linux-next/fs/nilfs2/the_nilfs.c
Ryusuke Konishi 2c2e52fc4f nilfs2: extend nilfs_sustat ioctl struct
This adds a new argument to the nilfs_sustat structure.

The extended field allows to delete volatile active state of segments,
which was needed to protect freshly-created segments from garbage
collection but has confused code dealing with segments.  This
extension alleviates the mess and gives room for further
simplifications.

The volatile active flag is not persistent, so it's eliminable on this
occasion without affecting compatibility other than the ioctl change.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-07 08:31:19 -07:00

506 lines
14 KiB
C

/*
* the_nilfs.c - the_nilfs shared structure.
*
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Written by Ryusuke Konishi <ryusuke@osrg.net>
*
*/
#include <linux/buffer_head.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include "nilfs.h"
#include "segment.h"
#include "alloc.h"
#include "cpfile.h"
#include "sufile.h"
#include "dat.h"
#include "seglist.h"
#include "segbuf.h"
void nilfs_set_last_segment(struct the_nilfs *nilfs,
sector_t start_blocknr, u64 seq, __u64 cno)
{
spin_lock(&nilfs->ns_last_segment_lock);
nilfs->ns_last_pseg = start_blocknr;
nilfs->ns_last_seq = seq;
nilfs->ns_last_cno = cno;
spin_unlock(&nilfs->ns_last_segment_lock);
}
/**
* alloc_nilfs - allocate the_nilfs structure
* @bdev: block device to which the_nilfs is related
*
* alloc_nilfs() allocates memory for the_nilfs and
* initializes its reference count and locks.
*
* Return Value: On success, pointer to the_nilfs is returned.
* On error, NULL is returned.
*/
struct the_nilfs *alloc_nilfs(struct block_device *bdev)
{
struct the_nilfs *nilfs;
nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
if (!nilfs)
return NULL;
nilfs->ns_bdev = bdev;
atomic_set(&nilfs->ns_count, 1);
atomic_set(&nilfs->ns_writer_refcount, -1);
atomic_set(&nilfs->ns_ndirtyblks, 0);
init_rwsem(&nilfs->ns_sem);
mutex_init(&nilfs->ns_writer_mutex);
INIT_LIST_HEAD(&nilfs->ns_supers);
spin_lock_init(&nilfs->ns_last_segment_lock);
nilfs->ns_gc_inodes_h = NULL;
init_rwsem(&nilfs->ns_segctor_sem);
return nilfs;
}
/**
* put_nilfs - release a reference to the_nilfs
* @nilfs: the_nilfs structure to be released
*
* put_nilfs() decrements a reference counter of the_nilfs.
* If the reference count reaches zero, the_nilfs is freed.
*/
void put_nilfs(struct the_nilfs *nilfs)
{
if (!atomic_dec_and_test(&nilfs->ns_count))
return;
/*
* Increment of ns_count never occur below because the caller
* of get_nilfs() holds at least one reference to the_nilfs.
* Thus its exclusion control is not required here.
*/
might_sleep();
if (nilfs_loaded(nilfs)) {
nilfs_mdt_clear(nilfs->ns_sufile);
nilfs_mdt_destroy(nilfs->ns_sufile);
nilfs_mdt_clear(nilfs->ns_cpfile);
nilfs_mdt_destroy(nilfs->ns_cpfile);
nilfs_mdt_clear(nilfs->ns_dat);
nilfs_mdt_destroy(nilfs->ns_dat);
/* XXX: how and when to clear nilfs->ns_gc_dat? */
nilfs_mdt_destroy(nilfs->ns_gc_dat);
}
if (nilfs_init(nilfs)) {
nilfs_destroy_gccache(nilfs);
brelse(nilfs->ns_sbh);
}
kfree(nilfs);
}
static int nilfs_load_super_root(struct the_nilfs *nilfs,
struct nilfs_sb_info *sbi, sector_t sr_block)
{
struct buffer_head *bh_sr;
struct nilfs_super_root *raw_sr;
unsigned dat_entry_size, segment_usage_size, checkpoint_size;
unsigned inode_size;
int err;
err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
if (unlikely(err))
return err;
down_read(&nilfs->ns_sem);
dat_entry_size = le16_to_cpu(nilfs->ns_sbp->s_dat_entry_size);
checkpoint_size = le16_to_cpu(nilfs->ns_sbp->s_checkpoint_size);
segment_usage_size = le16_to_cpu(nilfs->ns_sbp->s_segment_usage_size);
up_read(&nilfs->ns_sem);
inode_size = nilfs->ns_inode_size;
err = -ENOMEM;
nilfs->ns_dat = nilfs_mdt_new(
nilfs, NULL, NILFS_DAT_INO, NILFS_DAT_GFP);
if (unlikely(!nilfs->ns_dat))
goto failed;
nilfs->ns_gc_dat = nilfs_mdt_new(
nilfs, NULL, NILFS_DAT_INO, NILFS_DAT_GFP);
if (unlikely(!nilfs->ns_gc_dat))
goto failed_dat;
nilfs->ns_cpfile = nilfs_mdt_new(
nilfs, NULL, NILFS_CPFILE_INO, NILFS_CPFILE_GFP);
if (unlikely(!nilfs->ns_cpfile))
goto failed_gc_dat;
nilfs->ns_sufile = nilfs_mdt_new(
nilfs, NULL, NILFS_SUFILE_INO, NILFS_SUFILE_GFP);
if (unlikely(!nilfs->ns_sufile))
goto failed_cpfile;
err = nilfs_palloc_init_blockgroup(nilfs->ns_dat, dat_entry_size);
if (unlikely(err))
