mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 07:23:14 +00:00
29e48ce87f
This marks most of the layout of task_struct as randomizable, but leaves thread_info and scheduler state untouched at the start, and thread_struct untouched at the end. Other parts of the kernel use unnamed structures, but the 0-day builder using gcc-4.4 blows up on static initializers. Officially, it's documented as only working on gcc 4.6 and later, which further confuses me: https://gcc.gnu.org/wiki/C11Status The structure layout randomization already requires gcc 4.7, but instead of depending on the plugin being enabled, just check the gcc versions for wider build testing. At Linus's suggestion, the marking is hidden in a macro to reduce how ugly it looks. Additionally, indenting is left unchanged since it would make things harder to read. Randomization of task_struct is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Kees Cook <keescook@chromium.org>
336 lines
11 KiB
C
336 lines
11 KiB
C
#ifndef __LINUX_COMPILER_H
|
|
#error "Please don't include <linux/compiler-gcc.h> directly, include <linux/compiler.h> instead."
|
|
#endif
|
|
|
|
/*
|
|
* Common definitions for all gcc versions go here.
|
|
*/
|
|
#define GCC_VERSION (__GNUC__ * 10000 \
|
|
+ __GNUC_MINOR__ * 100 \
|
|
+ __GNUC_PATCHLEVEL__)
|
|
|
|
/* Optimization barrier */
|
|
|
|
/* The "volatile" is due to gcc bugs */
|
|
#define barrier() __asm__ __volatile__("": : :"memory")
|
|
/*
|
|
* This version is i.e. to prevent dead stores elimination on @ptr
|
|
* where gcc and llvm may behave differently when otherwise using
|
|
* normal barrier(): while gcc behavior gets along with a normal
|
|
* barrier(), llvm needs an explicit input variable to be assumed
|
|
* clobbered. The issue is as follows: while the inline asm might
|
|
* access any memory it wants, the compiler could have fit all of
|
|
* @ptr into memory registers instead, and since @ptr never escaped
|
|
* from that, it proved that the inline asm wasn't touching any of
|
|
* it. This version works well with both compilers, i.e. we're telling
|
|
* the compiler that the inline asm absolutely may see the contents
|
|
* of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
|
|
*/
|
|
#define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
|
|
|
|
/*
|
|
* This macro obfuscates arithmetic on a variable address so that gcc
|
|
* shouldn't recognize the original var, and make assumptions about it.
|
|
*
|
|
* This is needed because the C standard makes it undefined to do
|
|
* pointer arithmetic on "objects" outside their boundaries and the
|
|
* gcc optimizers assume this is the case. In particular they
|
|
* assume such arithmetic does not wrap.
|
|
*
|
|
* A miscompilation has been observed because of this on PPC.
|
|
* To work around it we hide the relationship of the pointer and the object
|
|
* using this macro.
|
|
*
|
|
* Versions of the ppc64 compiler before 4.1 had a bug where use of
|
|
* RELOC_HIDE could trash r30. The bug can be worked around by changing
|
|
* the inline assembly constraint from =g to =r, in this particular
|
|
* case either is valid.
