mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 15:58:47 +00:00
783a2f656f
Change all the remaining AIL API functions that are passed struct xfs_mount pointers to pass pointers directly to the struct xfs_ail being used. With this conversion, all external access to the AIL is via the struct xfs_ail. Hence the operation and referencing of the AIL is almost entirely independent of the xfs_mount that is using it - it is now much more tightly tied to the log and the items it is tracking in the log than it is tied to the xfs_mount. SGI-PV: 988143 SGI-Modid: xfs-linux-melb:xfs-kern:32353a Signed-off-by: David Chinner <david@fromorbit.com> Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: Christoph Hellwig <hch@infradead.org>
567 lines
16 KiB
C
567 lines
16 KiB
C
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_extfree_item.h"
|
|
|
|
|
|
kmem_zone_t *xfs_efi_zone;
|
|
kmem_zone_t *xfs_efd_zone;
|
|
|
|
STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
|
|
|
|
void
|
|
xfs_efi_item_free(xfs_efi_log_item_t *efip)
|
|
{
|
|
int nexts = efip->efi_format.efi_nextents;
|
|
|
|
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
|
|
kmem_free(efip);
|
|
} else {
|
|
kmem_zone_free(xfs_efi_zone, efip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given efi item.
|
|
* We only need 1 iovec for an efi item. It just logs the efi_log_format
|
|
* structure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC uint
|
|
xfs_efi_item_size(xfs_efi_log_item_t *efip)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efi log item. We use only 1 iovec, and we point that
|
|
* at the efi_log_format structure embedded in the efi item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efi item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_format(xfs_efi_log_item_t *efip,
|
|
xfs_log_iovec_t *log_vector)
|
|
{
|
|
uint size;
|
|
|
|
ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
|
|
|
|
efip->efi_format.efi_type = XFS_LI_EFI;
|
|
|
|
size = sizeof(xfs_efi_log_format_t);
|
|
size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
|
|
efip->efi_format.efi_size = 1;
|
|
|
|
log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
|
|
log_vector->i_len = size;
|
|
XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
|
|
ASSERT(size >= sizeof(xfs_efi_log_format_t));
|
|
}
|
|
|
|
|
|
/*
|
|
* Pinning has no meaning for an efi item, so just return.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efi_item_pin(xfs_efi_log_item_t *efip)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* While EFIs cannot really be pinned, the unpin operation is the
|
|
* last place at which the EFI is manipulated during a transaction.
|
|
* Here we coordinate with xfs_efi_cancel() to determine who gets to
|
|
* free the EFI.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
|
|
{
|
|
struct xfs_ail *ailp = efip->efi_item.li_ailp;
|
|
|
|
spin_lock(&ailp->xa_lock);
|
|
if (efip->efi_flags & XFS_EFI_CANCELED) {
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
|
|
xfs_efi_item_free(efip);
|
|
} else {
|
|
efip->efi_flags |= XFS_EFI_COMMITTED;
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* like unpin only we have to also clear the xaction descriptor
|
|
* pointing the log item if we free the item. This routine duplicates
|
|
* unpin because efi_flags is protected by the AIL lock. Freeing
|
|
* the descriptor and then calling unpin would force us to drop the AIL
|
|
* lock which would open up a race condition.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
|
|
{
|
|
struct xfs_ail *ailp = efip->efi_item.li_ailp;
|
|
xfs_log_item_desc_t *lidp;
|
|
|
|
spin_lock(&ailp->xa_lock);
|
|
if (efip->efi_flags & XFS_EFI_CANCELED) {
|
|
/*
|
|
* free the xaction descriptor pointing to this item
|
|
*/
|
|
lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
|
|
xfs_trans_free_item(tp, lidp);
|
|
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
|
|
xfs_efi_item_free(efip);
|
|
} else {
|
|
efip->efi_flags |= XFS_EFI_COMMITTED;
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Efi items have no locking or pushing. However, since EFIs are
|
|
* pulled from the AIL when their corresponding EFDs are committed
|
|
* to disk, their situation is very similar to being pinned. Return
|
|
* XFS_ITEM_PINNED so that the caller will eventually flush the log.
|
|
* This should help in getting the EFI out of the AIL.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC uint
|
|
xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
|
|
{
|
|
return XFS_ITEM_PINNED;
|
|
}
|
|
|
|
/*
|
|
* Efi items have no locking, so just return.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
|
|
{
|
|
if (efip->efi_item.li_flags & XFS_LI_ABORTED)
|
|
xfs_efi_item_free(efip);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The EFI is logged only once and cannot be moved in the log, so
|
|
* simply return the lsn at which it's been logged. The canceled
|
|
* flag is not paid any attention here. Checking for that is delayed
|
|
* until the EFI is unpinned.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC xfs_lsn_t
|
|
xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
|
|
{
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* There isn't much you can do to push on an efi item. It is simply
|
|
* stuck waiting for all of its corresponding efd items to be
|
|
* committed to disk.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efi_item_push(xfs_efi_log_item_t *efip)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The EFI dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all efi log items.
