linux-next/drivers/memory/stm32-fmc2-ebi.c
Krzysztof Kozlowski 2f9dc6a357 memory: stm32-fmc2-ebi: add missing of_node_put for loop iteration
Early exits from for_each_available_child_of_node() should decrement the
node reference counter.  Reported by Coccinelle:

  drivers/memory/stm32-fmc2-ebi.c:1046:1-33: WARNING:
    Function "for_each_available_child_of_node" should have of_node_put() before return around line 1051.

Fixes: 66b8173a19 ("memory: stm32-fmc2-ebi: add STM32 FMC2 EBI controller driver")
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Reviewed-by: Christophe Kerello <christophe.kerello@foss.st.com>
Link: https://lore.kernel.org/r/20210423101815.119341-1-krzysztof.kozlowski@canonical.com
2021-05-11 08:49:18 -04:00

1211 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2020
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <linux/reset.h>
/* FMC2 Controller Registers */
#define FMC2_BCR1 0x0
#define FMC2_BTR1 0x4
#define FMC2_BCR(x) ((x) * 0x8 + FMC2_BCR1)
#define FMC2_BTR(x) ((x) * 0x8 + FMC2_BTR1)
#define FMC2_PCSCNTR 0x20
#define FMC2_BWTR1 0x104
#define FMC2_BWTR(x) ((x) * 0x8 + FMC2_BWTR1)
/* Register: FMC2_BCR1 */
#define FMC2_BCR1_CCLKEN BIT(20)
#define FMC2_BCR1_FMC2EN BIT(31)
/* Register: FMC2_BCRx */
#define FMC2_BCR_MBKEN BIT(0)
#define FMC2_BCR_MUXEN BIT(1)
#define FMC2_BCR_MTYP GENMASK(3, 2)
#define FMC2_BCR_MWID GENMASK(5, 4)
#define FMC2_BCR_FACCEN BIT(6)
#define FMC2_BCR_BURSTEN BIT(8)
#define FMC2_BCR_WAITPOL BIT(9)
#define FMC2_BCR_WAITCFG BIT(11)
#define FMC2_BCR_WREN BIT(12)
#define FMC2_BCR_WAITEN BIT(13)
#define FMC2_BCR_EXTMOD BIT(14)
#define FMC2_BCR_ASYNCWAIT BIT(15)
#define FMC2_BCR_CPSIZE GENMASK(18, 16)
#define FMC2_BCR_CBURSTRW BIT(19)
#define FMC2_BCR_NBLSET GENMASK(23, 22)
/* Register: FMC2_BTRx/FMC2_BWTRx */
#define FMC2_BXTR_ADDSET GENMASK(3, 0)
#define FMC2_BXTR_ADDHLD GENMASK(7, 4)
#define FMC2_BXTR_DATAST GENMASK(15, 8)
#define FMC2_BXTR_BUSTURN GENMASK(19, 16)
#define FMC2_BTR_CLKDIV GENMASK(23, 20)
#define FMC2_BTR_DATLAT GENMASK(27, 24)
#define FMC2_BXTR_ACCMOD GENMASK(29, 28)
#define FMC2_BXTR_DATAHLD GENMASK(31, 30)
/* Register: FMC2_PCSCNTR */
#define FMC2_PCSCNTR_CSCOUNT GENMASK(15, 0)
#define FMC2_PCSCNTR_CNTBEN(x) BIT((x) + 16)
#define FMC2_MAX_EBI_CE 4
#define FMC2_MAX_BANKS 5
#define FMC2_BCR_CPSIZE_0 0x0
#define FMC2_BCR_CPSIZE_128 0x1
#define FMC2_BCR_CPSIZE_256 0x2
#define FMC2_BCR_CPSIZE_512 0x3
#define FMC2_BCR_CPSIZE_1024 0x4
#define FMC2_BCR_MWID_8 0x0
#define FMC2_BCR_MWID_16 0x1
#define FMC2_BCR_MTYP_SRAM 0x0
#define FMC2_BCR_MTYP_PSRAM 0x1
#define FMC2_BCR_MTYP_NOR 0x2
#define FMC2_BXTR_EXTMOD_A 0x0
#define FMC2_BXTR_EXTMOD_B 0x1
#define FMC2_BXTR_EXTMOD_C 0x2
#define FMC2_BXTR_EXTMOD_D 0x3
#define FMC2_BCR_NBLSET_MAX 0x3
#define FMC2_BXTR_ADDSET_MAX 0xf
#define FMC2_BXTR_ADDHLD_MAX 0xf
#define FMC2_BXTR_DATAST_MAX 0xff
#define FMC2_BXTR_BUSTURN_MAX 0xf
#define FMC2_BXTR_DATAHLD_MAX 0x3
#define FMC2_BTR_CLKDIV_MAX 0xf
#define FMC2_BTR_DATLAT_MAX 0xf
#define FMC2_PCSCNTR_CSCOUNT_MAX 0xff
enum stm32_fmc2_ebi_bank {
FMC2_EBI1 = 0,
FMC2_EBI2,
FMC2_EBI3,
FMC2_EBI4,
FMC2_NAND
};
enum stm32_fmc2_ebi_register_type {
FMC2_REG_BCR = 1,
FMC2_REG_BTR,
FMC2_REG_BWTR,
FMC2_REG_PCSCNTR
};
enum stm32_fmc2_ebi_transaction_type {
FMC2_ASYNC_MODE_1_SRAM = 0,
FMC2_ASYNC_MODE_1_PSRAM,
FMC2_ASYNC_MODE_A_SRAM,
FMC2_ASYNC_MODE_A_PSRAM,
FMC2_ASYNC_MODE_2_NOR,
FMC2_ASYNC_MODE_B_NOR,
FMC2_ASYNC_MODE_C_NOR,
