linux-next/lib/iov_iter.c
Albert van der Linde 4d0e9df5e4 lib, uaccess: add failure injection to usercopy functions
To test fault-tolerance of user memory access functions, introduce fault
injection to usercopy functions.

If a failure is expected return either -EFAULT or the total amount of
bytes that were not copied.

Signed-off-by: Albert van der Linde <alinde@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20200831171733.955393-3-alinde@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:22 -07:00

1850 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <crypto/hash.h>
#include <linux/export.h>
#include <linux/bvec.h>
#include <linux/fault-inject-usercopy.h>
#include <linux/uio.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/splice.h>
#include <linux/compat.h>
#include <net/checksum.h>
#include <linux/scatterlist.h>
#include <linux/instrumented.h>
#define PIPE_PARANOIA /* for now */
#define iterate_iovec(i, n, __v, __p, skip, STEP) { \
size_t left; \
size_t wanted = n; \
__p = i->iov; \
__v.iov_len = min(n, __p->iov_len - skip); \
if (likely(__v.iov_len)) { \
__v.iov_base = __p->iov_base + skip; \
left = (STEP); \
__v.iov_len -= left; \
skip += __v.iov_len; \
n -= __v.iov_len; \
} else { \
left = 0; \
} \
while (unlikely(!left && n)) { \
__p++; \
__v.iov_len = min(n, __p->iov_len); \
if (unlikely(!__v.iov_len)) \
continue; \
__v.iov_base = __p->iov_base; \
left = (STEP); \
__v.iov_len -= left; \
skip = __v.iov_len; \
n -= __v.iov_len; \
} \
n = wanted - n; \
}
#define iterate_kvec(i, n, __v, __p, skip, STEP) { \
size_t wanted = n; \
__p = i->kvec; \
__v.iov_len = min(n, __p->iov_len - skip); \
if (likely(__v.iov_len)) { \
__v.iov_base = __p->iov_base + skip; \
(void)(STEP); \
skip += __v.iov_len; \
n -= __v.iov_len; \
} \
while (unlikely(n)) { \
__p++; \
__v.iov_len = min(n, __p->iov_len); \
if (unlikely(!__v.iov_len)) \
continue; \
__v.iov_base = __p->iov_base; \
(void)(STEP); \
skip = __v.iov_len; \
n -= __v.iov_len; \
} \
n = wanted; \
}
#define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
struct bvec_iter __start; \
__start.bi_size = n; \
__start.bi_bvec_done = skip; \
__start.bi_idx = 0; \
for_each_bvec(__v, i->bvec, __bi, __start) { \
if (!__v.bv_len) \
continue; \
(void)(STEP); \
} \
}
#define iterate_all_kinds(i, n, v, I, B, K) { \
if (likely(n)) { \
size_t skip = i->iov_offset; \
if (unlikely(i->type & ITER_BVEC)) { \
struct bio_vec v; \
struct bvec_iter __bi; \
iterate_bvec(i, n, v, __bi, skip, (B)) \
} else if (unlikely(i->type & ITER_KVEC)) { \
const struct kvec *kvec; \
struct kvec v; \
iterate_kvec(i, n, v, kvec, skip, (K)) \
} else if (unlikely(i->type & ITER_DISCARD)) { \
} else { \
const struct iovec *iov; \
struct iovec v; \
iterate_iovec(i, n, v, iov, skip, (I)) \
} \
} \
}
#define iterate_and_advance(i, n, v, I, B, K) { \
if (unlikely(i->count < n)) \
n = i->count; \
if (i->count) { \
size_t skip = i->iov_offset; \
if (unlikely(i->type & ITER_BVEC)) { \
const struct bio_vec *bvec = i->bvec; \
struct bio_vec v; \
struct bvec_iter __bi; \
iterate_bvec(i, n, v, __bi, skip, (B)) \
i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
i->nr_segs -= i->bvec - bvec; \
skip = __bi.bi_bvec_done; \
} else if (unlikely(i->type & ITER_KVEC)) { \
const struct kvec *kvec; \
struct kvec v; \
iterate_kvec(i, n, v, kvec, skip, (K)) \
if (skip == kvec->iov_len) { \
kvec++; \
skip = 0; \
} \
i->nr_segs -= kvec - i->kvec; \
i->kvec = kvec; \
} else if (unlikely(i->type & ITER_DISCARD)) { \
skip += n; \
} else { \
const struct iovec *iov; \
struct iovec v; \
iterate_iovec(i, n, v, iov, skip, (I)) \
if (skip == iov->iov_len) { \
iov++; \
skip = 0; \
} \
i->nr_segs -= iov - i->iov; \
i->iov = iov; \
} \
i->count -= n; \
i->iov_offset = skip; \
} \
}
static int copyout(void __user *to, const void *from, size_t n)
{
if (should_fail_usercopy())
return n;
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = raw_copy_to_user(to, from, n);
}
return n;
}
static int copyin(void *to, const void __user *from, size_t n)
{
if (should_fail_usercopy())
return n;
if (access_ok(from, n)) {
instrument_copy_from_user(to, from, n);
n = raw_copy_from_user(to, from, n);
}
return n;
}
static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
size_t skip, copy, left, wanted;
const struct iovec *iov;
char __user *buf;
void *kaddr, *from;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
might_fault();
wanted = bytes;
iov = i->iov;
skip = i->iov_offset;
buf = iov->iov_base + skip;
copy = min(bytes, iov->iov_len - skip);
if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
