mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-14 09:47:20 +00:00
91a69c9646
This patch adds code to deal with conversion of logical cpu to cbe nodes. It removes code that assummed there were two logical CPUs per CBE. Signed-off-by: Christian Krafft <krafft@de.ibm.com> Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
765 lines
20 KiB
C
765 lines
20 KiB
C
/*
|
|
* Cell Broadband Engine OProfile Support
|
|
*
|
|
* (C) Copyright IBM Corporation 2006
|
|
*
|
|
* Author: David Erb (djerb@us.ibm.com)
|
|
* Modifications:
|
|
* Carl Love <carll@us.ibm.com>
|
|
* Maynard Johnson <maynardj@us.ibm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/oprofile.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/timer.h>
|
|
#include <asm/cell-pmu.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/io.h>
|
|
#include <asm/oprofile_impl.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/system.h>
|
|
|
|
#include "../platforms/cell/interrupt.h"
|
|
#include "../platforms/cell/cbe_regs.h"
|
|
|
|
#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
|
|
#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
|
|
* PPU_CYCLES event
|
|
*/
|
|
#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
|
|
|
|
#define NUM_THREADS 2 /* number of physical threads in
|
|
* physical processor
|
|
*/
|
|
#define NUM_TRACE_BUS_WORDS 4
|
|
#define NUM_INPUT_BUS_WORDS 2
|
|
|
|
|
|
struct pmc_cntrl_data {
|
|
unsigned long vcntr;
|
|
unsigned long evnts;
|
|
unsigned long masks;
|
|
unsigned long enabled;
|
|
};
|
|
|
|
/*
|
|
* ibm,cbe-perftools rtas parameters
|
|
*/
|
|
|
|
struct pm_signal {
|
|
u16 cpu; /* Processor to modify */
|
|
u16 sub_unit; /* hw subunit this applies to (if applicable) */
|
|
short int signal_group; /* Signal Group to Enable/Disable */
|
|
u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
|
|
* Bus Word(s) (bitmask)
|
|
*/
|
|
u8 bit; /* Trigger/Event bit (if applicable) */
|
|
};
|
|
|
|
/*
|
|
* rtas call arguments
|
|
*/
|
|
enum {
|
|
SUBFUNC_RESET = 1,
|
|
SUBFUNC_ACTIVATE = 2,
|
|
SUBFUNC_DEACTIVATE = 3,
|
|
|
|
PASSTHRU_IGNORE = 0,
|
|
PASSTHRU_ENABLE = 1,
|
|
PASSTHRU_DISABLE = 2,
|
|
};
|
|
|
|
struct pm_cntrl {
|
|
u16 enable;
|
|
u16 stop_at_max;
|
|
u16 trace_mode;
|
|
u16 freeze;
|
|
u16 count_mode;
|
|
};
|
|
|
|
static struct {
|
|
u32 group_control;
|
|
u32 debug_bus_control;
|
|
struct pm_cntrl pm_cntrl;
|
|
u32 pm07_cntrl[NR_PHYS_CTRS];
|
|
} pm_regs;
|
|
|
|
#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
|
|
#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
|
|
#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
|
|
#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
|
|
#define GET_COUNT_CYCLES(x) (x & 0x00000001)
|
|
#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
|
|
|
|
static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
|
|
|
|
static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
|
|
|
|
/* Interpetation of hdw_thread:
|
|
* 0 - even virtual cpus 0, 2, 4,...
|
|
* 1 - odd virtual cpus 1, 3, 5, ...
|
|
*/
|
|
static u32 hdw_thread;
|
|
|
|
static u32 virt_cntr_inter_mask;
|
|
static struct timer_list timer_virt_cntr;
|
|
|
|
/* pm_signal needs to be global since it is initialized in
|
|
* cell_reg_setup at the time when the necessary information
|
|
* is available.