FMC2_ASYNC_MODE_D_NOR,
FMC2_SYNC_READ_SYNC_WRITE_PSRAM,
FMC2_SYNC_READ_ASYNC_WRITE_PSRAM,
FMC2_SYNC_READ_SYNC_WRITE_NOR,
FMC2_SYNC_READ_ASYNC_WRITE_NOR
};
enum stm32_fmc2_ebi_buswidth {
FMC2_BUSWIDTH_8 = 8,
FMC2_BUSWIDTH_16 = 16
};
enum stm32_fmc2_ebi_cpsize {
FMC2_CPSIZE_0 = 0,
FMC2_CPSIZE_128 = 128,
FMC2_CPSIZE_256 = 256,
FMC2_CPSIZE_512 = 512,
FMC2_CPSIZE_1024 = 1024
};
struct stm32_fmc2_ebi {
struct device *dev;
struct clk *clk;
struct regmap *regmap;
u8 bank_assigned;
u32 bcr[FMC2_MAX_EBI_CE];
u32 btr[FMC2_MAX_EBI_CE];
u32 bwtr[FMC2_MAX_EBI_CE];
u32 pcscntr;
};
/*
* struct stm32_fmc2_prop - STM32 FMC2 EBI property
* @name: the device tree binding name of the property
* @bprop: indicate that it is a boolean property
* @mprop: indicate that it is a mandatory property
* @reg_type: the register that have to be modified
* @reg_mask: the bit that have to be modified in the selected register
* in case of it is a boolean property
* @reset_val: the default value that have to be set in case the property
* has not been defined in the device tree
* @check: this callback ckecks that the property is compliant with the
* transaction type selected
* @calculate: this callback is called to calculate for exemple a timing
* set in nanoseconds in the device tree in clock cycles or in
* clock period
* @set: this callback applies the values in the registers
*/
struct stm32_fmc2_prop {
const char *name;
bool bprop;
bool mprop;
int reg_type;
u32 reg_mask;
u32 reset_val;
int (*check)(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop, int cs);
u32 (*calculate)(struct stm32_fmc2_ebi *ebi, int cs, u32 setup);
int (*set)(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup);
};
static int stm32_fmc2_ebi_check_mux(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr;
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if (bcr & FMC2_BCR_MTYP)
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_waitcfg(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr, val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_sync_trans(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr;
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if (bcr & FMC2_BCR_BURSTEN)
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_async_trans(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr;
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if (!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW))
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_cpsize(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr, val = FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if ((bcr & FMC2_BCR_MTYP) == val && bcr & FMC2_BCR_BURSTEN)
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_address_hold(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr, bxtr, val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if (prop->reg_type == FMC2_REG_BWTR)
regmap_read(ebi->regmap, FMC2_BWTR(cs), &bxtr);
else
regmap_read(ebi->regmap, FMC2_BTR(cs), &bxtr);
if ((!(bcr & FMC2_BCR_BURSTEN) || !(bcr & FMC2_BCR_CBURSTRW)) &&
((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN))
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_clk_period(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
u32 bcr, bcr1;
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if (cs)
regmap_read(ebi->regmap, FMC2_BCR1, &bcr1);
else
bcr1 = bcr;
if (bcr & FMC2_BCR_BURSTEN && (!cs || !(bcr1 & FMC2_BCR1_CCLKEN)))
return 0;