kaddr = kmap_atomic(page);
from = kaddr + offset;
/* first chunk, usually the only one */
left = copyout(buf, from, copy);
copy -= left;
skip += copy;
from += copy;
bytes -= copy;
while (unlikely(!left && bytes)) {
iov++;
buf = iov->iov_base;
copy = min(bytes, iov->iov_len);
left = copyout(buf, from, copy);
copy -= left;
skip = copy;
from += copy;
bytes -= copy;
}
if (likely(!bytes)) {
kunmap_atomic(kaddr);
goto done;
}
offset = from - kaddr;
buf += copy;
kunmap_atomic(kaddr);
copy = min(bytes, iov->iov_len - skip);
}
/* Too bad - revert to non-atomic kmap */
kaddr = kmap(page);
from = kaddr + offset;
left = copyout(buf, from, copy);
copy -= left;
skip += copy;
from += copy;
bytes -= copy;
while (unlikely(!left && bytes)) {
iov++;
buf = iov->iov_base;
copy = min(bytes, iov->iov_len);
left = copyout(buf, from, copy);
copy -= left;
skip = copy;
from += copy;
bytes -= copy;
}
kunmap(page);
done:
if (skip == iov->iov_len) {
iov++;
skip = 0;
}
i->count -= wanted - bytes;
i->nr_segs -= iov - i->iov;
i->iov = iov;
i->iov_offset = skip;
return wanted - bytes;
}
static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
size_t skip, copy, left, wanted;
const struct iovec *iov;
char __user *buf;
void *kaddr, *to;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
might_fault();
wanted = bytes;
iov = i->iov;
skip = i->iov_offset;
buf = iov->iov_base + skip;
copy = min(bytes, iov->iov_len - skip);
if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
kaddr = kmap_atomic(page);
to = kaddr + offset;
/* first chunk, usually the only one */
left = copyin(to, buf, copy);
copy -= left;
skip += copy;
to += copy;
bytes -= copy;
while (unlikely(!left && bytes)) {
iov++;
buf = iov->iov_base;
copy = min(bytes, iov->iov_len);
left = copyin(to, buf, copy);
copy -= left;
skip = copy;
to += copy;
bytes -= copy;
}
if (likely(!bytes)) {
kunmap_atomic(kaddr);
goto done;
}
offset = to - kaddr;
buf += copy;
kunmap_atomic(kaddr);
copy = min(bytes, iov->iov_len - skip);
}
/* Too bad - revert to non-atomic kmap */
kaddr = kmap(page);
to = kaddr + offset;
left = copyin(to, buf, copy);
copy -= left;
skip += copy;
to += copy;
bytes -= copy;
while (unlikely(!left && bytes)) {
iov++;
buf = iov->iov_base;
copy = min(bytes, iov->iov_len);
left = copyin(to, buf, copy);
copy -= left;
skip = copy;
to += copy;
bytes -= copy;
}
kunmap(page);
done:
if (skip == iov->iov_len) {
iov++;
skip = 0;
}
i->count -= wanted - bytes;
i->nr_segs -= iov - i->iov;
i->iov = iov;
i->iov_offset = skip;
return wanted - bytes;
}
#ifdef PIPE_PARANOIA
static bool sanity(const struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_head = pipe->head;
unsigned int p_tail = pipe->tail;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
unsigned int i_head = i->head;
unsigned int idx;
if (i->iov_offset) {
struct pipe_buffer *p;
if (unlikely(p_occupancy == 0))
goto Bad; // pipe must be non-empty
if (unlikely(i_head != p_head - 1))
goto Bad; // must be at the last buffer...
p = &pipe->bufs[i_head & p_mask];
if (unlikely(p->offset + p->len != i->iov_offset))
goto Bad; // ... at the end of segment
} else {
if (i_head != p_head)
goto Bad; // must be right after the last buffer
}
return true;
Bad:
printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
p_head, p_tail, pipe->ring_size);
for (idx = 0; idx < pipe->ring_size; idx++)
printk(KERN_ERR "[%p %p %d %d]\n",
pipe->bufs[idx].ops,
pipe->bufs[idx].page,
pipe->bufs[idx].offset,
pipe->bufs[idx].len);
WARN_ON(1);
return false;
}
#else
#define sanity(i) true
#endif
static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
struct pipe_buffer *buf;
unsigned int p_tail = pipe->tail;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head = i->head;
size_t off;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
if (!sanity(i))
return 0;
off = i->iov_offset;
buf = &pipe->bufs[i_head & p_mask];
if (off) {
if (offset == off && buf->page == page) {
/* merge with the last one */
buf->len += bytes;
i->iov_offset += bytes;
goto out;
}
i_head++;
buf = &pipe->bufs[i_head & p_mask];
}
if (pipe_full(i_head, p_tail, pipe->max_usage))
return 0;
buf->ops = &page_cache_pipe_buf_ops;
get_page(page);
buf->page = page;
buf->offset = offset;
buf->len = bytes;
pipe->head = i_head + 1;
i->iov_offset = offset + bytes;
i->head = i_head;
out:
i->count -= bytes;
return bytes;
}
/*
* Fault in one or more iovecs of the given iov_iter, to a maximum length of
* bytes. For each iovec, fault in each page that constitutes the iovec.
*
* Return 0 on success, or non-zero if the memory could not be accessed (i.e.
* because it is an invalid address).
