mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 07:50:04 +00:00
8246b478a2
This fixes a problem that was supposed to be addressed by commit 6eefb79d6f5bc ("pwm: sun4i: Remove erroneous else branch") - backlight could not be switched off on some Allwinner A20. The commit was correct, but was not a reliable fix for the problem, which was timing related. The real problem for the backlight switching problem was that sleeping for a full period did not work, because delay_us is always zero. It is zero because the period (plus 1 microsecond) is rounded down to the next "jiffies", but the period is less than one jiffy. On my Cubieboard 2, the period is 5ms, and 1 jiffy (at the default HZ=100) is 10ms, so nsecs_to_jiffies(10ms+1us)=0. The roundtrip from nanoseconds to jiffies and back to microseconds is an unnecessary loss of precision; always rounding down (via nsecs_to_jiffies()) then causes the breakage. This patch eliminates this roundtrip, and directly converts from nanoseconds to microseconds (for usleep_range()), using DIV_ROUND_UP_ULL() to force rounding up. This way, the sleep time is never zero, and after the sleep, we are guaranteed to be in a different period, and the device is ready for another control command for sure. Signed-off-by: Max Kellermann <max.kellermann@gmail.com> Acked-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
502 lines
13 KiB
C
502 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Driver for Allwinner sun4i Pulse Width Modulation Controller
|
|
*
|
|
* Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
|
|
*
|
|
* Limitations:
|
|
* - When outputing the source clock directly, the PWM logic will be bypassed
|
|
* and the currently running period is not guaranteed to be completed
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pwm.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/time.h>
|
|
|
|
#define PWM_CTRL_REG 0x0
|
|
|
|
#define PWM_CH_PRD_BASE 0x4
|
|
#define PWM_CH_PRD_OFFSET 0x4
|
|
#define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
|
|
|
|
#define PWMCH_OFFSET 15
|
|
#define PWM_PRESCAL_MASK GENMASK(3, 0)
|
|
#define PWM_PRESCAL_OFF 0
|
|
#define PWM_EN BIT(4)
|
|
#define PWM_ACT_STATE BIT(5)
|
|
#define PWM_CLK_GATING BIT(6)
|
|
#define PWM_MODE BIT(7)
|
|
#define PWM_PULSE BIT(8)
|
|
#define PWM_BYPASS BIT(9)
|
|
|
|
#define PWM_RDY_BASE 28
|
|
#define PWM_RDY_OFFSET 1
|
|
#define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
|
|
|
|
#define PWM_PRD(prd) (((prd) - 1) << 16)
|
|
#define PWM_PRD_MASK GENMASK(15, 0)
|
|
|
|
#define PWM_DTY_MASK GENMASK(15, 0)
|
|
|
|
#define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
|
|
#define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
|
|
#define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
|
|
|
|
#define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
|
|
|
|
static const u32 prescaler_table[] = {
|
|
120,
|
|
180,
|
|
240,
|
|
360,
|
|
480,
|
|
0,
|
|
0,
|
|
0,
|
|
12000,
|
|
24000,
|
|
36000,
|
|
48000,
|
|
72000,
|
|
0,
|
|
0,
|
|
0, /* Actually 1 but tested separately */
|
|
};
|
|
|
|
struct sun4i_pwm_data {
|
|
bool has_prescaler_bypass;
|
|
bool has_direct_mod_clk_output;
|
|
unsigned int npwm;
|
|
};
|
|
|
|
struct sun4i_pwm_chip {
|
|
struct pwm_chip chip;
|
|
struct clk *bus_clk;
|
|
struct clk *clk;
|
|
struct reset_control *rst;
|
|
void __iomem *base;
|
|
spinlock_t ctrl_lock;
|
|
const struct sun4i_pwm_data *data;
|
|
};
|
|
|
|
static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
|
|
{
|
|
return container_of(chip, struct sun4i_pwm_chip, chip);
|
|
}
|
|
|
|
static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
|
|
unsigned long offset)
|
|
{
|
|
return readl(chip->base + offset);
|
|
}
|
|
|
|
static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
|
|
u32 val, unsigned long offset)
|
|
{
|
|
writel(val, chip->base + offset);
|
|
}
|
|
|
|
static void sun4i_pwm_get_state(struct pwm_chip *chip,
|
|
struct pwm_device *pwm,
|
|
struct pwm_state *state)
|
|
{
|
|
struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
|
|
u64 clk_rate, tmp;
|
|
u32 val;
|
|
unsigned int prescaler;
|
|
|
|
clk_rate = clk_get_rate(sun4i_pwm->clk);
|
|
|
|
val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
|
|
|
|
/*
|
|
* PWM chapter in H6 manual has a diagram which explains that if bypass
|
|
* bit is set, no other setting has any meaning. Even more, experiment
|
|
* proved that also enable bit is ignored in this case.