|
|
*/
|
|
static struct pm_signal pm_signal[NR_PHYS_CTRS];
|
|
static int pm_rtas_token;
|
|
|
|
static u32 reset_value[NR_PHYS_CTRS];
|
|
static int num_counters;
|
|
static int oprofile_running;
|
|
static spinlock_t virt_cntr_lock = SPIN_LOCK_UNLOCKED;
|
|
|
|
static u32 ctr_enabled;
|
|
|
|
static unsigned char trace_bus[NUM_TRACE_BUS_WORDS];
|
|
static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
|
|
|
|
/*
|
|
* Firmware interface functions
|
|
*/
|
|
static int
|
|
rtas_ibm_cbe_perftools(int subfunc, int passthru,
|
|
void *address, unsigned long length)
|
|
{
|
|
u64 paddr = __pa(address);
|
|
|
|
return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, passthru,
|
|
paddr >> 32, paddr & 0xffffffff, length);
|
|
}
|
|
|
|
static void pm_rtas_reset_signals(u32 node)
|
|
{
|
|
int ret;
|
|
struct pm_signal pm_signal_local;
|
|
|
|
/* The debug bus is being set to the passthru disable state.
|
|
* However, the FW still expects atleast one legal signal routing
|
|
* entry or it will return an error on the arguments. If we don't
|
|
* supply a valid entry, we must ignore all return values. Ignoring
|
|
* all return values means we might miss an error we should be
|
|
* concerned about.
|
|
*/
|
|
|
|
/* fw expects physical cpu #. */
|
|
pm_signal_local.cpu = node;
|
|
pm_signal_local.signal_group = 21;
|
|
pm_signal_local.bus_word = 1;
|
|
pm_signal_local.sub_unit = 0;
|
|
pm_signal_local.bit = 0;
|
|
|
|
ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
|
|
&pm_signal_local,
|
|
sizeof(struct pm_signal));
|
|
|
|
if (ret)
|
|
printk(KERN_WARNING "%s: rtas returned: %d\n",
|
|
__FUNCTION__, ret);
|
|
}
|
|
|
|
static void pm_rtas_activate_signals(u32 node, u32 count)
|
|
{
|
|
int ret;
|
|
int i, j;
|
|
struct pm_signal pm_signal_local[NR_PHYS_CTRS];
|
|
|
|
/* There is no debug setup required for the cycles event.
|
|
* Note that only events in the same group can be used.
|
|
* Otherwise, there will be conflicts in correctly routing
|
|
* the signals on the debug bus. It is the responsiblity
|
|
* of the OProfile user tool to check the events are in
|
|
* the same group.
|
|
*/
|
|
i = 0;
|
|
for (j = 0; j < count; j++) {
|
|
if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
|
|
|
|
/* fw expects physical cpu # */
|
|
pm_signal_local[i].cpu = node;
|
|
pm_signal_local[i].signal_group
|
|
= pm_signal[j].signal_group;
|
|
pm_signal_local[i].bus_word = pm_signal[j].bus_word;
|
|
pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
|
|
pm_signal_local[i].bit = pm_signal[j].bit;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
if (i != 0) {
|
|
ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
|
|
pm_signal_local,
|
|
i * sizeof(struct pm_signal));
|
|
|
|
if (ret)
|
|
printk(KERN_WARNING "%s: rtas returned: %d\n",
|
|
__FUNCTION__, ret);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* PM Signal functions
|
|
*/
|
|
static void set_pm_event(u32 ctr, int event, u32 unit_mask)
|
|
{
|
|
struct pm_signal *p;
|
|
u32 signal_bit;
|
|
u32 bus_word, bus_type, count_cycles, polarity, input_control;
|
|
int j, i;
|
|
|
|
if (event == PPU_CYCLES_EVENT_NUM) {
|
|
/* Special Event: Count all cpu cycles */
|
|
pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
|
|
p = &(pm_signal[ctr]);
|
|
p->signal_group = PPU_CYCLES_GRP_NUM;
|
|
p->bus_word = 1;
|
|
p->sub_unit = 0;
|
|
p->bit = 0;
|
|
goto out;
|
|
} else {
|
|
pm_regs.pm07_cntrl[ctr] = 0;
|
|
}
|
|
|
|
bus_word = GET_BUS_WORD(unit_mask);
|
|
bus_type = GET_BUS_TYPE(unit_mask);
|
|
count_cycles = GET_COUNT_CYCLES(unit_mask);
|
|
polarity = GET_POLARITY(unit_mask);
|
|
input_control = GET_INPUT_CONTROL(unit_mask);
|
|
signal_bit = (event % 100);
|
|
|
|
p = &(pm_signal[ctr]);
|
|
|
|
p->signal_group = event / 100;
|
|
p->bus_word = bus_word;
|
|
p->sub_unit = (unit_mask & 0x0000f000) >> 12;
|
|
|
|
pm_regs.pm07_cntrl[ctr] = 0;
|
|
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
|
|
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
|
|
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
|
|
|
|
/* Some of the islands signal selection is based on 64 bit words.