|
|
*/
|
|
#define RELOC_HIDE(ptr, off) \
|
|
({ \
|
|
unsigned long __ptr; \
|
|
__asm__ ("" : "=r"(__ptr) : "0"(ptr)); \
|
|
(typeof(ptr)) (__ptr + (off)); \
|
|
})
|
|
|
|
/* Make the optimizer believe the variable can be manipulated arbitrarily. */
|
|
#define OPTIMIZER_HIDE_VAR(var) \
|
|
__asm__ ("" : "=r" (var) : "0" (var))
|
|
|
|
#ifdef __CHECKER__
|
|
#define __must_be_array(a) 0
|
|
#else
|
|
/* &a[0] degrades to a pointer: a different type from an array */
|
|
#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
|
|
#endif
|
|
|
|
/*
|
|
* Force always-inline if the user requests it so via the .config,
|
|
* or if gcc is too old:
|
|
*/
|
|
#if !defined(CONFIG_ARCH_SUPPORTS_OPTIMIZED_INLINING) || \
|
|
!defined(CONFIG_OPTIMIZE_INLINING) || (__GNUC__ < 4)
|
|
#define inline inline __attribute__((always_inline)) notrace
|
|
#define __inline__ __inline__ __attribute__((always_inline)) notrace
|
|
#define __inline __inline __attribute__((always_inline)) notrace
|
|
#else
|
|
/* A lot of inline functions can cause havoc with function tracing */
|
|
#define inline inline notrace
|
|
#define __inline__ __inline__ notrace
|
|
#define __inline __inline notrace
|
|
#endif
|
|
|
|
#define __always_inline inline __attribute__((always_inline))
|
|
#define noinline __attribute__((noinline))
|
|
|
|
#define __deprecated __attribute__((deprecated))
|
|
#define __packed __attribute__((packed))
|
|
#define __weak __attribute__((weak))
|
|
#define __alias(symbol) __attribute__((alias(#symbol)))
|
|
|
|
/*
|
|
* it doesn't make sense on ARM (currently the only user of __naked)
|
|
* to trace naked functions because then mcount is called without
|
|
* stack and frame pointer being set up and there is no chance to
|
|
* restore the lr register to the value before mcount was called.
|
|
*
|
|
* The asm() bodies of naked functions often depend on standard calling
|
|
* conventions, therefore they must be noinline and noclone.
|
|
*
|
|
* GCC 4.[56] currently fail to enforce this, so we must do so ourselves.
|
|
* See GCC PR44290.
|
|
*/
|
|
#define __naked __attribute__((naked)) noinline __noclone notrace
|
|
|
|
#define __noreturn __attribute__((noreturn))
|
|
|
|
/*
|
|
* From the GCC manual:
|
|
*
|
|
* Many functions have no effects except the return value and their
|
|
* return value depends only on the parameters and/or global
|
|
* variables. Such a function can be subject to common subexpression
|
|
* elimination and loop optimization just as an arithmetic operator
|
|
* would be.
|
|
* [...]
|
|
*/
|
|
#define __pure __attribute__((pure))
|
|
#define __aligned(x) __attribute__((aligned(x)))
|
|
#define __aligned_largest __attribute__((aligned))
|
|
#define __printf(a, b) __attribute__((format(printf, a, b)))
|
|
#define __scanf(a, b) __attribute__((format(scanf, a, b)))
|
|
#define __attribute_const__ __attribute__((__const__))
|
|
#define __maybe_unused __attribute__((unused))
|
|
#define __always_unused __attribute__((unused))
|
|
#define __mode(x) __attribute__((mode(x)))