return -EINVAL;
}
static int stm32_fmc2_ebi_check_cclk(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs)
{
if (cs)
return -EINVAL;
return stm32_fmc2_ebi_check_sync_trans(ebi, prop, cs);
}
static u32 stm32_fmc2_ebi_ns_to_clock_cycles(struct stm32_fmc2_ebi *ebi,
int cs, u32 setup)
{
unsigned long hclk = clk_get_rate(ebi->clk);
unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
return DIV_ROUND_UP(setup * 1000, hclkp);
}
static u32 stm32_fmc2_ebi_ns_to_clk_period(struct stm32_fmc2_ebi *ebi,
int cs, u32 setup)
{
u32 nb_clk_cycles = stm32_fmc2_ebi_ns_to_clock_cycles(ebi, cs, setup);
u32 bcr, btr, clk_period;
regmap_read(ebi->regmap, FMC2_BCR1, &bcr);
if (bcr & FMC2_BCR1_CCLKEN || !cs)
regmap_read(ebi->regmap, FMC2_BTR1, &btr);
else
regmap_read(ebi->regmap, FMC2_BTR(cs), &btr);
clk_period = FIELD_GET(FMC2_BTR_CLKDIV, btr) + 1;
return DIV_ROUND_UP(nb_clk_cycles, clk_period);
}
static int stm32_fmc2_ebi_get_reg(int reg_type, int cs, u32 *reg)
{
switch (reg_type) {
case FMC2_REG_BCR:
*reg = FMC2_BCR(cs);
break;
case FMC2_REG_BTR:
*reg = FMC2_BTR(cs);
break;
case FMC2_REG_BWTR:
*reg = FMC2_BWTR(cs);
break;
case FMC2_REG_PCSCNTR:
*reg = FMC2_PCSCNTR;
break;
default:
return -EINVAL;
}
return 0;
}
static int stm32_fmc2_ebi_set_bit_field(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 reg;
int ret;
ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
if (ret)
return ret;
regmap_update_bits(ebi->regmap, reg, prop->reg_mask,
setup ? prop->reg_mask : 0);
return 0;
}
static int stm32_fmc2_ebi_set_trans_type(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 bcr_mask, bcr = FMC2_BCR_WREN;
u32 btr_mask, btr = 0;
u32 bwtr_mask, bwtr = 0;
bwtr_mask = FMC2_BXTR_ACCMOD;
btr_mask = FMC2_BXTR_ACCMOD;
bcr_mask = FMC2_BCR_MUXEN | FMC2_BCR_MTYP | FMC2_BCR_FACCEN |
FMC2_BCR_WREN | FMC2_BCR_WAITEN | FMC2_BCR_BURSTEN |
FMC2_BCR_EXTMOD | FMC2_BCR_CBURSTRW;
switch (setup) {
case FMC2_ASYNC_MODE_1_SRAM:
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
/*
* MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
*/
break;
case FMC2_ASYNC_MODE_1_PSRAM:
/*
* MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
break;
case FMC2_ASYNC_MODE_A_SRAM:
/*
* MUXEN = 0, MTYP = 0, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_SRAM);
bcr |= FMC2_BCR_EXTMOD;
btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
break;
case FMC2_ASYNC_MODE_A_PSRAM:
/*
* MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
bcr |= FMC2_BCR_EXTMOD;
btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_A);
break;
case FMC2_ASYNC_MODE_2_NOR:
/*
* MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
bcr |= FMC2_BCR_FACCEN;
break;
case FMC2_ASYNC_MODE_B_NOR:
/*
* MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 1
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_B);
break;
case FMC2_ASYNC_MODE_C_NOR:
/*
* MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 2
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_C);
break;
case FMC2_ASYNC_MODE_D_NOR:
/*
* MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 0, WAITEN = 0,
* WREN = 1, EXTMOD = 1, CBURSTRW = 0, ACCMOD = 3
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
bcr |= FMC2_BCR_FACCEN | FMC2_BCR_EXTMOD;
btr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
bwtr |= FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
break;
case FMC2_SYNC_READ_SYNC_WRITE_PSRAM:
/*
* MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