*/
int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
{
size_t skip = i->iov_offset;
const struct iovec *iov;
int err;
struct iovec v;
if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
iterate_iovec(i, bytes, v, iov, skip, ({
err = fault_in_pages_readable(v.iov_base, v.iov_len);
if (unlikely(err))
return err;
0;}))
}
return 0;
}
EXPORT_SYMBOL(iov_iter_fault_in_readable);
void iov_iter_init(struct iov_iter *i, unsigned int direction,
const struct iovec *iov, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
direction &= READ | WRITE;
/* It will get better. Eventually... */
if (uaccess_kernel()) {
i->type = ITER_KVEC | direction;
i->kvec = (struct kvec *)iov;
} else {
i->type = ITER_IOVEC | direction;
i->iov = iov;
}
i->nr_segs = nr_segs;
i->iov_offset = 0;
i->count = count;
}
EXPORT_SYMBOL(iov_iter_init);
static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
{
char *from = kmap_atomic(page);
memcpy(to, from + offset, len);
kunmap_atomic(from);
}
static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
{
char *to = kmap_atomic(page);
memcpy(to + offset, from, len);
kunmap_atomic(to);
}
static void memzero_page(struct page *page, size_t offset, size_t len)
{
char *addr = kmap_atomic(page);
memset(addr + offset, 0, len);
kunmap_atomic(addr);
}
static inline bool allocated(struct pipe_buffer *buf)
{
return buf->ops == &default_pipe_buf_ops;
}
static inline void data_start(const struct iov_iter *i,
unsigned int *iter_headp, size_t *offp)
{
unsigned int p_mask = i->pipe->ring_size - 1;
unsigned int iter_head = i->head;
size_t off = i->iov_offset;
if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
off == PAGE_SIZE)) {
iter_head++;
off = 0;
}
*iter_headp = iter_head;
*offp = off;
}
static size_t push_pipe(struct iov_iter *i, size_t size,
int *iter_headp, size_t *offp)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_tail = pipe->tail;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int iter_head;
size_t off;
ssize_t left;
if (unlikely(size > i->count))
size = i->count;
if (unlikely(!size))
return 0;
left = size;
data_start(i, &iter_head, &off);
*iter_headp = iter_head;
*offp = off;
if (off) {
left -= PAGE_SIZE - off;
if (left <= 0) {
pipe->bufs[iter_head & p_mask].len += size;
return size;
}
pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
iter_head++;
}
while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
struct page *page = alloc_page(GFP_USER);
if (!page)
break;
buf->ops = &default_pipe_buf_ops;
buf->page = page;
buf->offset = 0;
buf->len = min_t(ssize_t, left, PAGE_SIZE);
left -= buf->len;
iter_head++;
pipe->head = iter_head;
if (left == 0)
return size;
}
return size - left;
}
static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head;
size_t n, off;
if (!sanity(i))
return 0;
bytes = n = push_pipe(i, bytes, &i_head, &off);
if (unlikely(!n))
return 0;
do {
size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
i->head = i_head;
i->iov_offset = off + chunk;
n -= chunk;
addr += chunk;
off = 0;
i_head++;
} while (n);
i->count -= bytes;
return bytes;
}
static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
__wsum sum, size_t off)
{
__wsum next = csum_partial_copy_nocheck(from, to, len);
return csum_block_add(sum, next, off);
}
static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
__wsum *csum, struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head;
size_t n, r;
size_t off = 0;
__wsum sum = *csum;
if (!sanity(i))
return 0;
bytes = n = push_pipe(i, bytes, &i_head, &r);
if (unlikely(!n))
return 0;
do {
size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
kunmap_atomic(p);
i->head = i_head;
i->iov_offset = r + chunk;
n -= chunk;
off += chunk;
addr += chunk;
r = 0;
i_head++;
} while (n);
i->count -= bytes;
*csum = sum;
return bytes;
}
size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
const char *from = addr;
if (unlikely(iov_iter_is_pipe(i)))
return copy_pipe_to_iter(addr, bytes, i);
if (iter_is_iovec(i))
might_fault();
iterate_and_advance(i, bytes, v,
copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
memcpy_to_page(v.bv_page, v.bv_offset,
(from += v.bv_len) - v.bv_len, v.bv_len),
memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
)
return bytes;
}
EXPORT_SYMBOL(_copy_to_iter);
#ifdef CONFIG_ARCH_HAS_COPY_MC
static int copyout_mc(void __user *to, const void *from, size_t n)
{
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = copy_mc_to_user((__force void *) to, from, n);
}
return n;
}
static unsigned long copy_mc_to_page(struct page *page, size_t offset,
const char *from, size_t len)
{
unsigned long ret;
char *to;
to = kmap_atomic(page);
ret = copy_mc_to_kernel(to + offset, from, len);
kunmap_atomic(to);
return ret;
}
static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head;
size_t n, off, xfer = 0;
if (!sanity(i))
return 0;
bytes = n = push_pipe(i, bytes, &i_head, &off);
if (unlikely(!n))
return 0;
do {
size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
unsigned long rem;
rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
off, addr, chunk);
i->head = i_head;
i->iov_offset = off + chunk - rem;
xfer += chunk - rem;
if (rem)
break;
n -= chunk;
addr += chunk;
off = 0;
i_head++;
} while (n);
i->count -= xfer;
return xfer;
}
/**
* _copy_mc_to_iter - copy to iter with source memory error exception handling
* @addr: source kernel address
* @bytes: total transfer length
* @iter: destination iterator
*
* The pmem driver deploys this for the dax operation
* (dax_copy_to_iter()) for dax reads (bypass page-cache and the
* block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
* successfully copied.
*
* The main differences between this and typical _copy_to_iter().
