mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
a7665b0a38
Introduce xpc_arch_ops and eliminate numerous individual global definitions. Signed-off-by: Robin Holt <holt@sgi.com> Cc: Dean Nelson <dcn@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1352 lines
36 KiB
C
1352 lines
36 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved.
|
|
*/
|
|
|
|
/*
|
|
* Cross Partition Communication (XPC) support - standard version.
|
|
*
|
|
* XPC provides a message passing capability that crosses partition
|
|
* boundaries. This module is made up of two parts:
|
|
*
|
|
* partition This part detects the presence/absence of other
|
|
* partitions. It provides a heartbeat and monitors
|
|
* the heartbeats of other partitions.
|
|
*
|
|
* channel This part manages the channels and sends/receives
|
|
* messages across them to/from other partitions.
|
|
*
|
|
* There are a couple of additional functions residing in XP, which
|
|
* provide an interface to XPC for its users.
|
|
*
|
|
*
|
|
* Caveats:
|
|
*
|
|
* . Currently on sn2, we have no way to determine which nasid an IRQ
|
|
* came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
|
|
* followed by an IPI. The amo indicates where data is to be pulled
|
|
* from, so after the IPI arrives, the remote partition checks the amo
|
|
* word. The IPI can actually arrive before the amo however, so other
|
|
* code must periodically check for this case. Also, remote amo
|
|
* operations do not reliably time out. Thus we do a remote PIO read
|
|
* solely to know whether the remote partition is down and whether we
|
|
* should stop sending IPIs to it. This remote PIO read operation is
|
|
* set up in a special nofault region so SAL knows to ignore (and
|
|
* cleanup) any errors due to the remote amo write, PIO read, and/or
|
|
* PIO write operations.
|
|
*
|
|
* If/when new hardware solves this IPI problem, we should abandon
|
|
* the current approach.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kthread.h>
|
|
#include "xpc.h"
|
|
|
|
/* define two XPC debug device structures to be used with dev_dbg() et al */
|
|
|
|
struct device_driver xpc_dbg_name = {
|
|
.name = "xpc"
|
|
};
|
|
|
|
struct device xpc_part_dbg_subname = {
|
|
.init_name = "", /* set to "part" at xpc_init() time */
|
|
.driver = &xpc_dbg_name
|
|
};
|
|
|
|
struct device xpc_chan_dbg_subname = {
|
|
.init_name = "", /* set to "chan" at xpc_init() time */
|
|
.driver = &xpc_dbg_name
|
|
};
|
|
|
|
struct device *xpc_part = &xpc_part_dbg_subname;
|
|
struct device *xpc_chan = &xpc_chan_dbg_subname;
|
|
|
|
static int xpc_kdebug_ignore;
|
|
|
|
/* systune related variables for /proc/sys directories */
|
|
|
|
static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
|
|
static int xpc_hb_min_interval = 1;
|
|
static int xpc_hb_max_interval = 10;
|
|
|
|
static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
|
|
static int xpc_hb_check_min_interval = 10;
|
|
static int xpc_hb_check_max_interval = 120;
|
|
|
|
int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
|
|
static int xpc_disengage_min_timelimit; /* = 0 */
|
|
static int xpc_disengage_max_timelimit = 120;
|
|
|
|
static ctl_table xpc_sys_xpc_hb_dir[] = {
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "hb_interval",
|
|
.data = &xpc_hb_interval,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_minmax,
|
|
.strategy = &sysctl_intvec,
|
|
.extra1 = &xpc_hb_min_interval,
|
|
.extra2 = &xpc_hb_max_interval},
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "hb_check_interval",
|
|
.data = &xpc_hb_check_interval,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_minmax,
|
|
.strategy = &sysctl_intvec,
|
|
.extra1 = &xpc_hb_check_min_interval,
|
|
.extra2 = &xpc_hb_check_max_interval},
|
|
{}
|
|
};
|
|
static ctl_table xpc_sys_xpc_dir[] = {
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "hb",
|
|
.mode = 0555,
|
|
.child = xpc_sys_xpc_hb_dir},
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "disengage_timelimit",
|
|
.data = &xpc_disengage_timelimit,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_minmax,
|
|
.strategy = &sysctl_intvec,
|
|
.extra1 = &xpc_disengage_min_timelimit,
|
|
.extra2 = &xpc_disengage_max_timelimit},
|
|
{}
|
|
};
|
|
static ctl_table xpc_sys_dir[] = {
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "xpc",
|
|
.mode = 0555,
|
|
.child = xpc_sys_xpc_dir},
|
|
{}
|
|
};
|
|
static struct ctl_table_header *xpc_sysctl;
|
|
|
|
/* non-zero if any remote partition disengage was timed out */
|
|
int xpc_disengage_timedout;
|
|
|
|
/* #of activate IRQs received and not yet processed */
|
|
int xpc_activate_IRQ_rcvd;
|
|
DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
|
|
|
|
/* IRQ handler notifies this wait queue on receipt of an IRQ */
|
|
DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
|
|
|
|
static unsigned long xpc_hb_check_timeout;
|
|
static struct timer_list xpc_hb_timer;
|
|
|
|
/* notification that the xpc_hb_checker thread has exited */
|
|
static DECLARE_COMPLETION(xpc_hb_checker_exited);
|
|
|
|
/* notification that the xpc_discovery thread has exited */
|
|
static DECLARE_COMPLETION(xpc_discovery_exited);
|
|
|
|
static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
|
|
|
|
static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
|
|
static struct notifier_block xpc_reboot_notifier = {
|
|
.notifier_call = xpc_system_reboot,
|
|
};
|
|
|
|
static int xpc_system_die(struct notifier_block *, unsigned long, void *);
|
|
static struct notifier_block xpc_die_notifier = {
|
|
.notifier_call = xpc_system_die,
|
|
};
|
|
|
|
struct xpc_arch_operations xpc_arch_ops;
|
|
|
|
/*
|
|
* Timer function to enforce the timelimit on the partition disengage.