bcr |= FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
break;
case FMC2_SYNC_READ_ASYNC_WRITE_PSRAM:
/*
* MUXEN = 0, MTYP = 1, FACCEN = 0, BURSTEN = 1, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_PSRAM);
bcr |= FMC2_BCR_BURSTEN;
break;
case FMC2_SYNC_READ_SYNC_WRITE_NOR:
/*
* MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 1, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN | FMC2_BCR_CBURSTRW;
break;
case FMC2_SYNC_READ_ASYNC_WRITE_NOR:
/*
* MUXEN = 0, MTYP = 2, FACCEN = 1, BURSTEN = 1, WAITEN = 0,
* WREN = 1, EXTMOD = 0, CBURSTRW = 0, ACCMOD = 0
*/
bcr |= FIELD_PREP(FMC2_BCR_MTYP, FMC2_BCR_MTYP_NOR);
bcr |= FMC2_BCR_FACCEN | FMC2_BCR_BURSTEN;
break;
default:
/* Type of transaction not supported */
return -EINVAL;
}
if (bcr & FMC2_BCR_EXTMOD)
regmap_update_bits(ebi->regmap, FMC2_BWTR(cs),
bwtr_mask, bwtr);
regmap_update_bits(ebi->regmap, FMC2_BTR(cs), btr_mask, btr);
regmap_update_bits(ebi->regmap, FMC2_BCR(cs), bcr_mask, bcr);
return 0;
}
static int stm32_fmc2_ebi_set_buswidth(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val;
switch (setup) {
case FMC2_BUSWIDTH_8:
val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_8);
break;
case FMC2_BUSWIDTH_16:
val = FIELD_PREP(FMC2_BCR_MWID, FMC2_BCR_MWID_16);
break;
default:
/* Buswidth not supported */
return -EINVAL;
}
regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MWID, val);
return 0;
}
static int stm32_fmc2_ebi_set_cpsize(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val;
switch (setup) {
case FMC2_CPSIZE_0:
val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_0);
break;
case FMC2_CPSIZE_128:
val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_128);
break;
case FMC2_CPSIZE_256:
val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_256);
break;
case FMC2_CPSIZE_512:
val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_512);
break;
case FMC2_CPSIZE_1024:
val = FIELD_PREP(FMC2_BCR_CPSIZE, FMC2_BCR_CPSIZE_1024);
break;
default:
/* Cpsize not supported */
return -EINVAL;
}
regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_CPSIZE, val);
return 0;
}
static int stm32_fmc2_ebi_set_bl_setup(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val;
val = min_t(u32, setup, FMC2_BCR_NBLSET_MAX);
val = FIELD_PREP(FMC2_BCR_NBLSET, val);
regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_NBLSET, val);
return 0;
}
static int stm32_fmc2_ebi_set_address_setup(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 bcr, bxtr, reg;
u32 val = FIELD_PREP(FMC2_BXTR_ACCMOD, FMC2_BXTR_EXTMOD_D);
int ret;
ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
if (ret)
return ret;
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if (prop->reg_type == FMC2_REG_BWTR)
regmap_read(ebi->regmap, FMC2_BWTR(cs), &bxtr);
else
regmap_read(ebi->regmap, FMC2_BTR(cs), &bxtr);
if ((bxtr & FMC2_BXTR_ACCMOD) == val || bcr & FMC2_BCR_MUXEN)
val = clamp_val(setup, 1, FMC2_BXTR_ADDSET_MAX);
else
val = min_t(u32, setup, FMC2_BXTR_ADDSET_MAX);
val = FIELD_PREP(FMC2_BXTR_ADDSET, val);
regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_ADDSET, val);
return 0;
}
static int stm32_fmc2_ebi_set_address_hold(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val, reg;
int ret;
ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
if (ret)
return ret;
val = clamp_val(setup, 1, FMC2_BXTR_ADDHLD_MAX);
val = FIELD_PREP(FMC2_BXTR_ADDHLD, val);
regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_ADDHLD, val);