|
|
|
|
/* gcc version specific checks */
|
|
|
|
#if GCC_VERSION < 30200
|
|
# error Sorry, your compiler is too old - please upgrade it.
|
|
#endif
|
|
|
|
#if GCC_VERSION < 30300
|
|
# define __used __attribute__((__unused__))
|
|
#else
|
|
# define __used __attribute__((__used__))
|
|
#endif
|
|
|
|
#ifdef CONFIG_GCOV_KERNEL
|
|
# if GCC_VERSION < 30400
|
|
# error "GCOV profiling support for gcc versions below 3.4 not included"
|
|
# endif /* __GNUC_MINOR__ */
|
|
#endif /* CONFIG_GCOV_KERNEL */
|
|
|
|
#if GCC_VERSION >= 30400
|
|
#define __must_check __attribute__((warn_unused_result))
|
|
#define __malloc __attribute__((__malloc__))
|
|
#endif
|
|
|
|
#if GCC_VERSION >= 40000
|
|
|
|
/* GCC 4.1.[01] miscompiles __weak */
|
|
#ifdef __KERNEL__
|
|
# if GCC_VERSION >= 40100 && GCC_VERSION <= 40101
|
|
# error Your version of gcc miscompiles the __weak directive
|
|
# endif
|
|
#endif
|
|
|
|
#define __used __attribute__((__used__))
|
|
#define __compiler_offsetof(a, b) \
|
|
__builtin_offsetof(a, b)
|
|
|
|
#if GCC_VERSION >= 40100
|
|
# define __compiletime_object_size(obj) __builtin_object_size(obj, 0)
|
|
#endif
|
|
|
|
#if GCC_VERSION >= 40300
|
|
/* Mark functions as cold. gcc will assume any path leading to a call
|
|
* to them will be unlikely. This means a lot of manual unlikely()s
|
|
* are unnecessary now for any paths leading to the usual suspects
|
|
* like BUG(), printk(), panic() etc. [but let's keep them for now for
|
|
* older compilers]
|
|
*
|
|
* Early snapshots of gcc 4.3 don't support this and we can't detect this
|
|
* in the preprocessor, but we can live with this because they're unreleased.
|
|
* Maketime probing would be overkill here.
|
|
*
|
|
* gcc also has a __attribute__((__hot__)) to move hot functions into
|
|
* a special section, but I don't see any sense in this right now in
|
|
* the kernel context
|
|
*/
|
|
#define __cold __attribute__((__cold__))
|
|
|
|
#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
|
|
|
|
#ifndef __CHECKER__
|
|
# define __compiletime_warning(message) __attribute__((warning(message)))
|
|
# define __compiletime_error(message) __attribute__((error(message)))
|
|
#endif /* __CHECKER__ */
|
|
#endif /* GCC_VERSION >= 40300 */
|
|
|
|
#if GCC_VERSION >= 40500
|
|
|
|
#ifndef __CHECKER__
|
|
#ifdef LATENT_ENTROPY_PLUGIN
|
|
#define __latent_entropy __attribute__((latent_entropy))
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_STACK_VALIDATION
|
|
#define annotate_unreachable() ({ \
|
|
asm("%c0:\t\n" \
|
|
".pushsection .discard.unreachable\t\n" \
|
|
".long %c0b - .\t\n" \
|
|
".popsection\t\n" : : "i" (__LINE__)); \
|
|
})
|
|
#else
|
|
#define annotate_unreachable()
|
|
#endif
|
|
|
|
/*
|
|
* Mark a position in code as unreachable. This can be used to
|
|
* suppress control flow warnings after asm blocks that transfer
|
|
* control elsewhere.
|
|
*
|
|
* Early snapshots of gcc 4.5 don't support this and we can't detect
|
|
* this in the preprocessor, but we can live with this because they're
|
|
* unreleased. Really, we need to have autoconf for the kernel.
|
|
*/
|
|
#define unreachable() \
|
|
do { annotate_unreachable(); __builtin_unreachable(); } while (0)
|
|
|
|
/* Mark a function definition as prohibited from being cloned. */
|
|
#define __noclone __attribute__((__noclone__, __optimize__("no-tracer")))
|
|
|
|
#ifdef RANDSTRUCT_PLUGIN
|
|
#define __randomize_layout __attribute__((randomize_layout))
|
|
#define __no_randomize_layout __attribute__((no_randomize_layout))
|
|
#endif
|
|
|
|
#endif /* GCC_VERSION >= 40500 */
|
|
|
|
#if GCC_VERSION >= 40600
|
|
|
|
/*
|
|
* When used with Link Time Optimization, gcc can optimize away C functions or
|
|
* variables which are referenced only from assembly code. __visible tells the
|
|
* optimizer that something else uses this function or variable, thus preventing
|
|
* this.
|
|
*/
|
|
#define __visible __attribute__((externally_visible))
|
|
|
|
/*
|
|
* RANDSTRUCT_PLUGIN wants to use an anonymous struct, but it is only
|
|
* possible since GCC 4.6. To provide as much build testing coverage
|
|
* as possible, this is used for all GCC 4.6+ builds, and not just on
|
|
* RANDSTRUCT_PLUGIN builds.