*
* * Typical tail/residue handling after a fault retries the copy
* byte-by-byte until the fault happens again. Re-triggering machine
* checks is potentially fatal so the implementation uses source
* alignment and poison alignment assumptions to avoid re-triggering
* hardware exceptions.
*
* * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
* Compare to copy_to_iter() where only ITER_IOVEC attempts might return
* a short copy.
*/
size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
const char *from = addr;
unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
if (unlikely(iov_iter_is_pipe(i)))
return copy_mc_pipe_to_iter(addr, bytes, i);
if (iter_is_iovec(i))
might_fault();
iterate_and_advance(i, bytes, v,
copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
v.iov_len),
({
rem = copy_mc_to_page(v.bv_page, v.bv_offset,
(from += v.bv_len) - v.bv_len, v.bv_len);
if (rem) {
curr_addr = (unsigned long) from;
bytes = curr_addr - s_addr - rem;
return bytes;
}
}),
({
rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
- v.iov_len, v.iov_len);
if (rem) {
curr_addr = (unsigned long) from;
bytes = curr_addr - s_addr - rem;
return bytes;
}
})
)
return bytes;
}
EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
#endif /* CONFIG_ARCH_HAS_COPY_MC */
size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
{
char *to = addr;
if (unlikely(iov_iter_is_pipe(i))) {
WARN_ON(1);
return 0;
}
if (iter_is_iovec(i))
might_fault();
iterate_and_advance(i, bytes, v,
copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
)
return bytes;
}
EXPORT_SYMBOL(_copy_from_iter);
bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
{
char *to = addr;
if (unlikely(iov_iter_is_pipe(i))) {
WARN_ON(1);
return false;
}
if (unlikely(i->count < bytes))
return false;
if (iter_is_iovec(i))
might_fault();
iterate_all_kinds(i, bytes, v, ({
if (copyin((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len))
return false;
0;}),
memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
)
iov_iter_advance(i, bytes);
return true;
}
EXPORT_SYMBOL(_copy_from_iter_full);
size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
char *to = addr;
if (unlikely(iov_iter_is_pipe(i))) {
WARN_ON(1);
return 0;
}
iterate_and_advance(i, bytes, v,
__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len),
memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
)
return bytes;
}
EXPORT_SYMBOL(_copy_from_iter_nocache);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
/**
* _copy_from_iter_flushcache - write destination through cpu cache
* @addr: destination kernel address
* @bytes: total transfer length
* @iter: source iterator
*
* The pmem driver arranges for filesystem-dax to use this facility via
* dax_copy_from_iter() for ensuring that writes to persistent memory
* are flushed through the CPU cache. It is differentiated from
* _copy_from_iter_nocache() in that guarantees all data is flushed for
* all iterator types. The _copy_from_iter_nocache() only attempts to
* bypass the cache for the ITER_IOVEC case, and on some archs may use
* instructions that strand dirty-data in the cache.
*/
size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
{
char *to = addr;
if (unlikely(iov_iter_is_pipe(i))) {
WARN_ON(1);
return 0;
}
iterate_and_advance(i, bytes, v,
__copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len),
memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
v.iov_len)
)
return bytes;
}
EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
#endif
bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
char *to = addr;
if (unlikely(iov_iter_is_pipe(i))) {
WARN_ON(1);
return false;
}
if (unlikely(i->count < bytes))
return false;
iterate_all_kinds(i, bytes, v, ({
if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len))
return false;
0;}),
memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
)
iov_iter_advance(i, bytes);
return true;
}
EXPORT_SYMBOL(_copy_from_iter_full_nocache);
static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
{
struct page *head;
size_t v = n + offset;
/*
* The general case needs to access the page order in order
* to compute the page size.
* However, we mostly deal with order-0 pages and thus can
* avoid a possible cache line miss for requests that fit all
* page orders.
*/
if (n <= v && v <= PAGE_SIZE)
return true;
head = compound_head(page);
v += (page - head) << PAGE_SHIFT;
if (likely(n <= v && v <= (page_size(head))))
return true;
WARN_ON(1);
return false;
}
size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
if (unlikely(!page_copy_sane(page, offset, bytes)))
return 0;
if (i->type & (ITER_BVEC|ITER_KVEC)) {
void *kaddr = kmap_atomic(page);
size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
kunmap_atomic(kaddr);
return wanted;
} else if (unlikely(iov_iter_is_discard(i)))
return bytes;
else if (likely(!iov_iter_is_pipe(i)))
return copy_page_to_iter_iovec(page, offset, bytes, i);
else
return copy_page_to_iter_pipe(page, offset, bytes, i);
}
EXPORT_SYMBOL(copy_page_to_iter);
size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
if (unlikely(!page_copy_sane(page, offset, bytes)))
return 0;
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
WARN_ON(1);
return 0;
}
if (i->type & (ITER_BVEC|ITER_KVEC)) {
void *kaddr = kmap_atomic(page);
size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
kunmap_atomic(kaddr);
return wanted;
} else
return copy_page_from_iter_iovec(page, offset, bytes, i);
}
EXPORT_SYMBOL(copy_page_from_iter);
static size_t pipe_zero(size_t bytes, struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head;