goto failed_sufile;
err = nilfs_palloc_init_blockgroup(nilfs->ns_gc_dat, dat_entry_size);
if (unlikely(err))
goto failed_sufile;
nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
nilfs_mdt_set_entry_size(nilfs->ns_cpfile, checkpoint_size,
sizeof(struct nilfs_cpfile_header));
nilfs_mdt_set_entry_size(nilfs->ns_sufile, segment_usage_size,
sizeof(struct nilfs_sufile_header));
err = nilfs_mdt_read_inode_direct(
nilfs->ns_dat, bh_sr, NILFS_SR_DAT_OFFSET(inode_size));
if (unlikely(err))
goto failed_sufile;
err = nilfs_mdt_read_inode_direct(
nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(inode_size));
if (unlikely(err))
goto failed_sufile;
err = nilfs_mdt_read_inode_direct(
nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(inode_size));
if (unlikely(err))
goto failed_sufile;
raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
failed:
brelse(bh_sr);
return err;
failed_sufile:
nilfs_mdt_destroy(nilfs->ns_sufile);
failed_cpfile:
nilfs_mdt_destroy(nilfs->ns_cpfile);
failed_gc_dat:
nilfs_mdt_destroy(nilfs->ns_gc_dat);
failed_dat:
nilfs_mdt_destroy(nilfs->ns_dat);
goto failed;
}
static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
{
memset(ri, 0, sizeof(*ri));
INIT_LIST_HEAD(&ri->ri_used_segments);
}
static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
{
nilfs_dispose_segment_list(&ri->ri_used_segments);
}
/**
* load_nilfs - load and recover the nilfs
* @nilfs: the_nilfs structure to be released
* @sbi: nilfs_sb_info used to recover past segment
*
* load_nilfs() searches and load the latest super root,
* attaches the last segment, and does recovery if needed.
* The caller must call this exclusively for simultaneous mounts.
*/
int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
{
struct nilfs_recovery_info ri;
unsigned int s_flags = sbi->s_super->s_flags;
int really_read_only = bdev_read_only(nilfs->ns_bdev);
unsigned valid_fs;
int err = 0;
nilfs_init_recovery_info(&ri);
down_write(&nilfs->ns_sem);
valid_fs = (nilfs->ns_mount_state & NILFS_VALID_FS);
up_write(&nilfs->ns_sem);
if (!valid_fs && (s_flags & MS_RDONLY)) {
printk(KERN_INFO "NILFS: INFO: recovery "
"required for readonly filesystem.\n");
if (really_read_only) {
printk(KERN_ERR "NILFS: write access "
"unavailable, cannot proceed.\n");
err = -EROFS;
goto failed;
}
printk(KERN_INFO "NILFS: write access will "
"be enabled during recovery.\n");
sbi->s_super->s_flags &= ~MS_RDONLY;
}
err = nilfs_search_super_root(nilfs, sbi, &ri);
if (unlikely(err)) {
printk(KERN_ERR "NILFS: error searching super root.\n");
goto failed;
}
err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
if (unlikely(err)) {
printk(KERN_ERR "NILFS: error loading super root.\n");
goto failed;
}
if (!valid_fs) {
err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
if (unlikely(err)) {
nilfs_mdt_destroy(nilfs->ns_cpfile);
nilfs_mdt_destroy(nilfs->ns_sufile);
nilfs_mdt_destroy(nilfs->ns_dat);
goto failed;
}
if (ri.ri_need_recovery == NILFS_RECOVERY_SR_UPDATED) {
down_write(&nilfs->ns_sem);
nilfs_update_last_segment(sbi, 0);
up_write(&nilfs->ns_sem);
}
}
set_nilfs_loaded(nilfs);
failed:
nilfs_clear_recovery_info(&ri);
sbi->s_super->s_flags = s_flags;
return err;
}
static unsigned long long nilfs_max_size(unsigned int blkbits)
{
unsigned int max_bits;
unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
if (max_bits < 64)
res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
return res;
}
static int
nilfs_store_disk_layout(struct the_nilfs *nilfs, struct super_block *sb,
struct nilfs_super_block *sbp)
{
if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
printk(KERN_ERR "NILFS: revision mismatch "
"(superblock rev.=%d.%d, current rev.=%d.%d). "
"Please check the version of mkfs.nilfs.\n",
le32_to_cpu(sbp->s_rev_level),
le16_to_cpu(sbp->s_minor_rev_level),
NILFS_CURRENT_REV, NILFS_MINOR_REV);
return -EINVAL;
}
nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
printk(KERN_ERR "NILFS: too short segment. \n");
return -EINVAL;
}
nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
nilfs->ns_r_segments_percentage =
le32_to_cpu(sbp->s_r_segments_percentage);
nilfs->ns_nrsvsegs =
max_t(unsigned long, NILFS_MIN_NRSVSEGS,
DIV_ROUND_UP(nilfs->ns_nsegments *
nilfs->ns_r_segments_percentage, 100));
nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
return 0;
}
/**
* init_nilfs - initialize a NILFS instance.
