linux-next/drivers/clk/clk-scmi.c
Cristian Marussi 2641ee13c4 clk: scmi: Allocate CLK operations dynamically
SCMI Clocks descriptors expose an increasing number of properties, thing
which, in turn, leads to a varying set of supported CLK operations to be
associated with each clock.

Providing statically pre-defined CLK operations structs for all the
possible combinations of allowed clock features is becoming cumbersome and
error-prone.

Allocate the per-clock operations descriptors dynamically and populate it
with the strictly needed set of operations depending on the advertised
clock properties: one descriptor is created for each distinct combination
of clock operations, so minimizing the number of clk_ops structures to the
strictly minimum needed.

CC: Michael Turquette <mturquette@baylibre.com>
CC: Stephen Boyd <sboyd@kernel.org>
CC: linux-clk@vger.kernel.org
Signed-off-by: Cristian Marussi <cristian.marussi@arm.com>
Link: https://lore.kernel.org/r/20240415163649.895268-2-cristian.marussi@arm.com
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2024-04-22 17:16:38 -07:00

433 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Power Interface (SCMI) Protocol based clock driver
*
* Copyright (C) 2018-2024 ARM Ltd.
*/
#include <linux/bits.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/scmi_protocol.h>
#include <asm/div64.h>
#define NOT_ATOMIC false
#define ATOMIC true
enum scmi_clk_feats {
SCMI_CLK_ATOMIC_SUPPORTED,
SCMI_CLK_FEATS_COUNT
};
#define SCMI_MAX_CLK_OPS BIT(SCMI_CLK_FEATS_COUNT)
static const struct scmi_clk_proto_ops *scmi_proto_clk_ops;
struct scmi_clk {
u32 id;
struct device *dev;
struct clk_hw hw;
const struct scmi_clock_info *info;
const struct scmi_protocol_handle *ph;
struct clk_parent_data *parent_data;
};
#define to_scmi_clk(clk) container_of(clk, struct scmi_clk, hw)
static unsigned long scmi_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
int ret;
u64 rate;
struct scmi_clk *clk = to_scmi_clk(hw);
ret = scmi_proto_clk_ops->rate_get(clk->ph, clk->id, &rate);
if (ret)
return 0;
return rate;
}
static long scmi_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u64 fmin, fmax, ftmp;
struct scmi_clk *clk = to_scmi_clk(hw);
/*
* We can't figure out what rate it will be, so just return the
* rate back to the caller. scmi_clk_recalc_rate() will be called
* after the rate is set and we'll know what rate the clock is
* running at then.
*/
if (clk->info->rate_discrete)
return rate;
fmin = clk->info->range.min_rate;
fmax = clk->info->range.max_rate;
if (rate <= fmin)
return fmin;
else if (rate >= fmax)
return fmax;
ftmp = rate - fmin;
ftmp += clk->info->range.step_size - 1; /* to round up */
do_div(ftmp, clk->info->range.step_size);
return ftmp * clk->info->range.step_size + fmin;
}
static int scmi_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->rate_set(clk->ph, clk->id, rate);
}
static int scmi_clk_set_parent(struct clk_hw *hw, u8 parent_index)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->parent_set(clk->ph, clk->id, parent_index);
}
static u8 scmi_clk_get_parent(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
u32 parent_id, p_idx;
int ret;
ret = scmi_proto_clk_ops->parent_get(clk->ph, clk->id, &parent_id);
if (ret)
return 0;
for (p_idx = 0; p_idx < clk->info->num_parents; p_idx++) {
if (clk->parent_data[p_idx].index == parent_id)
break;
}
if (p_idx == clk->info->num_parents)
return 0;
return p_idx;
}
static int scmi_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
/*
* Suppose all the requested rates are supported, and let firmware
* to handle the left work.