|
|
*/
|
|
static void
|
|
xpc_timeout_partition_disengage(unsigned long data)
|
|
{
|
|
struct xpc_partition *part = (struct xpc_partition *)data;
|
|
|
|
DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
|
|
|
|
(void)xpc_partition_disengaged(part);
|
|
|
|
DBUG_ON(part->disengage_timeout != 0);
|
|
DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
|
|
}
|
|
|
|
/*
|
|
* Timer to produce the heartbeat. The timer structures function is
|
|
* already set when this is initially called. A tunable is used to
|
|
* specify when the next timeout should occur.
|
|
*/
|
|
static void
|
|
xpc_hb_beater(unsigned long dummy)
|
|
{
|
|
xpc_arch_ops.increment_heartbeat();
|
|
|
|
if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
|
|
wake_up_interruptible(&xpc_activate_IRQ_wq);
|
|
|
|
xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
|
|
add_timer(&xpc_hb_timer);
|
|
}
|
|
|
|
static void
|
|
xpc_start_hb_beater(void)
|
|
{
|
|
xpc_arch_ops.heartbeat_init();
|
|
init_timer(&xpc_hb_timer);
|
|
xpc_hb_timer.function = xpc_hb_beater;
|
|
xpc_hb_beater(0);
|
|
}
|
|
|
|
static void
|
|
xpc_stop_hb_beater(void)
|
|
{
|
|
del_timer_sync(&xpc_hb_timer);
|
|
xpc_arch_ops.heartbeat_exit();
|
|
}
|
|
|
|
/*
|
|
* At periodic intervals, scan through all active partitions and ensure
|
|
* their heartbeat is still active. If not, the partition is deactivated.
|
|
*/
|
|
static void
|
|
xpc_check_remote_hb(void)
|
|
{
|
|
struct xpc_partition *part;
|
|
short partid;
|
|
enum xp_retval ret;
|
|
|
|
for (partid = 0; partid < xp_max_npartitions; partid++) {
|
|
|
|
if (xpc_exiting)
|
|
break;
|
|
|
|
if (partid == xp_partition_id)
|
|
continue;
|
|
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (part->act_state == XPC_P_AS_INACTIVE ||
|
|
part->act_state == XPC_P_AS_DEACTIVATING) {
|
|
continue;
|
|
}
|
|
|
|
ret = xpc_arch_ops.get_remote_heartbeat(part);
|
|
if (ret != xpSuccess)
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This thread is responsible for nearly all of the partition
|
|
* activation/deactivation.
|
|
*/
|
|
static int
|
|
xpc_hb_checker(void *ignore)
|
|
{
|
|
int force_IRQ = 0;
|
|
|
|
/* this thread was marked active by xpc_hb_init() */
|
|
|
|
set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
|
|
|
|
/* set our heartbeating to other partitions into motion */
|
|
xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
|
|
xpc_start_hb_beater();
|
|
|
|
while (!xpc_exiting) {
|
|
|
|
dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
|
|
"been received\n",
|
|
(int)(xpc_hb_check_timeout - jiffies),
|
|
xpc_activate_IRQ_rcvd);
|
|
|
|
/* checking of remote heartbeats is skewed by IRQ handling */
|
|
if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
|
|
xpc_hb_check_timeout = jiffies +
|
|
(xpc_hb_check_interval * HZ);
|
|
|
|
dev_dbg(xpc_part, "checking remote heartbeats\n");
|
|
xpc_check_remote_hb();
|
|
|
|
/*
|
|
* On sn2 we need to periodically recheck to ensure no
|
|
* IRQ/amo pairs have been missed.
|
|
*/
|
|
if (is_shub())
|
|
force_IRQ = 1;
|
|
}
|
|
|
|
/* check for outstanding IRQs */
|
|
if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
|
|
force_IRQ = 0;
|
|
dev_dbg(xpc_part, "processing activate IRQs "
|
|
"received\n");
|
|
xpc_arch_ops.process_activate_IRQ_rcvd();
|
|
}
|
|
|
|
/* wait for IRQ or timeout */
|
|
(void)wait_event_interruptible(xpc_activate_IRQ_wq,
|
|
(time_is_before_eq_jiffies(
|
|
xpc_hb_check_timeout) ||
|
|
xpc_activate_IRQ_rcvd > 0 ||
|
|
xpc_exiting));
|
|
}
|
|
|
|
xpc_stop_hb_beater();
|
|
|
|
dev_dbg(xpc_part, "heartbeat checker is exiting\n");
|
|
|
|
/* mark this thread as having exited */
|
|
complete(&xpc_hb_checker_exited);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This thread will attempt to discover other partitions to activate
|
|
* based on info provided by SAL. This new thread is short lived and
|
|
* will exit once discovery is complete.
|
|
*/
|
|
static int
|
|
xpc_initiate_discovery(void *ignore)
|
|
{
|
|
xpc_discovery();
|
|
|
|
dev_dbg(xpc_part, "discovery thread is exiting\n");
|
|
|
|
/* mark this thread as having exited */
|
|
complete(&xpc_discovery_exited);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The first kthread assigned to a newly activated partition is the one
|
|
* created by XPC HB with which it calls xpc_activating(). XPC hangs on to
|
|
* that kthread until the partition is brought down, at which time that kthread
|
|
* returns back to XPC HB. (The return of that kthread will signify to XPC HB
|
|
* that XPC has dismantled all communication infrastructure for the associated
|
|
* partition.) This kthread becomes the channel manager for that partition.