|
|
*/
|
|
static struct xfs_item_ops xfs_efi_item_ops = {
|
|
.iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
|
|
.iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
|
|
xfs_efi_item_format,
|
|
.iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
|
|
.iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
|
|
.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
|
|
xfs_efi_item_unpin_remove,
|
|
.iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
|
|
.iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
|
|
.iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
|
|
xfs_efi_item_committed,
|
|
.iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
|
|
.iop_pushbuf = NULL,
|
|
.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
|
|
xfs_efi_item_committing
|
|
};
|
|
|
|
|
|
/*
|
|
* Allocate and initialize an efi item with the given number of extents.
|
|
*/
|
|
xfs_efi_log_item_t *
|
|
xfs_efi_init(xfs_mount_t *mp,
|
|
uint nextents)
|
|
|
|
{
|
|
xfs_efi_log_item_t *efip;
|
|
uint size;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
|
|
size = (uint)(sizeof(xfs_efi_log_item_t) +
|
|
((nextents - 1) * sizeof(xfs_extent_t)));
|
|
efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
|
|
} else {
|
|
efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
|
|
KM_SLEEP);
|
|
}
|
|
|
|
efip->efi_item.li_type = XFS_LI_EFI;
|
|
efip->efi_item.li_ops = &xfs_efi_item_ops;
|
|
efip->efi_item.li_mountp = mp;
|
|
efip->efi_item.li_ailp = mp->m_ail;
|
|
efip->efi_format.efi_nextents = nextents;
|
|
efip->efi_format.efi_id = (__psint_t)(void*)efip;
|
|
|
|
return (efip);
|
|
}
|
|
|
|
/*
|
|
* Copy an EFI format buffer from the given buf, and into the destination
|
|
* EFI format structure.
|
|
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
|
|
* one of which will be the native format for this kernel.
|
|
* It will handle the conversion of formats if necessary.
|
|
*/
|
|
int
|
|
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
|
|
{
|
|
xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
|
|
uint i;
|
|
uint len = sizeof(xfs_efi_log_format_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
|
|
uint len32 = sizeof(xfs_efi_log_format_32_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
|
|
uint len64 = sizeof(xfs_efi_log_format_64_t) +
|
|
(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
|
|
|
|
if (buf->i_len == len) {
|
|
memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
|
|
return 0;
|
|
} else if (buf->i_len == len32) {
|
|
xfs_efi_log_format_32_t *src_efi_fmt_32 =
|
|
(xfs_efi_log_format_32_t *)buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_32->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_32->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
} else if (buf->i_len == len64) {
|
|
xfs_efi_log_format_64_t *src_efi_fmt_64 =
|
|
(xfs_efi_log_format_64_t *)buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_64->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_64->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
}
|
|
return EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* This is called by the efd item code below to release references to
|
|
* the given efi item. Each efd calls this with the number of
|
|
* extents that it has logged, and when the sum of these reaches
|
|
* the total number of extents logged by this efi item we can free
|
|
* the efi item.
|
|
*
|
|
* Freeing the efi item requires that we remove it from the AIL.
|
|
* We'll use the AIL lock to protect our counters as well as
|
|
* the removal from the AIL.
|
|
*/
|
|
void
|
|
xfs_efi_release(xfs_efi_log_item_t *efip,
|
|
uint nextents)
|
|
{
|
|
struct xfs_ail *ailp = efip->efi_item.li_ailp;
|
|
int extents_left;
|
|
|
|
ASSERT(efip->efi_next_extent > 0);
|
|
ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
|
|
|
|
spin_lock(&ailp->xa_lock);
|
|
ASSERT(efip->efi_next_extent >= nextents);
|
|
efip->efi_next_extent -= nextents;
|
|
extents_left = efip->efi_next_extent;
|
|
if (extents_left == 0) {
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
|
|
xfs_efi_item_free(efip);
|
|
} else {
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_free(xfs_efd_log_item_t *efdp)
|
|
{
|
|
int nexts = efdp->efd_format.efd_nextents;
|
|
|
|
if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
|
|
kmem_free(efdp);
|
|
} else {
|
|
kmem_zone_free(xfs_efd_zone, efdp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This returns the number of iovecs needed to log the given efd item.