return 0;
}
static int stm32_fmc2_ebi_set_data_setup(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val, reg;
int ret;
ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
if (ret)
return ret;
val = clamp_val(setup, 1, FMC2_BXTR_DATAST_MAX);
val = FIELD_PREP(FMC2_BXTR_DATAST, val);
regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_DATAST, val);
return 0;
}
static int stm32_fmc2_ebi_set_bus_turnaround(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val, reg;
int ret;
ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
if (ret)
return ret;
val = setup ? min_t(u32, setup - 1, FMC2_BXTR_BUSTURN_MAX) : 0;
val = FIELD_PREP(FMC2_BXTR_BUSTURN, val);
regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_BUSTURN, val);
return 0;
}
static int stm32_fmc2_ebi_set_data_hold(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val, reg;
int ret;
ret = stm32_fmc2_ebi_get_reg(prop->reg_type, cs, &reg);
if (ret)
return ret;
if (prop->reg_type == FMC2_REG_BWTR)
val = setup ? min_t(u32, setup - 1, FMC2_BXTR_DATAHLD_MAX) : 0;
else
val = min_t(u32, setup, FMC2_BXTR_DATAHLD_MAX);
val = FIELD_PREP(FMC2_BXTR_DATAHLD, val);
regmap_update_bits(ebi->regmap, reg, FMC2_BXTR_DATAHLD, val);
return 0;
}
static int stm32_fmc2_ebi_set_clk_period(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val;
val = setup ? clamp_val(setup - 1, 1, FMC2_BTR_CLKDIV_MAX) : 1;
val = FIELD_PREP(FMC2_BTR_CLKDIV, val);
regmap_update_bits(ebi->regmap, FMC2_BTR(cs), FMC2_BTR_CLKDIV, val);
return 0;
}
static int stm32_fmc2_ebi_set_data_latency(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 val;
val = setup > 1 ? min_t(u32, setup - 2, FMC2_BTR_DATLAT_MAX) : 0;
val = FIELD_PREP(FMC2_BTR_DATLAT, val);
regmap_update_bits(ebi->regmap, FMC2_BTR(cs), FMC2_BTR_DATLAT, val);
return 0;
}
static int stm32_fmc2_ebi_set_max_low_pulse(struct stm32_fmc2_ebi *ebi,
const struct stm32_fmc2_prop *prop,
int cs, u32 setup)
{
u32 old_val, new_val, pcscntr;
if (setup < 1)
return 0;
regmap_read(ebi->regmap, FMC2_PCSCNTR, &pcscntr);
/* Enable counter for the bank */
regmap_update_bits(ebi->regmap, FMC2_PCSCNTR,
FMC2_PCSCNTR_CNTBEN(cs),
FMC2_PCSCNTR_CNTBEN(cs));
new_val = min_t(u32, setup - 1, FMC2_PCSCNTR_CSCOUNT_MAX);
old_val = FIELD_GET(FMC2_PCSCNTR_CSCOUNT, pcscntr);
if (old_val && new_val > old_val)
/* Keep current counter value */
return 0;
new_val = FIELD_PREP(FMC2_PCSCNTR_CSCOUNT, new_val);
regmap_update_bits(ebi->regmap, FMC2_PCSCNTR,
FMC2_PCSCNTR_CSCOUNT, new_val);
return 0;
}
static const struct stm32_fmc2_prop stm32_fmc2_child_props[] = {
/* st,fmc2-ebi-cs-trans-type must be the first property */
{
.name = "st,fmc2-ebi-cs-transaction-type",
.mprop = true,
.set = stm32_fmc2_ebi_set_trans_type,
},
{
.name = "st,fmc2-ebi-cs-cclk-enable",
.bprop = true,
.reg_type = FMC2_REG_BCR,
.reg_mask = FMC2_BCR1_CCLKEN,
.check = stm32_fmc2_ebi_check_cclk,
.set = stm32_fmc2_ebi_set_bit_field,
},
{
.name = "st,fmc2-ebi-cs-mux-enable",
.bprop = true,
.reg_type = FMC2_REG_BCR,
.reg_mask = FMC2_BCR_MUXEN,
.check = stm32_fmc2_ebi_check_mux,
.set = stm32_fmc2_ebi_set_bit_field,
},
{
.name = "st,fmc2-ebi-cs-buswidth",
.reset_val = FMC2_BUSWIDTH_16,
.set = stm32_fmc2_ebi_set_buswidth,
},
{
.name = "st,fmc2-ebi-cs-waitpol-high",
.bprop = true,
.reg_type = FMC2_REG_BCR,
.reg_mask = FMC2_BCR_WAITPOL,
.set = stm32_fmc2_ebi_set_bit_field,
},
{
.name = "st,fmc2-ebi-cs-waitcfg-enable",
.bprop = true,
.reg_type = FMC2_REG_BCR,