|
|
*
|
|
* Each active partition has a channel manager, who, besides connecting and
|
|
* disconnecting channels, will ensure that each of the partition's connected
|
|
* channels has the required number of assigned kthreads to get the work done.
|
|
*/
|
|
static void
|
|
xpc_channel_mgr(struct xpc_partition *part)
|
|
{
|
|
while (part->act_state != XPC_P_AS_DEACTIVATING ||
|
|
atomic_read(&part->nchannels_active) > 0 ||
|
|
!xpc_partition_disengaged(part)) {
|
|
|
|
xpc_process_sent_chctl_flags(part);
|
|
|
|
/*
|
|
* Wait until we've been requested to activate kthreads or
|
|
* all of the channel's message queues have been torn down or
|
|
* a signal is pending.
|
|
*
|
|
* The channel_mgr_requests is set to 1 after being awakened,
|
|
* This is done to prevent the channel mgr from making one pass
|
|
* through the loop for each request, since he will
|
|
* be servicing all the requests in one pass. The reason it's
|
|
* set to 1 instead of 0 is so that other kthreads will know
|
|
* that the channel mgr is running and won't bother trying to
|
|
* wake him up.
|
|
*/
|
|
atomic_dec(&part->channel_mgr_requests);
|
|
(void)wait_event_interruptible(part->channel_mgr_wq,
|
|
(atomic_read(&part->channel_mgr_requests) > 0 ||
|
|
part->chctl.all_flags != 0 ||
|
|
(part->act_state == XPC_P_AS_DEACTIVATING &&
|
|
atomic_read(&part->nchannels_active) == 0 &&
|
|
xpc_partition_disengaged(part))));
|
|
atomic_set(&part->channel_mgr_requests, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Guarantee that the kzalloc'd memory is cacheline aligned.
|
|
*/
|
|
void *
|
|
xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
|
|
{
|
|
/* see if kzalloc will give us cachline aligned memory by default */
|
|
*base = kzalloc(size, flags);
|
|
if (*base == NULL)
|
|
return NULL;
|
|
|
|
if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
|
|
return *base;
|
|
|
|
kfree(*base);
|
|
|
|
/* nope, we'll have to do it ourselves */
|
|
*base = kzalloc(size + L1_CACHE_BYTES, flags);
|
|
if (*base == NULL)
|
|
return NULL;
|
|
|
|
return (void *)L1_CACHE_ALIGN((u64)*base);
|
|
}
|
|
|
|
/*
|
|
* Setup the channel structures necessary to support XPartition Communication
|
|
* between the specified remote partition and the local one.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_setup_ch_structures(struct xpc_partition *part)
|
|
{
|
|
enum xp_retval ret;
|
|
int ch_number;
|
|
struct xpc_channel *ch;
|
|
short partid = XPC_PARTID(part);
|
|
|
|
/*
|
|
* Allocate all of the channel structures as a contiguous chunk of
|
|
* memory.
|
|
*/
|
|
DBUG_ON(part->channels != NULL);
|
|
part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
|
|
GFP_KERNEL);
|
|
if (part->channels == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for channels\n");
|
|
return xpNoMemory;
|
|
}
|
|
|
|
/* allocate the remote open and close args */
|
|
|
|
part->remote_openclose_args =
|
|
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
|
|
GFP_KERNEL, &part->
|
|
remote_openclose_args_base);
|
|
if (part->remote_openclose_args == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for remote connect args\n");
|
|
ret = xpNoMemory;
|
|
goto out_1;
|
|
}
|
|
|
|
part->chctl.all_flags = 0;
|
|
spin_lock_init(&part->chctl_lock);
|
|
|
|
atomic_set(&part->channel_mgr_requests, 1);
|
|
init_waitqueue_head(&part->channel_mgr_wq);
|
|
|
|
part->nchannels = XPC_MAX_NCHANNELS;
|
|
|
|
atomic_set(&part->nchannels_active, 0);
|
|
atomic_set(&part->nchannels_engaged, 0);
|
|
|
|
for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
|
|
ch = &part->channels[ch_number];
|
|
|
|
ch->partid = partid;
|
|
ch->number = ch_number;
|
|
ch->flags = XPC_C_DISCONNECTED;
|
|
|
|
atomic_set(&ch->kthreads_assigned, 0);
|
|
atomic_set(&ch->kthreads_idle, 0);
|
|
atomic_set(&ch->kthreads_active, 0);
|
|
|
|
atomic_set(&ch->references, 0);
|
|
atomic_set(&ch->n_to_notify, 0);
|
|
|
|
spin_lock_init(&ch->lock);
|
|
init_completion(&ch->wdisconnect_wait);
|
|
|
|
atomic_set(&ch->n_on_msg_allocate_wq, 0);
|
|
init_waitqueue_head(&ch->msg_allocate_wq);
|
|
init_waitqueue_head(&ch->idle_wq);
|
|
}
|
|
|
|
ret = xpc_arch_ops.setup_ch_structures(part);
|
|
if (ret != xpSuccess)
|
|
goto out_2;
|
|
|
|
/*
|
|
* With the setting of the partition setup_state to XPC_P_SS_SETUP,
|
|
* we're declaring that this partition is ready to go.