|
|
* The debug bus words are 32 bits, the input words to the performance
|
|
* counters are defined as 32 bits. Need to convert the 64 bit island
|
|
* specification to the appropriate 32 input bit and bus word for the
|
|
* performance counter event selection. See the CELL Performance
|
|
* monitoring signals manual and the Perf cntr hardware descriptions
|
|
* for the details.
|
|
*/
|
|
if (input_control == 0) {
|
|
if (signal_bit > 31) {
|
|
signal_bit -= 32;
|
|
if (bus_word == 0x3)
|
|
bus_word = 0x2;
|
|
else if (bus_word == 0xc)
|
|
bus_word = 0x8;
|
|
}
|
|
|
|
if ((bus_type == 0) && p->signal_group >= 60)
|
|
bus_type = 2;
|
|
if ((bus_type == 1) && p->signal_group >= 50)
|
|
bus_type = 0;
|
|
|
|
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
|
|
} else {
|
|
pm_regs.pm07_cntrl[ctr] = 0;
|
|
p->bit = signal_bit;
|
|
}
|
|
|
|
for (i = 0; i < NUM_TRACE_BUS_WORDS; i++) {
|
|
if (bus_word & (1 << i)) {
|
|
pm_regs.debug_bus_control |=
|
|
(bus_type << (31 - (2 * i) + 1));
|
|
|
|
for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
|
|
if (input_bus[j] == 0xff) {
|
|
input_bus[j] = i;
|
|
pm_regs.group_control |=
|
|
(i << (31 - i));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
;
|
|
}
|
|
|
|
static void write_pm_cntrl(int cpu)
|
|
{
|
|
/* Oprofile will use 32 bit counters, set bits 7:10 to 0
|
|
* pmregs.pm_cntrl is a global
|
|
*/
|
|
|
|
u32 val = 0;
|
|
if (pm_regs.pm_cntrl.enable == 1)
|
|
val |= CBE_PM_ENABLE_PERF_MON;
|
|
|
|
if (pm_regs.pm_cntrl.stop_at_max == 1)
|
|
val |= CBE_PM_STOP_AT_MAX;
|
|
|
|
if (pm_regs.pm_cntrl.trace_mode == 1)
|
|
val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
|
|
|
|
if (pm_regs.pm_cntrl.freeze == 1)
|
|
val |= CBE_PM_FREEZE_ALL_CTRS;
|
|
|
|
/* Routine set_count_mode must be called previously to set
|
|
* the count mode based on the user selection of user and kernel.
|
|
*/
|
|
val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
|
|
cbe_write_pm(cpu, pm_control, val);
|
|
}
|
|
|
|
static inline void
|
|
set_count_mode(u32 kernel, u32 user)
|
|
{
|
|
/* The user must specify user and kernel if they want them. If
|
|
* neither is specified, OProfile will count in hypervisor mode.