.reg_mask = FMC2_BCR_WAITCFG,
.check = stm32_fmc2_ebi_check_waitcfg,
.set = stm32_fmc2_ebi_set_bit_field,
},
{
.name = "st,fmc2-ebi-cs-wait-enable",
.bprop = true,
.reg_type = FMC2_REG_BCR,
.reg_mask = FMC2_BCR_WAITEN,
.check = stm32_fmc2_ebi_check_sync_trans,
.set = stm32_fmc2_ebi_set_bit_field,
},
{
.name = "st,fmc2-ebi-cs-asyncwait-enable",
.bprop = true,
.reg_type = FMC2_REG_BCR,
.reg_mask = FMC2_BCR_ASYNCWAIT,
.check = stm32_fmc2_ebi_check_async_trans,
.set = stm32_fmc2_ebi_set_bit_field,
},
{
.name = "st,fmc2-ebi-cs-cpsize",
.check = stm32_fmc2_ebi_check_cpsize,
.set = stm32_fmc2_ebi_set_cpsize,
},
{
.name = "st,fmc2-ebi-cs-byte-lane-setup-ns",
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_bl_setup,
},
{
.name = "st,fmc2-ebi-cs-address-setup-ns",
.reg_type = FMC2_REG_BTR,
.reset_val = FMC2_BXTR_ADDSET_MAX,
.check = stm32_fmc2_ebi_check_async_trans,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_address_setup,
},
{
.name = "st,fmc2-ebi-cs-address-hold-ns",
.reg_type = FMC2_REG_BTR,
.reset_val = FMC2_BXTR_ADDHLD_MAX,
.check = stm32_fmc2_ebi_check_address_hold,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_address_hold,
},
{
.name = "st,fmc2-ebi-cs-data-setup-ns",
.reg_type = FMC2_REG_BTR,
.reset_val = FMC2_BXTR_DATAST_MAX,
.check = stm32_fmc2_ebi_check_async_trans,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_data_setup,
},
{
.name = "st,fmc2-ebi-cs-bus-turnaround-ns",
.reg_type = FMC2_REG_BTR,
.reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_bus_turnaround,
},
{
.name = "st,fmc2-ebi-cs-data-hold-ns",
.reg_type = FMC2_REG_BTR,
.check = stm32_fmc2_ebi_check_async_trans,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_data_hold,
},
{
.name = "st,fmc2-ebi-cs-clk-period-ns",
.reset_val = FMC2_BTR_CLKDIV_MAX + 1,
.check = stm32_fmc2_ebi_check_clk_period,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_clk_period,
},
{
.name = "st,fmc2-ebi-cs-data-latency-ns",
.check = stm32_fmc2_ebi_check_sync_trans,
.calculate = stm32_fmc2_ebi_ns_to_clk_period,
.set = stm32_fmc2_ebi_set_data_latency,
},
{
.name = "st,fmc2-ebi-cs-write-address-setup-ns",
.reg_type = FMC2_REG_BWTR,
.reset_val = FMC2_BXTR_ADDSET_MAX,
.check = stm32_fmc2_ebi_check_async_trans,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_address_setup,
},
{
.name = "st,fmc2-ebi-cs-write-address-hold-ns",
.reg_type = FMC2_REG_BWTR,
.reset_val = FMC2_BXTR_ADDHLD_MAX,
.check = stm32_fmc2_ebi_check_address_hold,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_address_hold,
},
{
.name = "st,fmc2-ebi-cs-write-data-setup-ns",
.reg_type = FMC2_REG_BWTR,
.reset_val = FMC2_BXTR_DATAST_MAX,
.check = stm32_fmc2_ebi_check_async_trans,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_data_setup,
},
{
.name = "st,fmc2-ebi-cs-write-bus-turnaround-ns",
.reg_type = FMC2_REG_BWTR,
.reset_val = FMC2_BXTR_BUSTURN_MAX + 1,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_bus_turnaround,
},
{
.name = "st,fmc2-ebi-cs-write-data-hold-ns",
.reg_type = FMC2_REG_BWTR,
.check = stm32_fmc2_ebi_check_async_trans,
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_data_hold,
},
{
.name = "st,fmc2-ebi-cs-max-low-pulse-ns",
.calculate = stm32_fmc2_ebi_ns_to_clock_cycles,
.set = stm32_fmc2_ebi_set_max_low_pulse,
},
};
static int stm32_fmc2_ebi_parse_prop(struct stm32_fmc2_ebi *ebi,
struct device_node *dev_node,
const struct stm32_fmc2_prop *prop,
int cs)
{
struct device *dev = ebi->dev;