|
|
*/
|
|
part->setup_state = XPC_P_SS_SETUP;
|
|
|
|
return xpSuccess;
|
|
|
|
/* setup of ch structures failed */
|
|
out_2:
|
|
kfree(part->remote_openclose_args_base);
|
|
part->remote_openclose_args = NULL;
|
|
out_1:
|
|
kfree(part->channels);
|
|
part->channels = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Teardown the channel structures necessary to support XPartition Communication
|
|
* between the specified remote partition and the local one.
|
|
*/
|
|
static void
|
|
xpc_teardown_ch_structures(struct xpc_partition *part)
|
|
{
|
|
DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
|
|
DBUG_ON(atomic_read(&part->nchannels_active) != 0);
|
|
|
|
/*
|
|
* Make this partition inaccessible to local processes by marking it
|
|
* as no longer setup. Then wait before proceeding with the teardown
|
|
* until all existing references cease.
|
|
*/
|
|
DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
|
|
part->setup_state = XPC_P_SS_WTEARDOWN;
|
|
|
|
wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
|
|
|
|
/* now we can begin tearing down the infrastructure */
|
|
|
|
xpc_arch_ops.teardown_ch_structures(part);
|
|
|
|
kfree(part->remote_openclose_args_base);
|
|
part->remote_openclose_args = NULL;
|
|
kfree(part->channels);
|
|
part->channels = NULL;
|
|
|
|
part->setup_state = XPC_P_SS_TORNDOWN;
|
|
}
|
|
|
|
/*
|
|
* When XPC HB determines that a partition has come up, it will create a new
|
|
* kthread and that kthread will call this function to attempt to set up the
|
|
* basic infrastructure used for Cross Partition Communication with the newly
|
|
* upped partition.
|
|
*
|
|
* The kthread that was created by XPC HB and which setup the XPC
|
|
* infrastructure will remain assigned to the partition becoming the channel
|
|
* manager for that partition until the partition is deactivating, at which
|
|
* time the kthread will teardown the XPC infrastructure and then exit.
|
|
*/
|
|
static int
|
|
xpc_activating(void *__partid)
|
|
{
|
|
short partid = (u64)__partid;
|
|
struct xpc_partition *part = &xpc_partitions[partid];
|
|
unsigned long irq_flags;
|
|
|
|
DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
|
|
if (part->act_state == XPC_P_AS_DEACTIVATING) {
|
|
part->act_state = XPC_P_AS_INACTIVE;
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
part->remote_rp_pa = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* indicate the thread is activating */
|
|
DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
|
|
part->act_state = XPC_P_AS_ACTIVATING;
|
|
|
|
XPC_SET_REASON(part, 0, 0);
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
|
|
dev_dbg(xpc_part, "activating partition %d\n", partid);
|
|
|
|
xpc_arch_ops.allow_hb(partid);
|
|
|
|
if (xpc_setup_ch_structures(part) == xpSuccess) {
|
|
(void)xpc_part_ref(part); /* this will always succeed */
|
|
|
|
if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
|
|
xpc_mark_partition_active(part);
|
|
xpc_channel_mgr(part);
|
|
/* won't return until partition is deactivating */
|
|
}
|
|
|
|
xpc_part_deref(part);
|
|
xpc_teardown_ch_structures(part);
|
|
}
|
|
|
|
xpc_arch_ops.disallow_hb(partid);
|
|
xpc_mark_partition_inactive(part);
|
|
|
|
if (part->reason == xpReactivating) {
|
|
/* interrupting ourselves results in activating partition */
|
|
xpc_arch_ops.request_partition_reactivation(part);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xpc_activate_partition(struct xpc_partition *part)
|
|
{
|
|
short partid = XPC_PARTID(part);
|
|
unsigned long irq_flags;
|
|
struct task_struct *kthread;
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
|
|
DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
|
|
|
|
part->act_state = XPC_P_AS_ACTIVATION_REQ;
|
|
XPC_SET_REASON(part, xpCloneKThread, __LINE__);
|
|
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
|
|
kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
|
|
partid);
|
|
if (IS_ERR(kthread)) {
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
part->act_state = XPC_P_AS_INACTIVE;
|
|
XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
}
|
|
}
|
|
|
|
void
|
|
xpc_activate_kthreads(struct xpc_channel *ch, int needed)
|
|
{
|
|
int idle = atomic_read(&ch->kthreads_idle);
|
|
int assigned = atomic_read(&ch->kthreads_assigned);
|
|
int wakeup;
|
|
|
|
DBUG_ON(needed <= 0);
|
|
|
|
if (idle > 0) {
|
|
wakeup = (needed > idle) ? idle : needed;
|
|
needed -= wakeup;
|
|
|
|
dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
|
|
"channel=%d\n", wakeup, ch->partid, ch->number);
|
|
|
|
/* only wakeup the requested number of kthreads */
|
|
wake_up_nr(&ch->idle_wq, wakeup);
|
|
}
|
|
|
|
if (needed <= 0)
|
|
return;
|
|
|
|
if (needed + assigned > ch->kthreads_assigned_limit) {
|
|
needed = ch->kthreads_assigned_limit - assigned;
|
|
if (needed <= 0)
|
|
return;
|
|
}
|
|
|
|
dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
|
|
needed, ch->partid, ch->number);
|
|
|
|
xpc_create_kthreads(ch, needed, 0);
|
|
}
|
|
|
|
/*
|
|
* This function is where XPC's kthreads wait for messages to deliver.