|
|
* pm_regs.pm_cntrl is a global
|
|
*/
|
|
if (kernel) {
|
|
if (user)
|
|
pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
|
|
else
|
|
pm_regs.pm_cntrl.count_mode =
|
|
CBE_COUNT_SUPERVISOR_MODE;
|
|
} else {
|
|
if (user)
|
|
pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
|
|
else
|
|
pm_regs.pm_cntrl.count_mode =
|
|
CBE_COUNT_HYPERVISOR_MODE;
|
|
}
|
|
}
|
|
|
|
static inline void enable_ctr(u32 cpu, u32 ctr, u32 * pm07_cntrl)
|
|
{
|
|
|
|
pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
|
|
cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
|
|
}
|
|
|
|
/*
|
|
* Oprofile is expected to collect data on all CPUs simultaneously.
|
|
* However, there is one set of performance counters per node. There are
|
|
* two hardware threads or virtual CPUs on each node. Hence, OProfile must
|
|
* multiplex in time the performance counter collection on the two virtual
|
|
* CPUs. The multiplexing of the performance counters is done by this
|
|
* virtual counter routine.
|
|
*
|
|
* The pmc_values used below is defined as 'per-cpu' but its use is
|
|
* more akin to 'per-node'. We need to store two sets of counter
|
|
* values per node -- one for the previous run and one for the next.
|
|
* The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
|
|
* pair of per-cpu arrays is used for storing the previous and next
|
|
* pmc values for a given node.
|
|
* NOTE: We use the per-cpu variable to improve cache performance.
|
|
*/
|
|
static void cell_virtual_cntr(unsigned long data)
|
|
{
|
|
/* This routine will alternate loading the virtual counters for
|
|
* virtual CPUs
|
|
*/
|
|
int i, prev_hdw_thread, next_hdw_thread;
|
|
u32 cpu;
|
|
unsigned long flags;
|
|
|
|
/* Make sure that the interrupt_hander and
|
|
* the virt counter are not both playing with
|
|
* the counters on the same node.
|
|
*/
|
|
|
|
spin_lock_irqsave(&virt_cntr_lock, flags);
|
|
|
|
prev_hdw_thread = hdw_thread;
|
|
|
|
/* switch the cpu handling the interrupts */
|
|
hdw_thread = 1 ^ hdw_thread;
|
|
next_hdw_thread = hdw_thread;
|
|
|
|
for (i = 0; i < num_counters; i++)
|
|
/* There are some per thread events. Must do the
|
|
* set event, for the thread that is being started
|
|
*/
|
|
set_pm_event(i,
|
|
pmc_cntrl[next_hdw_thread][i].evnts,
|
|
pmc_cntrl[next_hdw_thread][i].masks);
|
|
|
|
/* The following is done only once per each node, but
|
|
* we need cpu #, not node #, to pass to the cbe_xxx functions.
|
|
*/
|
|
for_each_online_cpu(cpu) {
|
|
if (cbe_get_hw_thread_id(cpu))
|
|
continue;
|
|
|
|
/* stop counters, save counter values, restore counts
|
|
* for previous thread
|
|
*/
|
|
cbe_disable_pm(cpu);
|
|
cbe_disable_pm_interrupts(cpu);
|
|
for (i = 0; i < num_counters; i++) {
|
|
per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
|
|
= cbe_read_ctr(cpu, i);
|
|
|
|
if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
|
|
== 0xFFFFFFFF)
|
|
/* If the cntr value is 0xffffffff, we must
|
|
* reset that to 0xfffffff0 when the current
|
|
* thread is restarted. This will generate a
|
|
* new interrupt and make sure that we never
|
|
* restore the counters to the max value. If
|
|
* the counters were restored to the max value,
|
|
* they do not increment and no interrupts are
|
|
* generated. Hence no more samples will be
|
|
* collected on that cpu.
|
|
*/
|
|
cbe_write_ctr(cpu, i, 0xFFFFFFF0);
|
|
else
|
|
cbe_write_ctr(cpu, i,
|
|
per_cpu(pmc_values,
|
|
cpu +
|
|
next_hdw_thread)[i]);
|
|
}
|
|
|
|
/* Switch to the other thread. Change the interrupt
|
|
* and control regs to be scheduled on the CPU
|
|
* corresponding to the thread to execute.