u32 setup = 0;
if (!prop->set) {
dev_err(dev, "property %s is not well defined\n", prop->name);
return -EINVAL;
}
if (prop->check && prop->check(ebi, prop, cs))
/* Skeep this property */
return 0;
if (prop->bprop) {
bool bprop;
bprop = of_property_read_bool(dev_node, prop->name);
if (prop->mprop && !bprop) {
dev_err(dev, "mandatory property %s not defined in the device tree\n",
prop->name);
return -EINVAL;
}
if (bprop)
setup = 1;
} else {
u32 val;
int ret;
ret = of_property_read_u32(dev_node, prop->name, &val);
if (prop->mprop && ret) {
dev_err(dev, "mandatory property %s not defined in the device tree\n",
prop->name);
return ret;
}
if (ret)
setup = prop->reset_val;
else if (prop->calculate)
setup = prop->calculate(ebi, cs, val);
else
setup = val;
}
return prop->set(ebi, prop, cs, setup);
}
static void stm32_fmc2_ebi_enable_bank(struct stm32_fmc2_ebi *ebi, int cs)
{
regmap_update_bits(ebi->regmap, FMC2_BCR(cs),
FMC2_BCR_MBKEN, FMC2_BCR_MBKEN);
}
static void stm32_fmc2_ebi_disable_bank(struct stm32_fmc2_ebi *ebi, int cs)
{
regmap_update_bits(ebi->regmap, FMC2_BCR(cs), FMC2_BCR_MBKEN, 0);
}
static void stm32_fmc2_ebi_save_setup(struct stm32_fmc2_ebi *ebi)
{
unsigned int cs;
for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
regmap_read(ebi->regmap, FMC2_BCR(cs), &ebi->bcr[cs]);
regmap_read(ebi->regmap, FMC2_BTR(cs), &ebi->btr[cs]);
regmap_read(ebi->regmap, FMC2_BWTR(cs), &ebi->bwtr[cs]);
}
regmap_read(ebi->regmap, FMC2_PCSCNTR, &ebi->pcscntr);
}
static void stm32_fmc2_ebi_set_setup(struct stm32_fmc2_ebi *ebi)
{
unsigned int cs;
for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
regmap_write(ebi->regmap, FMC2_BCR(cs), ebi->bcr[cs]);
regmap_write(ebi->regmap, FMC2_BTR(cs), ebi->btr[cs]);
regmap_write(ebi->regmap, FMC2_BWTR(cs), ebi->bwtr[cs]);
}
regmap_write(ebi->regmap, FMC2_PCSCNTR, ebi->pcscntr);
}
static void stm32_fmc2_ebi_disable_banks(struct stm32_fmc2_ebi *ebi)
{
unsigned int cs;
for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
if (!(ebi->bank_assigned & BIT(cs)))
continue;
stm32_fmc2_ebi_disable_bank(ebi, cs);
}
}
/* NWAIT signal can not be connected to EBI controller and NAND controller */
static bool stm32_fmc2_ebi_nwait_used_by_ctrls(struct stm32_fmc2_ebi *ebi)
{
unsigned int cs;
u32 bcr;
for (cs = 0; cs < FMC2_MAX_EBI_CE; cs++) {
if (!(ebi->bank_assigned & BIT(cs)))
continue;
regmap_read(ebi->regmap, FMC2_BCR(cs), &bcr);
if ((bcr & FMC2_BCR_WAITEN || bcr & FMC2_BCR_ASYNCWAIT) &&
ebi->bank_assigned & BIT(FMC2_NAND))
return true;
}
return false;
}
static void stm32_fmc2_ebi_enable(struct stm32_fmc2_ebi *ebi)
{
regmap_update_bits(ebi->regmap, FMC2_BCR1,
FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
}
static void stm32_fmc2_ebi_disable(struct stm32_fmc2_ebi *ebi)
{
regmap_update_bits(ebi->regmap, FMC2_BCR1, FMC2_BCR1_FMC2EN, 0);
}
static int stm32_fmc2_ebi_setup_cs(struct stm32_fmc2_ebi *ebi,
struct device_node *dev_node,
u32 cs)
{
unsigned int i;
int ret;
stm32_fmc2_ebi_disable_bank(ebi, cs);
for (i = 0; i < ARRAY_SIZE(stm32_fmc2_child_props); i++) {
const struct stm32_fmc2_prop *p = &stm32_fmc2_child_props[i];
ret = stm32_fmc2_ebi_parse_prop(ebi, dev_node, p, cs);
if (ret) {
dev_err(ebi->dev, "property %s could not be set: %d\n",
p->name, ret);
return ret;
}
}
stm32_fmc2_ebi_enable_bank(ebi, cs);
return 0;
}
static int stm32_fmc2_ebi_parse_dt(struct stm32_fmc2_ebi *ebi)
{
struct device *dev = ebi->dev;
struct device_node *child;