|
|
*/
|
|
static void
|
|
xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
|
|
{
|
|
int (*n_of_deliverable_payloads) (struct xpc_channel *) =
|
|
xpc_arch_ops.n_of_deliverable_payloads;
|
|
|
|
do {
|
|
/* deliver messages to their intended recipients */
|
|
|
|
while (n_of_deliverable_payloads(ch) > 0 &&
|
|
!(ch->flags & XPC_C_DISCONNECTING)) {
|
|
xpc_deliver_payload(ch);
|
|
}
|
|
|
|
if (atomic_inc_return(&ch->kthreads_idle) >
|
|
ch->kthreads_idle_limit) {
|
|
/* too many idle kthreads on this channel */
|
|
atomic_dec(&ch->kthreads_idle);
|
|
break;
|
|
}
|
|
|
|
dev_dbg(xpc_chan, "idle kthread calling "
|
|
"wait_event_interruptible_exclusive()\n");
|
|
|
|
(void)wait_event_interruptible_exclusive(ch->idle_wq,
|
|
(n_of_deliverable_payloads(ch) > 0 ||
|
|
(ch->flags & XPC_C_DISCONNECTING)));
|
|
|
|
atomic_dec(&ch->kthreads_idle);
|
|
|
|
} while (!(ch->flags & XPC_C_DISCONNECTING));
|
|
}
|
|
|
|
static int
|
|
xpc_kthread_start(void *args)
|
|
{
|
|
short partid = XPC_UNPACK_ARG1(args);
|
|
u16 ch_number = XPC_UNPACK_ARG2(args);
|
|
struct xpc_partition *part = &xpc_partitions[partid];
|
|
struct xpc_channel *ch;
|
|
int n_needed;
|
|
unsigned long irq_flags;
|
|
int (*n_of_deliverable_payloads) (struct xpc_channel *) =
|
|
xpc_arch_ops.n_of_deliverable_payloads;
|
|
|
|
dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
|
|
partid, ch_number);
|
|
|
|
ch = &part->channels[ch_number];
|
|
|
|
if (!(ch->flags & XPC_C_DISCONNECTING)) {
|
|
|
|
/* let registerer know that connection has been established */
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
|
|
ch->flags |= XPC_C_CONNECTEDCALLOUT;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
xpc_connected_callout(ch);
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
/*
|
|
* It is possible that while the callout was being
|
|
* made that the remote partition sent some messages.
|
|
* If that is the case, we may need to activate
|
|
* additional kthreads to help deliver them. We only
|
|
* need one less than total #of messages to deliver.
|
|
*/
|
|
n_needed = n_of_deliverable_payloads(ch) - 1;
|
|
if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
|
|
xpc_activate_kthreads(ch, n_needed);
|
|
|
|
} else {
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
}
|
|
|
|
xpc_kthread_waitmsgs(part, ch);
|
|
}
|
|
|
|
/* let registerer know that connection is disconnecting */
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
|
|
!(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
|
|
ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
xpc_disconnect_callout(ch, xpDisconnecting);
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
|
|
}
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
|
|
atomic_dec_return(&part->nchannels_engaged) == 0) {
|
|
xpc_arch_ops.indicate_partition_disengaged(part);
|
|
}
|
|
|
|
xpc_msgqueue_deref(ch);
|
|
|
|
dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
|
|
partid, ch_number);
|
|
|
|
xpc_part_deref(part);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For each partition that XPC has established communications with, there is
|
|
* a minimum of one kernel thread assigned to perform any operation that
|
|
* may potentially sleep or block (basically the callouts to the asynchronous
|
|
* functions registered via xpc_connect()).
|
|
*
|
|
* Additional kthreads are created and destroyed by XPC as the workload
|
|
* demands.
|
|
*
|
|
* A kthread is assigned to one of the active channels that exists for a given
|
|
* partition.
|
|
*/
|
|
void
|
|
xpc_create_kthreads(struct xpc_channel *ch, int needed,
|
|
int ignore_disconnecting)
|
|
{
|
|
unsigned long irq_flags;
|
|
u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
|
|
struct xpc_partition *part = &xpc_partitions[ch->partid];
|
|
struct task_struct *kthread;
|
|
void (*indicate_partition_disengaged) (struct xpc_partition *) =
|
|
xpc_arch_ops.indicate_partition_disengaged;
|
|
|
|
while (needed-- > 0) {
|
|
|
|
/*
|
|
* The following is done on behalf of the newly created
|
|
* kthread. That kthread is responsible for doing the
|
|
* counterpart to the following before it exits.
|
|
*/
|
|
if (ignore_disconnecting) {
|
|
if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
|
|
/* kthreads assigned had gone to zero */
|
|
BUG_ON(!(ch->flags &
|
|
XPC_C_DISCONNECTINGCALLOUT_MADE));
|
|
break;
|
|
}
|
|
|
|
} else if (ch->flags & XPC_C_DISCONNECTING) {
|
|
break;
|
|
|
|
} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
|
|
atomic_inc_return(&part->nchannels_engaged) == 1) {
|
|
xpc_arch_ops.indicate_partition_engaged(part);
|
|
}
|
|
(void)xpc_part_ref(part);
|
|
xpc_msgqueue_ref(ch);
|
|
|
|
kthread = kthread_run(xpc_kthread_start, (void *)args,
|
|
"xpc%02dc%d", ch->partid, ch->number);
|
|
if (IS_ERR(kthread)) {
|
|
/* the fork failed */
|
|
|
|
/*
|
|
* NOTE: if (ignore_disconnecting &&
|
|
* !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
|
|
* then we'll deadlock if all other kthreads assigned
|
|
* to this channel are blocked in the channel's
|
|
* registerer, because the only thing that will unblock
|
|
* them is the xpDisconnecting callout that this
|
|
* failed kthread_run() would have made.