|
|
*/
|
|
if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
|
|
sun4i_pwm->data->has_direct_mod_clk_output) {
|
|
state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
|
|
state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
|
|
state->polarity = PWM_POLARITY_NORMAL;
|
|
state->enabled = true;
|
|
return;
|
|
}
|
|
|
|
if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
|
|
sun4i_pwm->data->has_prescaler_bypass)
|
|
prescaler = 1;
|
|
else
|
|
prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
|
|
|
|
if (prescaler == 0)
|
|
return;
|
|
|
|
if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
|
|
state->polarity = PWM_POLARITY_NORMAL;
|
|
else
|
|
state->polarity = PWM_POLARITY_INVERSED;
|
|
|
|
if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
|
|
BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
|
|
state->enabled = true;
|
|
else
|
|
state->enabled = false;
|
|
|
|
val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
|
|
|
|
tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
|
|
state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
|
|
|
|
tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
|
|
state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
|
|
}
|
|
|
|
static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
|
|
const struct pwm_state *state,
|
|
u32 *dty, u32 *prd, unsigned int *prsclr,
|
|
bool *bypass)
|
|
{
|
|
u64 clk_rate, div = 0;
|
|
unsigned int prescaler = 0;
|
|
|
|
clk_rate = clk_get_rate(sun4i_pwm->clk);
|
|
|
|
*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
|
|
state->enabled &&
|
|
(state->period * clk_rate >= NSEC_PER_SEC) &&
|
|
(state->period * clk_rate < 2 * NSEC_PER_SEC) &&
|
|
(state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
|
|
|
|
/* Skip calculation of other parameters if we bypass them */
|
|
if (*bypass)
|
|
return 0;
|
|
|
|
if (sun4i_pwm->data->has_prescaler_bypass) {
|
|
/* First, test without any prescaler when available */
|
|
prescaler = PWM_PRESCAL_MASK;
|
|
/*
|
|
* When not using any prescaler, the clock period in nanoseconds
|
|
* is not an integer so round it half up instead of
|
|
* truncating to get less surprising values.
|
|
*/
|
|
div = clk_rate * state->period + NSEC_PER_SEC / 2;
|
|
do_div(div, NSEC_PER_SEC);
|
|
if (div - 1 > PWM_PRD_MASK)
|
|
prescaler = 0;
|
|
}
|
|
|
|
if (prescaler == 0) {
|
|
/* Go up from the first divider */
|
|
for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
|
|
unsigned int pval = prescaler_table[prescaler];
|
|
|
|
if (!pval)
|
|
continue;
|
|
|
|
div = clk_rate;
|
|
do_div(div, pval);
|
|
div = div * state->period;
|
|
do_div(div, NSEC_PER_SEC);
|
|
if (div - 1 <= PWM_PRD_MASK)
|
|
break;
|
|
}
|
|
|
|
if (div - 1 > PWM_PRD_MASK)
|
|
return -EINVAL;
|
|
}
|
|
|
|
*prd = div;
|
|
div *= state->duty_cycle;
|
|
do_div(div, state->period);
|
|
*dty = div;
|
|
*prsclr = prescaler;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
const struct pwm_state *state)
|
|
{
|
|
struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
|
|
struct pwm_state cstate;
|
|
u32 ctrl, duty = 0, period = 0, val;
|
|
int ret;
|
|
unsigned int delay_us, prescaler = 0;
|
|
bool bypass;
|
|
|
|
pwm_get_state(pwm, &cstate);
|
|
|
|
if (!cstate.enabled) {
|
|
ret = clk_prepare_enable(sun4i_pwm->clk);
|
|
if (ret) {
|
|
dev_err(chip->dev, "failed to enable PWM clock\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
|
|
&bypass);
|
|
if (ret) {
|
|
dev_err(chip->dev, "period exceeds the maximum value\n");
|
|
if (!cstate.enabled)
|
|
clk_disable_unprepare(sun4i_pwm->clk);
|
|
return ret;
|
|
}
|
|
|
|
spin_lock(&sun4i_pwm->ctrl_lock);
|
|
ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
|
|
|
|
if (sun4i_pwm->data->has_direct_mod_clk_output) {
|
|
if (bypass) {
|
|
ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
|
|
/* We can skip other parameter */
|
|
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
|
|
spin_unlock(&sun4i_pwm->ctrl_lock);