*/
return 0;
}
static int scmi_clk_enable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->enable(clk->ph, clk->id, NOT_ATOMIC);
}
static void scmi_clk_disable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
scmi_proto_clk_ops->disable(clk->ph, clk->id, NOT_ATOMIC);
}
static int scmi_clk_atomic_enable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return scmi_proto_clk_ops->enable(clk->ph, clk->id, ATOMIC);
}
static void scmi_clk_atomic_disable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
scmi_proto_clk_ops->disable(clk->ph, clk->id, ATOMIC);
}
static int scmi_clk_atomic_is_enabled(struct clk_hw *hw)
{
int ret;
bool enabled = false;
struct scmi_clk *clk = to_scmi_clk(hw);
ret = scmi_proto_clk_ops->state_get(clk->ph, clk->id, &enabled, ATOMIC);
if (ret)
dev_warn(clk->dev,
"Failed to get state for clock ID %d\n", clk->id);
return !!enabled;
}
static int scmi_clk_ops_init(struct device *dev, struct scmi_clk *sclk,
const struct clk_ops *scmi_ops)
{
int ret;
unsigned long min_rate, max_rate;
struct clk_init_data init = {
.flags = CLK_GET_RATE_NOCACHE,
.num_parents = sclk->info->num_parents,
.ops = scmi_ops,
.name = sclk->info->name,
.parent_data = sclk->parent_data,
};
sclk->hw.init = &init;
ret = devm_clk_hw_register(dev, &sclk->hw);
if (ret)
return ret;
if (sclk->info->rate_discrete) {
int num_rates = sclk->info->list.num_rates;
if (num_rates <= 0)
return -EINVAL;
min_rate = sclk->info->list.rates[0];
max_rate = sclk->info->list.rates[num_rates - 1];
} else {
min_rate = sclk->info->range.min_rate;
max_rate = sclk->info->range.max_rate;
}
clk_hw_set_rate_range(&sclk->hw, min_rate, max_rate);
return ret;
}
/**
* scmi_clk_ops_alloc() - Alloc and configure clock operations
* @dev: A device reference for devres
* @feats_key: A bitmap representing the desired clk_ops capabilities
*
* Allocate and configure a proper set of clock operations depending on the
* specifically required SCMI clock features.
*
* Return: A pointer to the allocated and configured clk_ops on success,
* or NULL on allocation failure.
*/
static const struct clk_ops *
scmi_clk_ops_alloc(struct device *dev, unsigned long feats_key)
{
struct clk_ops *ops;
ops = devm_kzalloc(dev, sizeof(*ops), GFP_KERNEL);
if (!ops)
return NULL;
/*
* We can provide enable/disable/is_enabled atomic callbacks only if the
* underlying SCMI transport for an SCMI instance is configured to
* handle SCMI commands in an atomic manner.
*
* When no SCMI atomic transport support is available we instead provide
* only the prepare/unprepare API, as allowed by the clock framework
* when atomic calls are not available.
*/
if (feats_key & BIT(SCMI_CLK_ATOMIC_SUPPORTED)) {
ops->enable = scmi_clk_atomic_enable;
ops->disable = scmi_clk_atomic_disable;
ops->is_enabled = scmi_clk_atomic_is_enabled;
} else {
ops->prepare = scmi_clk_enable;
ops->unprepare = scmi_clk_disable;
}
/* Rate ops */
ops->recalc_rate = scmi_clk_recalc_rate;
ops->round_rate = scmi_clk_round_rate;
ops->determine_rate = scmi_clk_determine_rate;
ops->set_rate = scmi_clk_set_rate;
/* Parent ops */
ops->get_parent = scmi_clk_get_parent;
ops->set_parent = scmi_clk_set_parent;
return ops;
}
/**
* scmi_clk_ops_select() - Select a proper set of clock operations
* @sclk: A reference to an SCMI clock descriptor
* @atomic_capable: A flag to indicate if atomic mode is supported by the
* transport
* @atomic_threshold_us: Platform atomic threshold value in microseconds:
* clk_ops are atomic when clock enable latency is less
* than this threshold
* @clk_ops_db: A reference to the array used as a database to store all the
* created clock operations combinations.
* @db_size: Maximum number of entries held by @clk_ops_db
*
* After having built a bitmap descriptor to represent the set of features
* needed by this SCMI clock, at first use it to lookup into the set of
* previously allocated clk_ops to check if a suitable combination of clock
* operations was already created; when no match is found allocate a brand new
* set of clk_ops satisfying the required combination of features and save it
* for future references.
*
* In this way only one set of clk_ops is ever created for each different
* combination that is effectively needed by a driver instance.
*
* Return: A pointer to the allocated and configured clk_ops on success, or
* NULL otherwise.