|
|
*/
|
|
|
|
if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
|
|
atomic_dec_return(&part->nchannels_engaged) == 0) {
|
|
indicate_partition_disengaged(part);
|
|
}
|
|
xpc_msgqueue_deref(ch);
|
|
xpc_part_deref(part);
|
|
|
|
if (atomic_read(&ch->kthreads_assigned) <
|
|
ch->kthreads_idle_limit) {
|
|
/*
|
|
* Flag this as an error only if we have an
|
|
* insufficient #of kthreads for the channel
|
|
* to function.
|
|
*/
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
|
|
&irq_flags);
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
xpc_disconnect_wait(int ch_number)
|
|
{
|
|
unsigned long irq_flags;
|
|
short partid;
|
|
struct xpc_partition *part;
|
|
struct xpc_channel *ch;
|
|
int wakeup_channel_mgr;
|
|
|
|
/* now wait for all callouts to the caller's function to cease */
|
|
for (partid = 0; partid < xp_max_npartitions; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (!xpc_part_ref(part))
|
|
continue;
|
|
|
|
ch = &part->channels[ch_number];
|
|
|
|
if (!(ch->flags & XPC_C_WDISCONNECT)) {
|
|
xpc_part_deref(part);
|
|
continue;
|
|
}
|
|
|
|
wait_for_completion(&ch->wdisconnect_wait);
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
|
|
wakeup_channel_mgr = 0;
|
|
|
|
if (ch->delayed_chctl_flags) {
|
|
if (part->act_state != XPC_P_AS_DEACTIVATING) {
|
|
spin_lock(&part->chctl_lock);
|
|
part->chctl.flags[ch->number] |=
|
|
ch->delayed_chctl_flags;
|
|
spin_unlock(&part->chctl_lock);
|
|
wakeup_channel_mgr = 1;
|
|
}
|
|
ch->delayed_chctl_flags = 0;
|
|
}
|
|
|
|
ch->flags &= ~XPC_C_WDISCONNECT;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
if (wakeup_channel_mgr)
|
|
xpc_wakeup_channel_mgr(part);
|
|
|
|
xpc_part_deref(part);
|
|
}
|
|
}
|
|
|
|
static int
|
|
xpc_setup_partitions(void)
|
|
{
|
|
short partid;
|
|
struct xpc_partition *part;
|
|
|
|
xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
|
|
xp_max_npartitions, GFP_KERNEL);
|
|
if (xpc_partitions == NULL) {
|
|
dev_err(xpc_part, "can't get memory for partition structure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* The first few fields of each entry of xpc_partitions[] need to
|
|
* be initialized now so that calls to xpc_connect() and
|
|
* xpc_disconnect() can be made prior to the activation of any remote
|
|
* partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
|
|
* ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
|
|
* PARTITION HAS BEEN ACTIVATED.
|
|
*/
|
|
for (partid = 0; partid < xp_max_npartitions; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
|
|
|
|
part->activate_IRQ_rcvd = 0;
|
|
spin_lock_init(&part->act_lock);
|
|
part->act_state = XPC_P_AS_INACTIVE;
|
|
XPC_SET_REASON(part, 0, 0);
|
|
|
|
init_timer(&part->disengage_timer);
|
|
part->disengage_timer.function =
|
|
xpc_timeout_partition_disengage;
|
|
part->disengage_timer.data = (unsigned long)part;
|
|
|
|
part->setup_state = XPC_P_SS_UNSET;
|
|
init_waitqueue_head(&part->teardown_wq);
|
|
atomic_set(&part->references, 0);
|
|
}
|
|
|
|
return xpc_arch_ops.setup_partitions();
|
|
}
|
|
|
|
static void
|
|
xpc_teardown_partitions(void)
|
|
{
|
|
xpc_arch_ops.teardown_partitions();
|
|
kfree(xpc_partitions);
|
|
}
|
|
|
|
static void
|
|
xpc_do_exit(enum xp_retval reason)
|
|
{
|
|
short partid;
|
|
int active_part_count, printed_waiting_msg = 0;
|
|
struct xpc_partition *part;
|
|
unsigned long printmsg_time, disengage_timeout = 0;
|
|
|
|
/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
|
|
DBUG_ON(xpc_exiting == 1);
|
|
|
|
/*
|
|
* Let the heartbeat checker thread and the discovery thread
|
|
* (if one is running) know that they should exit. Also wake up
|
|
* the heartbeat checker thread in case it's sleeping.