|
|
return 0;
|
|
}
|
|
|
|
ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
|
|
}
|
|
|
|
if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
|
|
/* Prescaler changed, the clock has to be gated */
|
|
ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
|
|
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
|
|
|
|
ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
|
|
ctrl |= BIT_CH(prescaler, pwm->hwpwm);
|
|
}
|
|
|
|
val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
|
|
sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
|
|
|
|
if (state->polarity != PWM_POLARITY_NORMAL)
|
|
ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
|
|
else
|
|
ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
|
|
|
|
ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
|
|
|
|
if (state->enabled)
|
|
ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
|
|
|
|
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
|
|
|
|
spin_unlock(&sun4i_pwm->ctrl_lock);
|
|
|
|
if (state->enabled)
|
|
return 0;
|
|
|
|
/* We need a full period to elapse before disabling the channel. */
|
|
delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
|
|
if ((delay_us / 500) > MAX_UDELAY_MS)
|
|
msleep(delay_us / 1000 + 1);
|
|
else
|
|
usleep_range(delay_us, delay_us * 2);
|
|
|
|
spin_lock(&sun4i_pwm->ctrl_lock);
|
|
ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
|
|
ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
|
|
ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
|
|
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
|
|
spin_unlock(&sun4i_pwm->ctrl_lock);
|
|
|
|
clk_disable_unprepare(sun4i_pwm->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct pwm_ops sun4i_pwm_ops = {
|
|
.apply = sun4i_pwm_apply,
|
|
.get_state = sun4i_pwm_get_state,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
|
|
.has_prescaler_bypass = false,
|
|
.npwm = 2,
|
|
};
|
|
|
|
static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
|
|
.has_prescaler_bypass = true,
|
|
.npwm = 2,
|
|
};
|
|
|
|
static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
|
|
.has_prescaler_bypass = true,
|
|
.npwm = 1,
|
|
};
|
|
|
|
static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
|
|
.has_prescaler_bypass = true,
|
|
.has_direct_mod_clk_output = true,
|
|
.npwm = 1,
|
|
};
|
|
|
|
static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
|
|
.has_prescaler_bypass = true,
|
|
.has_direct_mod_clk_output = true,
|
|
.npwm = 2,
|
|
};
|
|
|
|
static const struct of_device_id sun4i_pwm_dt_ids[] = {
|
|
{
|
|
.compatible = "allwinner,sun4i-a10-pwm",
|
|
.data = &sun4i_pwm_dual_nobypass,
|
|
}, {
|
|
.compatible = "allwinner,sun5i-a10s-pwm",
|
|
.data = &sun4i_pwm_dual_bypass,
|
|
}, {
|
|
.compatible = "allwinner,sun5i-a13-pwm",
|
|
.data = &sun4i_pwm_single_bypass,
|
|
}, {
|
|
.compatible = "allwinner,sun7i-a20-pwm",
|
|
.data = &sun4i_pwm_dual_bypass,
|
|
}, {
|
|
.compatible = "allwinner,sun8i-h3-pwm",
|
|
.data = &sun4i_pwm_single_bypass,
|
|
}, {
|
|
.compatible = "allwinner,sun50i-a64-pwm",
|
|
.data = &sun50i_a64_pwm_data,
|
|
}, {
|
|
.compatible = "allwinner,sun50i-h6-pwm",
|
|
.data = &sun50i_h6_pwm_data,
|
|
}, {
|
|
/* sentinel */
|
|
},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
|
|
|
|
static int sun4i_pwm_probe(struct platform_device *pdev)
|
|
{
|
|
struct sun4i_pwm_chip *sun4ichip;
|
|
int ret;
|
|
|
|
sun4ichip = devm_kzalloc(&pdev->dev, sizeof(*sun4ichip), GFP_KERNEL);
|
|
if (!sun4ichip)
|
|
return -ENOMEM;
|
|
|
|
sun4ichip->data = of_device_get_match_data(&pdev->dev);
|
|
if (!sun4ichip->data)
|
|
return -ENODEV;
|
|
|
|
sun4ichip->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(sun4ichip->base))
|
|
return PTR_ERR(sun4ichip->base);
|
|
|
|
/*
|
|
* All hardware variants need a source clock that is divided and
|
|
* then feeds the counter that defines the output wave form. In the
|
|
* device tree this clock is either unnamed or called "mod".