*/
static const struct clk_ops *
scmi_clk_ops_select(struct scmi_clk *sclk, bool atomic_capable,
unsigned int atomic_threshold_us,
const struct clk_ops **clk_ops_db, size_t db_size)
{
const struct scmi_clock_info *ci = sclk->info;
unsigned int feats_key = 0;
const struct clk_ops *ops;
/*
* Note that when transport is atomic but SCMI protocol did not
* specify (or support) an enable_latency associated with a
* clock, we default to use atomic operations mode.
*/
if (atomic_capable && ci->enable_latency <= atomic_threshold_us)
feats_key |= BIT(SCMI_CLK_ATOMIC_SUPPORTED);
if (WARN_ON(feats_key >= db_size))
return NULL;
/* Lookup previously allocated ops */
ops = clk_ops_db[feats_key];
if (ops)
return ops;
/* Did not find a pre-allocated clock_ops */
ops = scmi_clk_ops_alloc(sclk->dev, feats_key);
if (!ops)
return NULL;
/* Store new ops combinations */
clk_ops_db[feats_key] = ops;
return ops;
}
static int scmi_clocks_probe(struct scmi_device *sdev)
{
int idx, count, err;
unsigned int atomic_threshold_us;
bool transport_is_atomic;
struct clk_hw **hws;
struct clk_hw_onecell_data *clk_data;
struct device *dev = &sdev->dev;
struct device_node *np = dev->of_node;
const struct scmi_handle *handle = sdev->handle;
struct scmi_protocol_handle *ph;
const struct clk_ops *scmi_clk_ops_db[SCMI_MAX_CLK_OPS] = {};
if (!handle)
return -ENODEV;
scmi_proto_clk_ops =
handle->devm_protocol_get(sdev, SCMI_PROTOCOL_CLOCK, &ph);
if (IS_ERR(scmi_proto_clk_ops))
return PTR_ERR(scmi_proto_clk_ops);
count = scmi_proto_clk_ops->count_get(ph);
if (count < 0) {
dev_err(dev, "%pOFn: invalid clock output count\n", np);
return -EINVAL;
}
clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, count),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->num = count;
hws = clk_data->hws;
transport_is_atomic = handle->is_transport_atomic(handle,
&atomic_threshold_us);
for (idx = 0; idx < count; idx++) {
struct scmi_clk *sclk;
const struct clk_ops *scmi_ops;
sclk = devm_kzalloc(dev, sizeof(*sclk), GFP_KERNEL);
if (!sclk)
return -ENOMEM;
sclk->info = scmi_proto_clk_ops->info_get(ph, idx);
if (!sclk->info) {
dev_dbg(dev, "invalid clock info for idx %d\n", idx);
devm_kfree(dev, sclk);
continue;
}
sclk->id = idx;
sclk->ph = ph;
sclk->dev = dev;
/*
* Note that the scmi_clk_ops_db is on the stack, not global,
* because it cannot be shared between mulitple probe-sequences
* to avoid sharing the devm_ allocated clk_ops between multiple
* SCMI clk driver instances.
*/
scmi_ops = scmi_clk_ops_select(sclk, transport_is_atomic,
atomic_threshold_us,
scmi_clk_ops_db,
ARRAY_SIZE(scmi_clk_ops_db));
if (!scmi_ops)
return -ENOMEM;
/* Initialize clock parent data. */
if (sclk->info->num_parents > 0) {
sclk->parent_data = devm_kcalloc(dev, sclk->info->num_parents,
sizeof(*sclk->parent_data), GFP_KERNEL);
if (!sclk->parent_data)
return -ENOMEM;
for (int i = 0; i < sclk->info->num_parents; i++) {
sclk->parent_data[i].index = sclk->info->parents[i];
sclk->parent_data[i].hw = hws[sclk->info->parents[i]];
}
}
err = scmi_clk_ops_init(dev, sclk, scmi_ops);
if (err) {
dev_err(dev, "failed to register clock %d\n", idx);
devm_kfree(dev, sclk->parent_data);
devm_kfree(dev, sclk);
hws[idx] = NULL;
} else {
dev_dbg(dev, "Registered clock:%s%s\n",
sclk->info->name,
scmi_ops->enable ? " (atomic ops)" : "");
hws[idx] = &sclk->hw;
}
}
return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
clk_data);
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_CLOCK, "clocks" },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_clocks_driver = {
.name = "scmi-clocks",
.probe = scmi_clocks_probe,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_clocks_driver);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI clock driver");
MODULE_LICENSE("GPL v2");