|
|
*/
|
|
xpc_exiting = 1;
|
|
wake_up_interruptible(&xpc_activate_IRQ_wq);
|
|
|
|
/* wait for the discovery thread to exit */
|
|
wait_for_completion(&xpc_discovery_exited);
|
|
|
|
/* wait for the heartbeat checker thread to exit */
|
|
wait_for_completion(&xpc_hb_checker_exited);
|
|
|
|
/* sleep for a 1/3 of a second or so */
|
|
(void)msleep_interruptible(300);
|
|
|
|
/* wait for all partitions to become inactive */
|
|
|
|
printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
|
|
xpc_disengage_timedout = 0;
|
|
|
|
do {
|
|
active_part_count = 0;
|
|
|
|
for (partid = 0; partid < xp_max_npartitions; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (xpc_partition_disengaged(part) &&
|
|
part->act_state == XPC_P_AS_INACTIVE) {
|
|
continue;
|
|
}
|
|
|
|
active_part_count++;
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, reason);
|
|
|
|
if (part->disengage_timeout > disengage_timeout)
|
|
disengage_timeout = part->disengage_timeout;
|
|
}
|
|
|
|
if (xpc_arch_ops.any_partition_engaged()) {
|
|
if (time_is_before_jiffies(printmsg_time)) {
|
|
dev_info(xpc_part, "waiting for remote "
|
|
"partitions to deactivate, timeout in "
|
|
"%ld seconds\n", (disengage_timeout -
|
|
jiffies) / HZ);
|
|
printmsg_time = jiffies +
|
|
(XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
|
|
printed_waiting_msg = 1;
|
|
}
|
|
|
|
} else if (active_part_count > 0) {
|
|
if (printed_waiting_msg) {
|
|
dev_info(xpc_part, "waiting for local partition"
|
|
" to deactivate\n");
|
|
printed_waiting_msg = 0;
|
|
}
|
|
|
|
} else {
|
|
if (!xpc_disengage_timedout) {
|
|
dev_info(xpc_part, "all partitions have "
|
|
"deactivated\n");
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* sleep for a 1/3 of a second or so */
|
|
(void)msleep_interruptible(300);
|
|
|
|
} while (1);
|
|
|
|
DBUG_ON(xpc_arch_ops.any_partition_engaged());
|
|
|
|
xpc_teardown_rsvd_page();
|
|
|
|
if (reason == xpUnloading) {
|
|
(void)unregister_die_notifier(&xpc_die_notifier);
|
|
(void)unregister_reboot_notifier(&xpc_reboot_notifier);
|
|
}
|
|
|
|
/* clear the interface to XPC's functions */
|
|
xpc_clear_interface();
|
|
|
|
if (xpc_sysctl)
|
|
unregister_sysctl_table(xpc_sysctl);
|
|
|
|
xpc_teardown_partitions();
|
|
|
|
if (is_shub())
|
|
xpc_exit_sn2();
|
|
else if (is_uv())
|
|
xpc_exit_uv();
|
|
}
|
|
|
|
/*
|
|
* This function is called when the system is being rebooted.
|
|
*/
|
|
static int
|
|
xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
|
|
{
|
|
enum xp_retval reason;
|
|
|
|
switch (event) {
|
|
case SYS_RESTART:
|
|
reason = xpSystemReboot;
|
|
break;
|
|
case SYS_HALT:
|
|
reason = xpSystemHalt;
|
|
break;
|
|
case SYS_POWER_OFF:
|
|
reason = xpSystemPoweroff;
|
|
break;
|
|
default:
|
|
reason = xpSystemGoingDown;
|
|
}
|
|
|
|
xpc_do_exit(reason);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/*
|
|
* Notify other partitions to deactivate from us by first disengaging from all
|
|
* references to our memory.
|
|
*/
|
|
static void
|
|
xpc_die_deactivate(void)
|
|
{
|
|
struct xpc_partition *part;
|
|
short partid;
|
|
int any_engaged;
|
|
long keep_waiting;
|
|
long wait_to_print;
|
|
|
|
/* keep xpc_hb_checker thread from doing anything (just in case) */
|
|
xpc_exiting = 1;
|
|
|
|
xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */
|
|
|
|
for (partid = 0; partid < xp_max_npartitions; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (xpc_arch_ops.partition_engaged(partid) ||
|
|
part->act_state != XPC_P_AS_INACTIVE) {
|
|
xpc_arch_ops.request_partition_deactivation(part);
|
|
xpc_arch_ops.indicate_partition_disengaged(part);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Though we requested that all other partitions deactivate from us,
|
|
* we only wait until they've all disengaged or we've reached the
|
|
* defined timelimit.
|
|
*
|
|
* Given that one iteration through the following while-loop takes
|
|
* approximately 200 microseconds, calculate the #of loops to take
|
|
* before bailing and the #of loops before printing a waiting message.
|
|
*/
|
|
keep_waiting = xpc_disengage_timelimit * 1000 * 5;
|
|
wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
|
|
|
|
while (1) {
|
|
any_engaged = xpc_arch_ops.any_partition_engaged();
|
|
if (!any_engaged) {
|
|
dev_info(xpc_part, "all partitions have deactivated\n");
|
|
break;
|
|
}
|
|
|
|
if (!keep_waiting--) {
|
|
for (partid = 0; partid < xp_max_npartitions;
|
|
partid++) {
|
|
if (xpc_arch_ops.partition_engaged(partid)) {
|
|
dev_info(xpc_part, "deactivate from "
|
|
"remote partition %d timed "
|
|
"out\n", partid);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!wait_to_print--) {
|
|
dev_info(xpc_part, "waiting for remote partitions to "
|
|
"deactivate, timeout in %ld seconds\n",
|
|
keep_waiting / (1000 * 5));
|
|
wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
|
|
1000 * 5;
|
|
}
|
|
|
|
udelay(200);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is called when the system is being restarted or halted due
|
|
* to some sort of system failure. If this is the case we need to notify the
|
|
* other partitions to disengage from all references to our memory.
|
|
* This function can also be called when our heartbeater could be offlined
|
|
* for a time. In this case we need to notify other partitions to not worry
|
|
* about the lack of a heartbeat.