size_t n, off;
if (!sanity(i))
return 0;
bytes = n = push_pipe(i, bytes, &i_head, &off);
if (unlikely(!n))
return 0;
do {
size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
i->head = i_head;
i->iov_offset = off + chunk;
n -= chunk;
off = 0;
i_head++;
} while (n);
i->count -= bytes;
return bytes;
}
size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
{
if (unlikely(iov_iter_is_pipe(i)))
return pipe_zero(bytes, i);
iterate_and_advance(i, bytes, v,
clear_user(v.iov_base, v.iov_len),
memzero_page(v.bv_page, v.bv_offset, v.bv_len),
memset(v.iov_base, 0, v.iov_len)
)
return bytes;
}
EXPORT_SYMBOL(iov_iter_zero);
size_t iov_iter_copy_from_user_atomic(struct page *page,
struct iov_iter *i, unsigned long offset, size_t bytes)
{
char *kaddr = kmap_atomic(page), *p = kaddr + offset;
if (unlikely(!page_copy_sane(page, offset, bytes))) {
kunmap_atomic(kaddr);
return 0;
}
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
kunmap_atomic(kaddr);
WARN_ON(1);
return 0;
}
iterate_all_kinds(i, bytes, v,
copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
v.bv_offset, v.bv_len),
memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
)
kunmap_atomic(kaddr);
return bytes;
}
EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
static inline void pipe_truncate(struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_tail = pipe->tail;
unsigned int p_head = pipe->head;
unsigned int p_mask = pipe->ring_size - 1;
if (!pipe_empty(p_head, p_tail)) {
struct pipe_buffer *buf;
unsigned int i_head = i->head;
size_t off = i->iov_offset;
if (off) {
buf = &pipe->bufs[i_head & p_mask];
buf->len = off - buf->offset;
i_head++;
}
while (p_head != i_head) {
p_head--;
pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
}
pipe->head = p_head;
}
}
static void pipe_advance(struct iov_iter *i, size_t size)
{
struct pipe_inode_info *pipe = i->pipe;
if (unlikely(i->count < size))
size = i->count;
if (size) {
struct pipe_buffer *buf;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head = i->head;
size_t off = i->iov_offset, left = size;
if (off) /* make it relative to the beginning of buffer */
left += off - pipe->bufs[i_head & p_mask].offset;
while (1) {
buf = &pipe->bufs[i_head & p_mask];
if (left <= buf->len)
break;
left -= buf->len;
i_head++;
}
i->head = i_head;
i->iov_offset = buf->offset + left;
}
i->count -= size;
/* ... and discard everything past that point */
pipe_truncate(i);
}
void iov_iter_advance(struct iov_iter *i, size_t size)
{
if (unlikely(iov_iter_is_pipe(i))) {
pipe_advance(i, size);
return;
}
if (unlikely(iov_iter_is_discard(i))) {
i->count -= size;
return;
}
iterate_and_advance(i, size, v, 0, 0, 0)
}
EXPORT_SYMBOL(iov_iter_advance);
void iov_iter_revert(struct iov_iter *i, size_t unroll)
{
if (!unroll)
return;
if (WARN_ON(unroll > MAX_RW_COUNT))
return;
i->count += unroll;
if (unlikely(iov_iter_is_pipe(i))) {
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_mask = pipe->ring_size - 1;
unsigned int i_head = i->head;
size_t off = i->iov_offset;
while (1) {
struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
size_t n = off - b->offset;
if (unroll < n) {
off -= unroll;
break;
}
unroll -= n;
if (!unroll && i_head == i->start_head) {
off = 0;
break;
}
i_head--;
b = &pipe->bufs[i_head & p_mask];
off = b->offset + b->len;
}
i->iov_offset = off;
i->head = i_head;
pipe_truncate(i);
return;
}
if (unlikely(iov_iter_is_discard(i)))
return;
if (unroll <= i->iov_offset) {
i->iov_offset -= unroll;
return;
}
unroll -= i->iov_offset;
if (iov_iter_is_bvec(i)) {
const struct bio_vec *bvec = i->bvec;
while (1) {
size_t n = (--bvec)->bv_len;
i->nr_segs++;
if (unroll <= n) {
i->bvec = bvec;
i->iov_offset = n - unroll;
return;
}
unroll -= n;
}
} else { /* same logics for iovec and kvec */
const struct iovec *iov = i->iov;
while (1) {
size_t n = (--iov)->iov_len;
i->nr_segs++;
if (unroll <= n) {
i->iov = iov;
i->iov_offset = n - unroll;
return;
}
unroll -= n;
}
}
}
EXPORT_SYMBOL(iov_iter_revert);
/*
* Return the count of just the current iov_iter segment.
*/
size_t iov_iter_single_seg_count(const struct iov_iter *i)
{
if (unlikely(iov_iter_is_pipe(i)))
return i->count; // it is a silly place, anyway
if (i->nr_segs == 1)
return i->count;
if (unlikely(iov_iter_is_discard(i)))
return i->count;
else if (iov_iter_is_bvec(i))
return min(i->count, i->bvec->bv_len - i->iov_offset);
else
return min(i->count, i->iov->iov_len - i->iov_offset);
}
EXPORT_SYMBOL(iov_iter_single_seg_count);
void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
const struct kvec *kvec, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
i->type = ITER_KVEC | (direction & (READ | WRITE));
i->kvec = kvec;
i->nr_segs = nr_segs;
i->iov_offset = 0;
i->count = count;
}
EXPORT_SYMBOL(iov_iter_kvec);
void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
const struct bio_vec *bvec, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
i->type = ITER_BVEC | (direction & (READ | WRITE));
i->bvec = bvec;
i->nr_segs = nr_segs;
i->iov_offset = 0;
i->count = count;
}
EXPORT_SYMBOL(iov_iter_bvec);
void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
struct pipe_inode_info *pipe,
size_t count)
{
BUG_ON(direction != READ);
WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
i->type = ITER_PIPE | READ;
i->pipe = pipe;
i->head = pipe->head;
i->iov_offset = 0;
i->count = count;
i->start_head = i->head;
}
EXPORT_SYMBOL(iov_iter_pipe);
/**
* iov_iter_discard - Initialise an I/O iterator that discards data
* @i: The iterator to initialise.