bool child_found = false;
u32 bank;
int ret;
for_each_available_child_of_node(dev->of_node, child) {
ret = of_property_read_u32(child, "reg", &bank);
if (ret) {
dev_err(dev, "could not retrieve reg property: %d\n",
ret);
of_node_put(child);
return ret;
}
if (bank >= FMC2_MAX_BANKS) {
dev_err(dev, "invalid reg value: %d\n", bank);
of_node_put(child);
return -EINVAL;
}
if (ebi->bank_assigned & BIT(bank)) {
dev_err(dev, "bank already assigned: %d\n", bank);
of_node_put(child);
return -EINVAL;
}
if (bank < FMC2_MAX_EBI_CE) {
ret = stm32_fmc2_ebi_setup_cs(ebi, child, bank);
if (ret) {
dev_err(dev, "setup chip select %d failed: %d\n",
bank, ret);
of_node_put(child);
return ret;
}
}
ebi->bank_assigned |= BIT(bank);
child_found = true;
}
if (!child_found) {
dev_warn(dev, "no subnodes found, disable the driver.\n");
return -ENODEV;
}
if (stm32_fmc2_ebi_nwait_used_by_ctrls(ebi)) {
dev_err(dev, "NWAIT signal connected to EBI and NAND controllers\n");
return -EINVAL;
}
stm32_fmc2_ebi_enable(ebi);
return of_platform_populate(dev->of_node, NULL, NULL, dev);
}
static int stm32_fmc2_ebi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_fmc2_ebi *ebi;
struct reset_control *rstc;
int ret;
ebi = devm_kzalloc(&pdev->dev, sizeof(*ebi), GFP_KERNEL);
if (!ebi)
return -ENOMEM;
ebi->dev = dev;
ebi->regmap = device_node_to_regmap(dev->of_node);
if (IS_ERR(ebi->regmap))
return PTR_ERR(ebi->regmap);
ebi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ebi->clk))
return PTR_ERR(ebi->clk);
rstc = devm_reset_control_get(dev, NULL);
if (PTR_ERR(rstc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
ret = clk_prepare_enable(ebi->clk);
if (ret)
return ret;
if (!IS_ERR(rstc)) {
reset_control_assert(rstc);
reset_control_deassert(rstc);
}
ret = stm32_fmc2_ebi_parse_dt(ebi);
if (ret)
goto err_release;
stm32_fmc2_ebi_save_setup(ebi);
platform_set_drvdata(pdev, ebi);
return 0;
err_release:
stm32_fmc2_ebi_disable_banks(ebi);
stm32_fmc2_ebi_disable(ebi);
clk_disable_unprepare(ebi->clk);
return ret;
}
static int stm32_fmc2_ebi_remove(struct platform_device *pdev)
{
struct stm32_fmc2_ebi *ebi = platform_get_drvdata(pdev);
of_platform_depopulate(&pdev->dev);
stm32_fmc2_ebi_disable_banks(ebi);
stm32_fmc2_ebi_disable(ebi);
clk_disable_unprepare(ebi->clk);
return 0;
}
static int __maybe_unused stm32_fmc2_ebi_suspend(struct device *dev)
{
struct stm32_fmc2_ebi *ebi = dev_get_drvdata(dev);
stm32_fmc2_ebi_disable(ebi);
clk_disable_unprepare(ebi->clk);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused stm32_fmc2_ebi_resume(struct device *dev)
{
struct stm32_fmc2_ebi *ebi = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
ret = clk_prepare_enable(ebi->clk);
if (ret)
return ret;
stm32_fmc2_ebi_set_setup(ebi);
stm32_fmc2_ebi_enable(ebi);
return 0;
}
static SIMPLE_DEV_PM_OPS(stm32_fmc2_ebi_pm_ops, stm32_fmc2_ebi_suspend,
stm32_fmc2_ebi_resume);
static const struct of_device_id stm32_fmc2_ebi_match[] = {
{.compatible = "st,stm32mp1-fmc2-ebi"},
{}
};
MODULE_DEVICE_TABLE(of, stm32_fmc2_ebi_match);
static struct platform_driver stm32_fmc2_ebi_driver = {
.probe = stm32_fmc2_ebi_probe,
.remove = stm32_fmc2_ebi_remove,
.driver = {
.name = "stm32_fmc2_ebi",
.of_match_table = stm32_fmc2_ebi_match,
.pm = &stm32_fmc2_ebi_pm_ops,
},
};
module_platform_driver(stm32_fmc2_ebi_driver);
MODULE_ALIAS("platform:stm32_fmc2_ebi");
MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 ebi driver");
MODULE_LICENSE("GPL v2");