
tmp_cap->direction = MOST_CH_TX;
tmp_cap++;
init_usb_anchor(&mdev->busy_urbs[i]);
spin_lock_init(&mdev->channel_lock[i]);
}
dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
le16_to_cpu(usb_dev->descriptor.idVendor),
le16_to_cpu(usb_dev->descriptor.idProduct),
usb_dev->bus->busnum,
usb_dev->devnum);
dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
usb_dev->bus->busnum,
usb_dev->devpath,
usb_dev->config->desc.bConfigurationValue,
usb_iface_desc->desc.bInterfaceNumber);
ret = most_register_interface(&mdev->iface);
if (ret)
goto err_free_busy_urbs;
mutex_lock(&mdev->io_mutex);
if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
if (!mdev->dci) {
mutex_unlock(&mdev->io_mutex);
most_deregister_interface(&mdev->iface);
ret = -ENOMEM;
goto err_free_busy_urbs;
}
mdev->dci->dev.init_name = "dci";
mdev->dci->dev.parent = get_device(mdev->iface.dev);
mdev->dci->dev.groups = dci_groups;
mdev->dci->dev.release = release_dci;
if (device_register(&mdev->dci->dev)) {
mutex_unlock(&mdev->io_mutex);
most_deregister_interface(&mdev->iface);
ret = -ENOMEM;
goto err_free_dci;
}
mdev->dci->usb_device = mdev->usb_device;
}
mutex_unlock(&mdev->io_mutex);
return 0;
err_free_dci:
put_device(&mdev->dci->dev);
err_free_busy_urbs:
kfree(mdev->busy_urbs);
err_free_ep_address:
kfree(mdev->ep_address);
err_free_cap:
kfree(mdev->cap);
err_free_conf:
kfree(mdev->conf);
err_free_mdev:
put_device(&mdev->dev);
return ret;
}
/**
* hdm_disconnect - disconnect function of USB device driver
* @interface: Interface of the attached USB device
*
* This deregisters the interface with the core, removes the kernel timer
* and frees resources.
*
* Context: hub kernel thread
*/
static void hdm_disconnect(struct usb_interface *interface)
{
struct most_dev *mdev = usb_get_intfdata(interface);
mutex_lock(&mdev->io_mutex);
usb_set_intfdata(interface, NULL);
mdev->usb_device = NULL;
mutex_unlock(&mdev->io_mutex);
del_timer_sync(&mdev->link_stat_timer);
cancel_work_sync(&mdev->poll_work_obj);
if (mdev->dci)
device_unregister(&mdev->dci->dev);
most_deregister_interface(&mdev->iface);
kfree(mdev->busy_urbs);
kfree(mdev->cap);
kfree(mdev->conf);
kfree(mdev->ep_address);
put_device(&mdev->dci->dev);
put_device(&mdev->dev);
}
static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
{
struct most_dev *mdev = usb_get_intfdata(interface);
int i;
mutex_lock(&mdev->io_mutex);
for (i = 0; i < mdev->iface.num_channels; i++) {
most_stop_enqueue(&mdev->iface, i);
usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
}
mutex_unlock(&mdev->io_mutex);
return 0;
}
static int hdm_resume(struct usb_interface *interface)
{
struct most_dev *mdev = usb_get_intfdata(interface);
int i;
mutex_lock(&mdev->io_mutex);
for (i = 0; i < mdev->iface.num_channels; i++)
most_resume_enqueue(&mdev->iface, i);
mutex_unlock(&mdev->io_mutex);
return 0;
}
static struct usb_driver hdm_usb = {
.name = "hdm_usb",
.id_table = usbid,
.probe = hdm_probe,
.disconnect = hdm_disconnect,
.resume = hdm_resume,
.suspend = hdm_suspend,
};
module_usb_driver(hdm_usb);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
MODULE_DESCRIPTION("HDM_4_USB");