|
|
*/
|
|
for (i = 0; i < num_counters; i++) {
|
|
if (pmc_cntrl[next_hdw_thread][i].enabled) {
|
|
/* There are some per thread events.
|
|
* Must do the set event, enable_cntr
|
|
* for each cpu.
|
|
*/
|
|
enable_ctr(cpu, i,
|
|
pm_regs.pm07_cntrl);
|
|
} else {
|
|
cbe_write_pm07_control(cpu, i, 0);
|
|
}
|
|
}
|
|
|
|
/* Enable interrupts on the CPU thread that is starting */
|
|
cbe_enable_pm_interrupts(cpu, next_hdw_thread,
|
|
virt_cntr_inter_mask);
|
|
cbe_enable_pm(cpu);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&virt_cntr_lock, flags);
|
|
|
|
mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
|
|
}
|
|
|
|
static void start_virt_cntrs(void)
|
|
{
|
|
init_timer(&timer_virt_cntr);
|
|
timer_virt_cntr.function = cell_virtual_cntr;
|
|
timer_virt_cntr.data = 0UL;
|
|
timer_virt_cntr.expires = jiffies + HZ / 10;
|
|
add_timer(&timer_virt_cntr);
|
|
}
|
|
|
|
/* This function is called once for all cpus combined */
|
|
static void
|
|
cell_reg_setup(struct op_counter_config *ctr,
|
|
struct op_system_config *sys, int num_ctrs)
|
|
{
|
|
int i, j, cpu;
|
|
|
|
pm_rtas_token = rtas_token("ibm,cbe-perftools");
|
|
if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n",
|
|
__FUNCTION__);
|
|
goto out;
|
|
}
|
|
|
|
num_counters = num_ctrs;
|
|
|
|
pm_regs.group_control = 0;
|
|
pm_regs.debug_bus_control = 0;
|
|
|
|
/* setup the pm_control register */
|
|
memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl));
|
|
pm_regs.pm_cntrl.stop_at_max = 1;
|
|
pm_regs.pm_cntrl.trace_mode = 0;
|
|
pm_regs.pm_cntrl.freeze = 1;
|
|
|
|
set_count_mode(sys->enable_kernel, sys->enable_user);
|
|
|
|
/* Setup the thread 0 events */
|
|
for (i = 0; i < num_ctrs; ++i) {
|
|
|
|
pmc_cntrl[0][i].evnts = ctr[i].event;
|
|
pmc_cntrl[0][i].masks = ctr[i].unit_mask;
|
|
pmc_cntrl[0][i].enabled = ctr[i].enabled;
|
|
pmc_cntrl[0][i].vcntr = i;
|
|
|
|
for_each_possible_cpu(j)
|
|
per_cpu(pmc_values, j)[i] = 0;
|
|
}
|
|
|
|
/* Setup the thread 1 events, map the thread 0 event to the
|
|
* equivalent thread 1 event.
|
|
*/
|
|
for (i = 0; i < num_ctrs; ++i) {
|
|
if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
|
|
pmc_cntrl[1][i].evnts = ctr[i].event + 19;
|
|
else if (ctr[i].event == 2203)
|
|
pmc_cntrl[1][i].evnts = ctr[i].event;
|
|
else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
|
|
pmc_cntrl[1][i].evnts = ctr[i].event + 16;
|
|
else
|
|
pmc_cntrl[1][i].evnts = ctr[i].event;
|
|
|
|
pmc_cntrl[1][i].masks = ctr[i].unit_mask;
|
|
pmc_cntrl[1][i].enabled = ctr[i].enabled;
|
|
pmc_cntrl[1][i].vcntr = i;
|
|
}
|
|
|
|
for (i = 0; i < NUM_TRACE_BUS_WORDS; i++)
|
|
trace_bus[i] = 0xff;
|
|
|
|
for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
|
|
input_bus[i] = 0xff;
|
|
|
|
/* Our counters count up, and "count" refers to
|
|
* how much before the next interrupt, and we interrupt
|
|
* on overflow. So we calculate the starting value
|
|
* which will give us "count" until overflow.