|
|
*/
|
|
static int
|
|
xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
|
|
{
|
|
#ifdef CONFIG_IA64 /* !!! temporary kludge */
|
|
switch (event) {
|
|
case DIE_MACHINE_RESTART:
|
|
case DIE_MACHINE_HALT:
|
|
xpc_die_deactivate();
|
|
break;
|
|
|
|
case DIE_KDEBUG_ENTER:
|
|
/* Should lack of heartbeat be ignored by other partitions? */
|
|
if (!xpc_kdebug_ignore)
|
|
break;
|
|
|
|
/* fall through */
|
|
case DIE_MCA_MONARCH_ENTER:
|
|
case DIE_INIT_MONARCH_ENTER:
|
|
xpc_arch_ops.offline_heartbeat();
|
|
break;
|
|
|
|
case DIE_KDEBUG_LEAVE:
|
|
/* Is lack of heartbeat being ignored by other partitions? */
|
|
if (!xpc_kdebug_ignore)
|
|
break;
|
|
|
|
/* fall through */
|
|
case DIE_MCA_MONARCH_LEAVE:
|
|
case DIE_INIT_MONARCH_LEAVE:
|
|
xpc_arch_ops.online_heartbeat();
|
|
break;
|
|
}
|
|
#else
|
|
xpc_die_deactivate();
|
|
#endif
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
int __init
|
|
xpc_init(void)
|
|
{
|
|
int ret;
|
|
struct task_struct *kthread;
|
|
|
|
dev_set_name(xpc_part, "part");
|
|
dev_set_name(xpc_chan, "chan");
|
|
|
|
if (is_shub()) {
|
|
/*
|
|
* The ia64-sn2 architecture supports at most 64 partitions.
|
|
* And the inability to unregister remote amos restricts us
|
|
* further to only support exactly 64 partitions on this
|
|
* architecture, no less.
|
|
*/
|
|
if (xp_max_npartitions != 64) {
|
|
dev_err(xpc_part, "max #of partitions not set to 64\n");
|
|
ret = -EINVAL;
|
|
} else {
|
|
ret = xpc_init_sn2();
|
|
}
|
|
|
|
} else if (is_uv()) {
|
|
ret = xpc_init_uv();
|
|
|
|
} else {
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = xpc_setup_partitions();
|
|
if (ret != 0) {
|
|
dev_err(xpc_part, "can't get memory for partition structure\n");
|
|
goto out_1;
|
|
}
|
|
|
|
xpc_sysctl = register_sysctl_table(xpc_sys_dir);
|
|
|
|
/*
|
|
* Fill the partition reserved page with the information needed by
|
|
* other partitions to discover we are alive and establish initial
|
|
* communications.
|
|
*/
|
|
ret = xpc_setup_rsvd_page();
|
|
if (ret != 0) {
|
|
dev_err(xpc_part, "can't setup our reserved page\n");
|
|
goto out_2;
|
|
}
|
|
|
|
/* add ourselves to the reboot_notifier_list */
|
|
ret = register_reboot_notifier(&xpc_reboot_notifier);
|
|
if (ret != 0)
|
|
dev_warn(xpc_part, "can't register reboot notifier\n");
|
|
|
|
/* add ourselves to the die_notifier list */
|
|
ret = register_die_notifier(&xpc_die_notifier);
|
|
if (ret != 0)
|
|
dev_warn(xpc_part, "can't register die notifier\n");
|
|
|
|
/*
|
|
* The real work-horse behind xpc. This processes incoming
|
|
* interrupts and monitors remote heartbeats.
|
|
*/
|
|
kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
|
|
if (IS_ERR(kthread)) {
|
|
dev_err(xpc_part, "failed while forking hb check thread\n");
|
|
ret = -EBUSY;
|
|
goto out_3;
|
|
}
|
|
|
|
/*
|
|
* Startup a thread that will attempt to discover other partitions to
|
|
* activate based on info provided by SAL. This new thread is short
|
|
* lived and will exit once discovery is complete.
|
|
*/
|
|
kthread = kthread_run(xpc_initiate_discovery, NULL,
|
|
XPC_DISCOVERY_THREAD_NAME);
|
|
if (IS_ERR(kthread)) {
|
|
dev_err(xpc_part, "failed while forking discovery thread\n");
|
|
|
|
/* mark this new thread as a non-starter */
|
|
complete(&xpc_discovery_exited);
|
|
|
|
xpc_do_exit(xpUnloading);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* set the interface to point at XPC's functions */
|
|
xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
|
|
xpc_initiate_send, xpc_initiate_send_notify,
|
|
xpc_initiate_received, xpc_initiate_partid_to_nasids);
|
|
|
|
return 0;
|
|
|
|
/* initialization was not successful */
|
|
out_3:
|
|
xpc_teardown_rsvd_page();
|
|
|
|
(void)unregister_die_notifier(&xpc_die_notifier);
|
|
(void)unregister_reboot_notifier(&xpc_reboot_notifier);
|
|
out_2:
|
|
if (xpc_sysctl)
|
|
unregister_sysctl_table(xpc_sysctl);
|
|
|
|
xpc_teardown_partitions();
|
|
out_1:
|
|
if (is_shub())
|
|
xpc_exit_sn2();
|
|
else if (is_uv())
|
|
xpc_exit_uv();
|
|
return ret;
|
|
}
|
|
|
|
module_init(xpc_init);
|
|
|
|
void __exit
|
|
xpc_exit(void)
|
|
{
|
|
xpc_do_exit(xpUnloading);
|
|
}
|
|
|
|
module_exit(xpc_exit);
|
|
|
|
MODULE_AUTHOR("Silicon Graphics, Inc.");
|
|
MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param(xpc_hb_interval, int, 0);
|
|
MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
|
|
"heartbeat increments.");
|
|
|
|
module_param(xpc_hb_check_interval, int, 0);
|
|
MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
|
|
"heartbeat checks.");
|
|
|
|
module_param(xpc_disengage_timelimit, int, 0);
|
|
MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
|
|
"for disengage to complete.");
|
|
|
|
module_param(xpc_kdebug_ignore, int, 0);
|
|
MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
|
|
"other partitions when dropping into kdebug.");
|