* @direction: The direction of the transfer.
* @count: The size of the I/O buffer in bytes.
*
* Set up an I/O iterator that just discards everything that's written to it.
* It's only available as a READ iterator.
*/
void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
{
BUG_ON(direction != READ);
i->type = ITER_DISCARD | READ;
i->count = count;
i->iov_offset = 0;
}
EXPORT_SYMBOL(iov_iter_discard);
unsigned long iov_iter_alignment(const struct iov_iter *i)
{
unsigned long res = 0;
size_t size = i->count;
if (unlikely(iov_iter_is_pipe(i))) {
unsigned int p_mask = i->pipe->ring_size - 1;
if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
return size | i->iov_offset;
return size;
}
iterate_all_kinds(i, size, v,
(res |= (unsigned long)v.iov_base | v.iov_len, 0),
res |= v.bv_offset | v.bv_len,
res |= (unsigned long)v.iov_base | v.iov_len
)
return res;
}
EXPORT_SYMBOL(iov_iter_alignment);
unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
{
unsigned long res = 0;
size_t size = i->count;
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
WARN_ON(1);
return ~0U;
}
iterate_all_kinds(i, size, v,
(res |= (!res ? 0 : (unsigned long)v.iov_base) |
(size != v.iov_len ? size : 0), 0),
(res |= (!res ? 0 : (unsigned long)v.bv_offset) |
(size != v.bv_len ? size : 0)),
(res |= (!res ? 0 : (unsigned long)v.iov_base) |
(size != v.iov_len ? size : 0))
);
return res;
}
EXPORT_SYMBOL(iov_iter_gap_alignment);
static inline ssize_t __pipe_get_pages(struct iov_iter *i,
size_t maxsize,
struct page **pages,
int iter_head,
size_t *start)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_mask = pipe->ring_size - 1;
ssize_t n = push_pipe(i, maxsize, &iter_head, start);
if (!n)
return -EFAULT;
maxsize = n;
n += *start;
while (n > 0) {
get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
iter_head++;
n -= PAGE_SIZE;
}
return maxsize;
}
static ssize_t pipe_get_pages(struct iov_iter *i,
struct page **pages, size_t maxsize, unsigned maxpages,
size_t *start)
{
unsigned int iter_head, npages;
size_t capacity;
if (!maxsize)
return 0;
if (!sanity(i))
return -EFAULT;
data_start(i, &iter_head, start);
/* Amount of free space: some of this one + all after this one */
npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
capacity = min(npages, maxpages) * PAGE_SIZE - *start;
return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
}
ssize_t iov_iter_get_pages(struct iov_iter *i,
struct page **pages, size_t maxsize, unsigned maxpages,
size_t *start)
{
if (maxsize > i->count)
maxsize = i->count;
if (unlikely(iov_iter_is_pipe(i)))
return pipe_get_pages(i, pages, maxsize, maxpages, start);
if (unlikely(iov_iter_is_discard(i)))
return -EFAULT;
iterate_all_kinds(i, maxsize, v, ({
unsigned long addr = (unsigned long)v.iov_base;
size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
int n;
int res;
if (len > maxpages * PAGE_SIZE)
len = maxpages * PAGE_SIZE;
addr &= ~(PAGE_SIZE - 1);
n = DIV_ROUND_UP(len, PAGE_SIZE);
res = get_user_pages_fast(addr, n,
iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
pages);
if (unlikely(res < 0))
return res;
return (res == n ? len : res * PAGE_SIZE) - *start;
0;}),({
/* can't be more than PAGE_SIZE */
*start = v.bv_offset;
get_page(*pages = v.bv_page);
return v.bv_len;
}),({
return -EFAULT;
})
)
return 0;
}
EXPORT_SYMBOL(iov_iter_get_pages);
static struct page **get_pages_array(size_t n)
{
return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
}
static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
struct page ***pages, size_t maxsize,
size_t *start)
{
struct page **p;
unsigned int iter_head, npages;
ssize_t n;
if (!maxsize)
return 0;
if (!sanity(i))
return -EFAULT;
data_start(i, &iter_head, start);
/* Amount of free space: some of this one + all after this one */
npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
n = npages * PAGE_SIZE - *start;
if (maxsize > n)
maxsize = n;
else
npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
p = get_pages_array(npages);
if (!p)
return -ENOMEM;
n = __pipe_get_pages(i, maxsize, p, iter_head, start);
if (n > 0)
*pages = p;
else
kvfree(p);
return n;
}
ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
struct page ***pages, size_t maxsize,
size_t *start)
{
struct page **p;
if (maxsize > i->count)
maxsize = i->count;
if (unlikely(iov_iter_is_pipe(i)))
return pipe_get_pages_alloc(i, pages, maxsize, start);
if (unlikely(iov_iter_is_discard(i)))
return -EFAULT;
iterate_all_kinds(i, maxsize, v, ({
unsigned long addr = (unsigned long)v.iov_base;
size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
int n;
int res;
addr &= ~(PAGE_SIZE - 1);
n = DIV_ROUND_UP(len, PAGE_SIZE);
p = get_pages_array(n);
if (!p)
return -ENOMEM;
res = get_user_pages_fast(addr, n,
iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