|
|
* Then we set the events on the enabled counters.
|
|
*/
|
|
for (i = 0; i < num_counters; ++i) {
|
|
/* start with virtual counter set 0 */
|
|
if (pmc_cntrl[0][i].enabled) {
|
|
/* Using 32bit counters, reset max - count */
|
|
reset_value[i] = 0xFFFFFFFF - ctr[i].count;
|
|
set_pm_event(i,
|
|
pmc_cntrl[0][i].evnts,
|
|
pmc_cntrl[0][i].masks);
|
|
|
|
/* global, used by cell_cpu_setup */
|
|
ctr_enabled |= (1 << i);
|
|
}
|
|
}
|
|
|
|
/* initialize the previous counts for the virtual cntrs */
|
|
for_each_online_cpu(cpu)
|
|
for (i = 0; i < num_counters; ++i) {
|
|
per_cpu(pmc_values, cpu)[i] = reset_value[i];
|
|
}
|
|
out:
|
|
;
|
|
}
|
|
|
|
/* This function is called once for each cpu */
|
|
static void cell_cpu_setup(struct op_counter_config *cntr)
|
|
{
|
|
u32 cpu = smp_processor_id();
|
|
u32 num_enabled = 0;
|
|
int i;
|
|
|
|
/* There is one performance monitor per processor chip (i.e. node),
|
|
* so we only need to perform this function once per node.
|
|
*/
|
|
if (cbe_get_hw_thread_id(cpu))
|
|
goto out;
|
|
|
|
if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n",
|
|
__FUNCTION__);
|
|
goto out;
|
|
}
|
|
|
|
/* Stop all counters */
|
|
cbe_disable_pm(cpu);
|
|
cbe_disable_pm_interrupts(cpu);
|
|
|
|
cbe_write_pm(cpu, pm_interval, 0);
|
|
cbe_write_pm(cpu, pm_start_stop, 0);
|
|
cbe_write_pm(cpu, group_control, pm_regs.group_control);
|
|
cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
|
|
write_pm_cntrl(cpu);
|
|
|
|
for (i = 0; i < num_counters; ++i) {
|
|
if (ctr_enabled & (1 << i)) {
|
|
pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
|
|
num_enabled++;
|
|
}
|
|
}
|
|
|
|
pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled);
|
|
out:
|
|
;
|
|
}
|
|
|
|
static void cell_global_start(struct op_counter_config *ctr)
|
|
{
|
|
u32 cpu;
|
|
u32 interrupt_mask = 0;
|
|
u32 i;
|
|
|
|
/* This routine gets called once for the system.
|
|
* There is one performance monitor per node, so we
|
|
* only need to perform this function once per node.
|
|
*/
|
|
for_each_online_cpu(cpu) {
|
|
if (cbe_get_hw_thread_id(cpu))
|
|
continue;
|
|
|
|
interrupt_mask = 0;
|
|
|
|
for (i = 0; i < num_counters; ++i) {
|
|
if (ctr_enabled & (1 << i)) {
|
|
cbe_write_ctr(cpu, i, reset_value[i]);
|
|
enable_ctr(cpu, i, pm_regs.pm07_cntrl);
|
|
interrupt_mask |=
|
|
CBE_PM_CTR_OVERFLOW_INTR(i);
|
|
} else {
|
|
/* Disable counter */
|
|
cbe_write_pm07_control(cpu, i, 0);
|
|
}
|
|
}
|
|
|
|
cbe_get_and_clear_pm_interrupts(cpu);
|
|
cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
|
|
cbe_enable_pm(cpu);
|
|
}
|
|
|
|
virt_cntr_inter_mask = interrupt_mask;
|
|
oprofile_running = 1;
|
|
smp_wmb();
|
|
|
|
/* NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
|
|
* executed which manipulates the PMU. We start the "virtual counter"
|
|
* here so that we do not need to synchronize access to the PMU in
|
|
* the above for-loop.