|
|
*/
|
|
#define randomized_struct_fields_start struct {
|
|
#define randomized_struct_fields_end } __randomize_layout;
|
|
|
|
#endif /* GCC_VERSION >= 40600 */
|
|
|
|
|
|
#if GCC_VERSION >= 40900 && !defined(__CHECKER__)
|
|
/*
|
|
* __assume_aligned(n, k): Tell the optimizer that the returned
|
|
* pointer can be assumed to be k modulo n. The second argument is
|
|
* optional (default 0), so we use a variadic macro to make the
|
|
* shorthand.
|
|
*
|
|
* Beware: Do not apply this to functions which may return
|
|
* ERR_PTRs. Also, it is probably unwise to apply it to functions
|
|
* returning extra information in the low bits (but in that case the
|
|
* compiler should see some alignment anyway, when the return value is
|
|
* massaged by 'flags = ptr & 3; ptr &= ~3;').
|
|
*/
|
|
#define __assume_aligned(a, ...) __attribute__((__assume_aligned__(a, ## __VA_ARGS__)))
|
|
#endif
|
|
|
|
/*
|
|
* GCC 'asm goto' miscompiles certain code sequences:
|
|
*
|
|
* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58670
|
|
*
|
|
* Work it around via a compiler barrier quirk suggested by Jakub Jelinek.
|
|
*
|
|
* (asm goto is automatically volatile - the naming reflects this.)
|
|
*/
|
|
#define asm_volatile_goto(x...) do { asm goto(x); asm (""); } while (0)
|
|
|
|
/*
|
|
* sparse (__CHECKER__) pretends to be gcc, but can't do constant
|
|
* folding in __builtin_bswap*() (yet), so don't set these for it.
|
|
*/
|
|
#if defined(CONFIG_ARCH_USE_BUILTIN_BSWAP) && !defined(__CHECKER__)
|
|
#if GCC_VERSION >= 40400
|
|
#define __HAVE_BUILTIN_BSWAP32__
|
|
#define __HAVE_BUILTIN_BSWAP64__
|
|
#endif
|
|
#if GCC_VERSION >= 40800
|
|
#define __HAVE_BUILTIN_BSWAP16__
|
|
#endif
|
|
#endif /* CONFIG_ARCH_USE_BUILTIN_BSWAP && !__CHECKER__ */
|
|
|
|
#if GCC_VERSION >= 70000
|
|
#define KASAN_ABI_VERSION 5
|
|
#elif GCC_VERSION >= 50000
|
|
#define KASAN_ABI_VERSION 4
|
|
#elif GCC_VERSION >= 40902
|
|
#define KASAN_ABI_VERSION 3
|
|
#endif
|
|
|
|
#if GCC_VERSION >= 40902
|
|
/*
|
|
* Tell the compiler that address safety instrumentation (KASAN)
|
|
* should not be applied to that function.
|
|
* Conflicts with inlining: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
|
|
*/
|
|
#define __no_sanitize_address __attribute__((no_sanitize_address))
|
|
#endif
|
|
|
|
#if GCC_VERSION >= 50100
|
|
/*
|
|
* Mark structures as requiring designated initializers.
|
|
* https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
|
|
*/
|
|
#define __designated_init __attribute__((designated_init))
|
|
#endif
|
|
|
|
#endif /* gcc version >= 40000 specific checks */
|
|
|
|
#if !defined(__noclone)
|
|
#define __noclone /* not needed */
|
|
#endif
|
|
|
|
#if !defined(__no_sanitize_address)
|
|
#define __no_sanitize_address
|
|
#endif
|
|
|
|
/*
|
|
* A trick to suppress uninitialized variable warning without generating any
|
|
* code
|
|
*/
|
|
#define uninitialized_var(x) x = x
|