if (unlikely(res < 0)) {
kvfree(p);
return res;
}
*pages = p;
return (res == n ? len : res * PAGE_SIZE) - *start;
0;}),({
/* can't be more than PAGE_SIZE */
*start = v.bv_offset;
*pages = p = get_pages_array(1);
if (!p)
return -ENOMEM;
get_page(*p = v.bv_page);
return v.bv_len;
}),({
return -EFAULT;
})
)
return 0;
}
EXPORT_SYMBOL(iov_iter_get_pages_alloc);
size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
struct iov_iter *i)
{
char *to = addr;
__wsum sum, next;
size_t off = 0;
sum = *csum;
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
WARN_ON(1);
return 0;
}
iterate_and_advance(i, bytes, v, ({
next = csum_and_copy_from_user(v.iov_base,
(to += v.iov_len) - v.iov_len,
v.iov_len);
if (next) {
sum = csum_block_add(sum, next, off);
off += v.iov_len;
}
next ? 0 : v.iov_len;
}), ({
char *p = kmap_atomic(v.bv_page);
sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
p + v.bv_offset, v.bv_len,
sum, off);
kunmap_atomic(p);
off += v.bv_len;
}),({
sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len,
sum, off);
off += v.iov_len;
})
)
*csum = sum;
return bytes;
}
EXPORT_SYMBOL(csum_and_copy_from_iter);
bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
struct iov_iter *i)
{
char *to = addr;
__wsum sum, next;
size_t off = 0;
sum = *csum;
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
WARN_ON(1);
return false;
}
if (unlikely(i->count < bytes))
return false;
iterate_all_kinds(i, bytes, v, ({
next = csum_and_copy_from_user(v.iov_base,
(to += v.iov_len) - v.iov_len,
v.iov_len);
if (!next)
return false;
sum = csum_block_add(sum, next, off);
off += v.iov_len;
0;
}), ({
char *p = kmap_atomic(v.bv_page);
sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
p + v.bv_offset, v.bv_len,
sum, off);
kunmap_atomic(p);
off += v.bv_len;
}),({
sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
v.iov_base, v.iov_len,
sum, off);
off += v.iov_len;
})
)
*csum = sum;
iov_iter_advance(i, bytes);
return true;
}
EXPORT_SYMBOL(csum_and_copy_from_iter_full);
size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
struct iov_iter *i)
{
const char *from = addr;
__wsum *csum = csump;
__wsum sum, next;
size_t off = 0;
if (unlikely(iov_iter_is_pipe(i)))
return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
sum = *csum;
if (unlikely(iov_iter_is_discard(i))) {
WARN_ON(1); /* for now */
return 0;
}
iterate_and_advance(i, bytes, v, ({
next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
v.iov_base,
v.iov_len);
if (next) {
sum = csum_block_add(sum, next, off);
off += v.iov_len;
}
next ? 0 : v.iov_len;
}), ({
char *p = kmap_atomic(v.bv_page);
sum = csum_and_memcpy(p + v.bv_offset,
(from += v.bv_len) - v.bv_len,
v.bv_len, sum, off);
kunmap_atomic(p);
off += v.bv_len;
}),({
sum = csum_and_memcpy(v.iov_base,
(from += v.iov_len) - v.iov_len,
v.iov_len, sum, off);
off += v.iov_len;
})
)
*csum = sum;
return bytes;
}
EXPORT_SYMBOL(csum_and_copy_to_iter);
size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
struct iov_iter *i)
{
#ifdef CONFIG_CRYPTO_HASH
struct ahash_request *hash = hashp;
struct scatterlist sg;
size_t copied;
copied = copy_to_iter(addr, bytes, i);
sg_init_one(&sg, addr, copied);
ahash_request_set_crypt(hash, &sg, NULL, copied);
crypto_ahash_update(hash);
return copied;
#else
return 0;
#endif
}
EXPORT_SYMBOL(hash_and_copy_to_iter);
int iov_iter_npages(const struct iov_iter *i, int maxpages)
{
size_t size = i->count;
int npages = 0;
if (!size)
return 0;
if (unlikely(iov_iter_is_discard(i)))
return 0;
if (unlikely(iov_iter_is_pipe(i))) {
struct pipe_inode_info *pipe = i->pipe;
unsigned int iter_head;
size_t off;
if (!sanity(i))
return 0;
data_start(i, &iter_head, &off);
/* some of this one + all after this one */
npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
if (npages >= maxpages)
return maxpages;
} else iterate_all_kinds(i, size, v, ({
unsigned long p = (unsigned long)v.iov_base;
npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
- p / PAGE_SIZE;
if (npages >= maxpages)
return maxpages;
0;}),({
npages++;
if (npages >= maxpages)
return maxpages;
}),({
unsigned long p = (unsigned long)v.iov_base;
npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
- p / PAGE_SIZE;
if (npages >= maxpages)
return maxpages;
})
)
return npages;
}
EXPORT_SYMBOL(iov_iter_npages);
const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
{
*new = *old;
if (unlikely(iov_iter_is_pipe(new))) {
WARN_ON(1);
return NULL;
}
if (unlikely(iov_iter_is_discard(new)))
return NULL;
if (iov_iter_is_bvec(new))
return new->bvec = kmemdup(new->bvec,
new->nr_segs * sizeof(struct bio_vec),
flags);
else
/* iovec and kvec have identical layout */
return new->iov = kmemdup(new->iov,
new->nr_segs * sizeof(struct iovec),
flags);
}
EXPORT_SYMBOL(dup_iter);