|
|
*/
|
|
start_virt_cntrs();
|
|
}
|
|
|
|
static void cell_global_stop(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* This routine will be called once for the system.
|
|
* There is one performance monitor per node, so we
|
|
* only need to perform this function once per node.
|
|
*/
|
|
del_timer_sync(&timer_virt_cntr);
|
|
oprofile_running = 0;
|
|
smp_wmb();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (cbe_get_hw_thread_id(cpu))
|
|
continue;
|
|
|
|
cbe_sync_irq(cbe_cpu_to_node(cpu));
|
|
/* Stop the counters */
|
|
cbe_disable_pm(cpu);
|
|
|
|
/* Deactivate the signals */
|
|
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
|
|
|
|
/* Deactivate interrupts */
|
|
cbe_disable_pm_interrupts(cpu);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cell_handle_interrupt(struct pt_regs *regs, struct op_counter_config *ctr)
|
|
{
|
|
u32 cpu;
|
|
u64 pc;
|
|
int is_kernel;
|
|
unsigned long flags = 0;
|
|
u32 interrupt_mask;
|
|
int i;
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
/* Need to make sure the interrupt handler and the virt counter
|
|
* routine are not running at the same time. See the
|
|
* cell_virtual_cntr() routine for additional comments.
|
|
*/
|
|
spin_lock_irqsave(&virt_cntr_lock, flags);
|
|
|
|
/* Need to disable and reenable the performance counters
|
|
* to get the desired behavior from the hardware. This
|
|
* is hardware specific.
|
|
*/
|
|
|
|
cbe_disable_pm(cpu);
|
|
|
|
interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
|
|
|
|
/* If the interrupt mask has been cleared, then the virt cntr
|
|
* has cleared the interrupt. When the thread that generated
|
|
* the interrupt is restored, the data count will be restored to
|
|
* 0xffffff0 to cause the interrupt to be regenerated.
|
|
*/
|
|
|
|
if ((oprofile_running == 1) && (interrupt_mask != 0)) {
|
|
pc = regs->nip;
|
|
is_kernel = is_kernel_addr(pc);
|
|
|
|
for (i = 0; i < num_counters; ++i) {
|
|
if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
|
|
&& ctr[i].enabled) {
|
|
oprofile_add_pc(pc, is_kernel, i);
|
|
cbe_write_ctr(cpu, i, reset_value[i]);
|
|
}
|
|
}
|
|
|
|
/* The counters were frozen by the interrupt.
|
|
* Reenable the interrupt and restart the counters.
|
|
* If there was a race between the interrupt handler and
|
|
* the virtual counter routine. The virutal counter
|
|
* routine may have cleared the interrupts. Hence must
|
|
* use the virt_cntr_inter_mask to re-enable the interrupts.
|
|
*/
|
|
cbe_enable_pm_interrupts(cpu, hdw_thread,
|
|
virt_cntr_inter_mask);
|
|
|
|
/* The writes to the various performance counters only writes
|
|
* to a latch. The new values (interrupt setting bits, reset
|
|
* counter value etc.) are not copied to the actual registers
|
|
* until the performance monitor is enabled. In order to get
|
|
* this to work as desired, the permormance monitor needs to
|
|
* be disabled while writting to the latches. This is a
|
|
* HW design issue.
|
|
*/
|
|
cbe_enable_pm(cpu);
|
|
}
|
|
spin_unlock_irqrestore(&virt_cntr_lock, flags);
|
|
}
|
|
|
|
struct op_powerpc_model op_model_cell = {
|
|
.reg_setup = cell_reg_setup,
|
|
.cpu_setup = cell_cpu_setup,
|
|
.global_start = cell_global_start,
|
|
.global_stop = cell_global_stop,
|
|
.handle_interrupt = cell_handle_interrupt,
|
|
};
|