|
|
* We only need 1 iovec for an efd item. It just logs the efd_log_format
|
|
* structure.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC uint
|
|
xfs_efd_item_size(xfs_efd_log_item_t *efdp)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efd log item. We use only 1 iovec, and we point that
|
|
* at the efd_log_format structure embedded in the efd item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efd item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_format(xfs_efd_log_item_t *efdp,
|
|
xfs_log_iovec_t *log_vector)
|
|
{
|
|
uint size;
|
|
|
|
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
|
|
|
|
efdp->efd_format.efd_type = XFS_LI_EFD;
|
|
|
|
size = sizeof(xfs_efd_log_format_t);
|
|
size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
|
|
efdp->efd_format.efd_size = 1;
|
|
|
|
log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
|
|
log_vector->i_len = size;
|
|
XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
|
|
ASSERT(size >= sizeof(xfs_efd_log_format_t));
|
|
}
|
|
|
|
|
|
/*
|
|
* Pinning has no meaning for an efd item, so just return.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Since pinning has no meaning for an efd item, unpinning does
|
|
* not either.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Efd items have no locking, so just return success.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC uint
|
|
xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
|
|
{
|
|
return XFS_ITEM_LOCKED;
|
|
}
|
|
|
|
/*
|
|
* Efd items have no locking or pushing, so return failure
|
|
* so that the caller doesn't bother with us.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
|
|
{
|
|
if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
|
|
xfs_efd_item_free(efdp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* When the efd item is committed to disk, all we need to do
|
|
* is delete our reference to our partner efi item and then
|
|
* free ourselves. Since we're freeing ourselves we must
|
|
* return -1 to keep the transaction code from further referencing
|
|
* this item.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC xfs_lsn_t
|
|
xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
|
|
{
|
|
/*
|
|
* If we got a log I/O error, it's always the case that the LR with the
|
|
* EFI got unpinned and freed before the EFD got aborted.
|
|
*/
|
|
if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
|
|
xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
|
|
|
|
xfs_efd_item_free(efdp);
|
|
return (xfs_lsn_t)-1;
|
|
}
|
|
|
|
/*
|
|
* There isn't much you can do to push on an efd item. It is simply
|
|
* stuck waiting for the log to be flushed to disk.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efd_item_push(xfs_efd_log_item_t *efdp)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The EFD dependency tracking op doesn't do squat. It can't because
|
|
* it doesn't know where the free extent is coming from. The dependency
|
|
* tracking has to be handled by the "enclosing" metadata object. For
|
|
* example, for inodes, the inode is locked throughout the extent freeing
|
|
* so the dependency should be recorded there.
|
|
*/
|
|
/*ARGSUSED*/
|
|
STATIC void
|
|
xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is the ops vector shared by all efd log items.
|
|
*/
|
|
static struct xfs_item_ops xfs_efd_item_ops = {
|
|
.iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
|
|
.iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
|
|
xfs_efd_item_format,
|
|
.iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
|
|
.iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
|
|
.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
|
|
xfs_efd_item_unpin_remove,
|
|
.iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
|
|
.iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
|
|
.iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
|
|
xfs_efd_item_committed,
|
|
.iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
|
|
.iop_pushbuf = NULL,
|
|
.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
|
|
xfs_efd_item_committing
|
|
};
|
|
|
|
|
|
/*
|
|
* Allocate and initialize an efd item with the given number of extents.
|
|
*/
|
|
xfs_efd_log_item_t *
|
|
xfs_efd_init(xfs_mount_t *mp,
|
|
xfs_efi_log_item_t *efip,
|
|
uint nextents)
|
|
|
|
{
|
|
xfs_efd_log_item_t *efdp;
|
|
uint size;
|
|
|
|
ASSERT(nextents > 0);
|
|
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
|
|
size = (uint)(sizeof(xfs_efd_log_item_t) +
|
|
((nextents - 1) * sizeof(xfs_extent_t)));
|
|
efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
|
|
} else {
|
|
efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
|
|
KM_SLEEP);
|
|
}
|
|
|
|
efdp->efd_item.li_type = XFS_LI_EFD;
|
|
efdp->efd_item.li_ops = &xfs_efd_item_ops;
|
|
efdp->efd_item.li_mountp = mp;
|
|
efdp->efd_item.li_ailp = mp->m_ail;
|
|
efdp->efd_efip = efip;
|
|
efdp->efd_format.efd_nextents = nextents;
|
|
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
|
|
|
|
return (efdp);
|
|
}
|