* @nilfs: the_nilfs structure
* @sbi: nilfs_sb_info
* @sb: super block
* @data: mount options
*
* init_nilfs() performs common initialization per block device (e.g.
* reading the super block, getting disk layout information, initializing
* shared fields in the_nilfs). It takes on some portion of the jobs
* typically done by a fill_super() routine. This division arises from
* the nature that multiple NILFS instances may be simultaneously
* mounted on a device.
* For multiple mounts on the same device, only the first mount
* invokes these tasks.
*
* Return Value: On success, 0 is returned. On error, a negative error
* code is returned.
*/
int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
{
struct super_block *sb = sbi->s_super;
struct buffer_head *sbh;
struct nilfs_super_block *sbp;
struct backing_dev_info *bdi;
int blocksize;
int err = 0;
down_write(&nilfs->ns_sem);
if (nilfs_init(nilfs)) {
/* Load values from existing the_nilfs */
sbp = nilfs->ns_sbp;
err = nilfs_store_magic_and_option(sb, sbp, data);
if (err)
goto out;
blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
if (sb->s_blocksize != blocksize &&
!sb_set_blocksize(sb, blocksize)) {
printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
blocksize);
err = -EINVAL;
}
sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
goto out;
}
sbp = nilfs_load_super_block(sb, &sbh);
if (!sbp) {
err = -EINVAL;
goto out;
}
err = nilfs_store_magic_and_option(sb, sbp, data);
if (err)
goto failed_sbh;
blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
if (sb->s_blocksize != blocksize) {
sbp = nilfs_reload_super_block(sb, &sbh, blocksize);
if (!sbp) {
err = -EINVAL;
goto out;
/* not failed_sbh; sbh is released automatically
when reloading fails. */
}
}
nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
err = nilfs_store_disk_layout(nilfs, sb, sbp);
if (err)
goto failed_sbh;
sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
nilfs->ns_sbh = sbh;
nilfs->ns_sbp = sbp;
bdi = nilfs->ns_bdev->bd_inode_backing_dev_info;
if (!bdi)
bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
/* Finding last segment */
nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
nilfs->ns_seg_seq = nilfs->ns_last_seq;
nilfs->ns_segnum =
nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
nilfs->ns_cno = nilfs->ns_last_cno + 1;
if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
printk(KERN_ERR "NILFS invalid last segment number.\n");
err = -EINVAL;
goto failed_sbh;
}
/* Dummy values */
nilfs->ns_free_segments_count =
nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
/* Initialize gcinode cache */
err = nilfs_init_gccache(nilfs);
if (err)
goto failed_sbh;
set_nilfs_init(nilfs);
err = 0;
out:
up_write(&nilfs->ns_sem);
return err;
failed_sbh:
brelse(sbh);
goto out;
}
int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
{
struct inode *dat = nilfs_dat_inode(nilfs);
unsigned long ncleansegs;
int err;
down_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
err = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile, &ncleansegs);
up_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
if (likely(!err))
*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
return err;
}
int nilfs_near_disk_full(struct the_nilfs *nilfs)
{
struct inode *sufile = nilfs->ns_sufile;
unsigned long ncleansegs, nincsegs;
int ret;
ret = nilfs_sufile_get_ncleansegs(sufile, &ncleansegs);
if (likely(!ret)) {
nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
nilfs->ns_blocks_per_segment + 1;
if (ncleansegs <= nilfs->ns_nrsvsegs + nincsegs)
ret++;
}
return ret;
}
int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
int snapshot_mount)
{
struct nilfs_sb_info *sbi;
int ret = 0;
down_read(&nilfs->ns_sem);
if (cno == 0 || cno > nilfs->ns_cno)
goto out_unlock;
list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
if (sbi->s_snapshot_cno == cno &&
(!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
/* exclude read-only mounts */
ret++;
break;
}
}
/* for protecting recent checkpoints */
if (cno >= nilfs_last_cno(nilfs))
ret++;
out_unlock:
up_read(&nilfs->ns_sem);
return ret;
}