static int copy_compat_iovec_from_user(struct iovec *iov,
const struct iovec __user *uvec, unsigned long nr_segs)
{
const struct compat_iovec __user *uiov =
(const struct compat_iovec __user *)uvec;
int ret = -EFAULT, i;
if (!user_access_begin(uvec, nr_segs * sizeof(*uvec)))
return -EFAULT;
for (i = 0; i < nr_segs; i++) {
compat_uptr_t buf;
compat_ssize_t len;
unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
/* check for compat_size_t not fitting in compat_ssize_t .. */
if (len < 0) {
ret = -EINVAL;
goto uaccess_end;
}
iov[i].iov_base = compat_ptr(buf);
iov[i].iov_len = len;
}
ret = 0;
uaccess_end:
user_access_end();
return ret;
}
static int copy_iovec_from_user(struct iovec *iov,
const struct iovec __user *uvec, unsigned long nr_segs)
{
unsigned long seg;
if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
return -EFAULT;
for (seg = 0; seg < nr_segs; seg++) {
if ((ssize_t)iov[seg].iov_len < 0)
return -EINVAL;
}
return 0;
}
struct iovec *iovec_from_user(const struct iovec __user *uvec,
unsigned long nr_segs, unsigned long fast_segs,
struct iovec *fast_iov, bool compat)
{
struct iovec *iov = fast_iov;
int ret;
/*
* SuS says "The readv() function *may* fail if the iovcnt argument was
* less than or equal to 0, or greater than {IOV_MAX}. Linux has
* traditionally returned zero for zero segments, so...
*/
if (nr_segs == 0)
return iov;
if (nr_segs > UIO_MAXIOV)
return ERR_PTR(-EINVAL);
if (nr_segs > fast_segs) {
iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
if (!iov)
return ERR_PTR(-ENOMEM);
}
if (compat)
ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
else
ret = copy_iovec_from_user(iov, uvec, nr_segs);
if (ret) {
if (iov != fast_iov)
kfree(iov);
return ERR_PTR(ret);
}
return iov;
}
ssize_t __import_iovec(int type, const struct iovec __user *uvec,
unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
struct iov_iter *i, bool compat)
{
ssize_t total_len = 0;
unsigned long seg;
struct iovec *iov;
iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
if (IS_ERR(iov)) {
*iovp = NULL;
return PTR_ERR(iov);
}
/*
* According to the Single Unix Specification we should return EINVAL if
* an element length is < 0 when cast to ssize_t or if the total length
* would overflow the ssize_t return value of the system call.
*
* Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
* overflow case.
*/
for (seg = 0; seg < nr_segs; seg++) {
ssize_t len = (ssize_t)iov[seg].iov_len;
if (!access_ok(iov[seg].iov_base, len)) {
if (iov != *iovp)
kfree(iov);
*iovp = NULL;
return -EFAULT;
}
if (len > MAX_RW_COUNT - total_len) {
len = MAX_RW_COUNT - total_len;
iov[seg].iov_len = len;
}
total_len += len;
}
iov_iter_init(i, type, iov, nr_segs, total_len);
if (iov == *iovp)
*iovp = NULL;
else
*iovp = iov;
return total_len;
}
/**
* import_iovec() - Copy an array of &struct iovec from userspace
* into the kernel, check that it is valid, and initialize a new
* &struct iov_iter iterator to access it.
*
* @type: One of %READ or %WRITE.
* @uvec: Pointer to the userspace array.
* @nr_segs: Number of elements in userspace array.
* @fast_segs: Number of elements in @iov.
* @iovp: (input and output parameter) Pointer to pointer to (usually small
* on-stack) kernel array.
* @i: Pointer to iterator that will be initialized on success.
*
* If the array pointed to by *@iov is large enough to hold all @nr_segs,
* then this function places %NULL in *@iov on return. Otherwise, a new
* array will be allocated and the result placed in *@iov. This means that
* the caller may call kfree() on *@iov regardless of whether the small
* on-stack array was used or not (and regardless of whether this function
* returns an error or not).
*
* Return: Negative error code on error, bytes imported on success
*/
ssize_t import_iovec(int type, const struct iovec __user *uvec,
unsigned nr_segs, unsigned fast_segs,
struct iovec **iovp, struct iov_iter *i)
{
return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
in_compat_syscall());
}
EXPORT_SYMBOL(import_iovec);
int import_single_range(int rw, void __user *buf, size_t len,
struct iovec *iov, struct iov_iter *i)
{
if (len > MAX_RW_COUNT)
len = MAX_RW_COUNT;
if (unlikely(!access_ok(buf, len)))
return -EFAULT;
iov->iov_base = buf;
iov->iov_len = len;
iov_iter_init(i, rw, iov, 1, len);
return 0;
}
EXPORT_SYMBOL(import_single_range);
int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
int (*f)(struct kvec *vec, void *context),
void *context)
{
struct kvec w;
int err = -EINVAL;
if (!bytes)
return 0;
iterate_all_kinds(i, bytes, v, -EINVAL, ({
w.iov_base = kmap(v.bv_page) + v.bv_offset;
w.iov_len = v.bv_len;
err = f(&w, context);
kunmap(v.bv_page);
err;}), ({
w = v;
err = f(&w, context);})
)
return err;
}
EXPORT_SYMBOL(iov_iter_for_each_range);