|
|
* Some variants (e.g. H6) need another clock to access the
|
|
* hardware registers; this is called "bus".
|
|
* So we request "mod" first (and ignore the corner case that a
|
|
* parent provides a "mod" clock while the right one would be the
|
|
* unnamed one of the PWM device) and if this is not found we fall
|
|
* back to the first clock of the PWM.
|
|
*/
|
|
sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod");
|
|
if (IS_ERR(sun4ichip->clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
|
|
"get mod clock failed\n");
|
|
|
|
if (!sun4ichip->clk) {
|
|
sun4ichip->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(sun4ichip->clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk),
|
|
"get unnamed clock failed\n");
|
|
}
|
|
|
|
sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
|
|
if (IS_ERR(sun4ichip->bus_clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk),
|
|
"get bus clock failed\n");
|
|
|
|
sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
|
|
if (IS_ERR(sun4ichip->rst))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst),
|
|
"get reset failed\n");
|
|
|
|
/* Deassert reset */
|
|
ret = reset_control_deassert(sun4ichip->rst);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
|
|
ERR_PTR(ret));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We're keeping the bus clock on for the sake of simplicity.
|
|
* Actually it only needs to be on for hardware register accesses.
|
|
*/
|
|
ret = clk_prepare_enable(sun4ichip->bus_clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
|
|
ERR_PTR(ret));
|
|
goto err_bus;
|
|
}
|
|
|
|
sun4ichip->chip.dev = &pdev->dev;
|
|
sun4ichip->chip.ops = &sun4i_pwm_ops;
|
|
sun4ichip->chip.npwm = sun4ichip->data->npwm;
|
|
|
|
spin_lock_init(&sun4ichip->ctrl_lock);
|
|
|
|
ret = pwmchip_add(&sun4ichip->chip);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
|
|
goto err_pwm_add;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, sun4ichip);
|
|
|
|
return 0;
|
|
|
|
err_pwm_add:
|
|
clk_disable_unprepare(sun4ichip->bus_clk);
|
|
err_bus:
|
|
reset_control_assert(sun4ichip->rst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sun4i_pwm_remove(struct platform_device *pdev)
|
|
{
|
|
struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
|
|
|
|
pwmchip_remove(&sun4ichip->chip);
|
|
|
|
clk_disable_unprepare(sun4ichip->bus_clk);
|
|
reset_control_assert(sun4ichip->rst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver sun4i_pwm_driver = {
|
|
.driver = {
|
|
.name = "sun4i-pwm",
|
|
.of_match_table = sun4i_pwm_dt_ids,
|
|
},
|
|
.probe = sun4i_pwm_probe,
|
|
.remove = sun4i_pwm_remove,
|
|
};
|
|
module_platform_driver(sun4i_pwm_driver);
|
|
|
|
MODULE_ALIAS("platform:sun4i-pwm");
|
|
MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
|
|
MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
|
|
MODULE_LICENSE("GPL v2");
|