mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 10:57:47 +00:00
0eb76ba29d
The cipher routines in the crypto API are mostly intended for templates implementing skcipher modes generically in software, and shouldn't be used outside of the crypto subsystem. So move the prototypes and all related definitions to a new header file under include/crypto/internal. Also, let's use the new module namespace feature to move the symbol exports into a new namespace CRYPTO_INTERNAL. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
698 lines
19 KiB
C
698 lines
19 KiB
C
/*
|
|
* VMAC: Message Authentication Code using Universal Hashing
|
|
*
|
|
* Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
|
|
*
|
|
* Copyright (c) 2009, Intel Corporation.
|
|
* Copyright (c) 2018, Google Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
*/
|
|
|
|
/*
|
|
* Derived from:
|
|
* VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
|
|
* This implementation is herby placed in the public domain.
|
|
* The authors offers no warranty. Use at your own risk.
|
|
* Last modified: 17 APR 08, 1700 PDT
|
|
*/
|
|
|
|
#include <asm/unaligned.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/module.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <asm/byteorder.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/internal/cipher.h>
|
|
#include <crypto/internal/hash.h>
|
|
|
|
/*
|
|
* User definable settings.
|
|
*/
|
|
#define VMAC_TAG_LEN 64
|
|
#define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */
|
|
#define VMAC_KEY_LEN (VMAC_KEY_SIZE/8)
|
|
#define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/
|
|
#define VMAC_NONCEBYTES 16
|
|
|
|
/* per-transform (per-key) context */
|
|
struct vmac_tfm_ctx {
|
|
struct crypto_cipher *cipher;
|
|
u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
|
|
u64 polykey[2*VMAC_TAG_LEN/64];
|
|
u64 l3key[2*VMAC_TAG_LEN/64];
|
|
};
|
|
|
|
/* per-request context */
|
|
struct vmac_desc_ctx {
|
|
union {
|
|
u8 partial[VMAC_NHBYTES]; /* partial block */
|
|
__le64 partial_words[VMAC_NHBYTES / 8];
|
|
};
|
|
unsigned int partial_size; /* size of the partial block */
|
|
bool first_block_processed;
|
|
u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
|
|
union {
|
|
u8 bytes[VMAC_NONCEBYTES];
|
|
__be64 pads[VMAC_NONCEBYTES / 8];
|
|
} nonce;
|
|
unsigned int nonce_size; /* nonce bytes filled so far */
|
|
};
|
|
|
|
/*
|
|
* Constants and masks
|
|
*/
|
|
#define UINT64_C(x) x##ULL
|
|
static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
|
|
static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
|
|
static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
|
|
static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
|
|
static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
|
|
|
|
#define pe64_to_cpup le64_to_cpup /* Prefer little endian */
|
|
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define INDEX_HIGH 1
|
|
#define INDEX_LOW 0
|
|
#else
|
|
#define INDEX_HIGH 0
|
|
#define INDEX_LOW 1
|
|
#endif
|
|
|
|
/*
|
|
* The following routines are used in this implementation. They are
|
|
* written via macros to simulate zero-overhead call-by-reference.
|
|
*
|
|
* MUL64: 64x64->128-bit multiplication
|
|
* PMUL64: assumes top bits cleared on inputs
|
|
* ADD128: 128x128->128-bit addition
|
|
*/
|
|
|
|
#define ADD128(rh, rl, ih, il) \
|
|
do { \
|
|
u64 _il = (il); \
|
|
(rl) += (_il); \
|
|
if ((rl) < (_il)) \
|
|
(rh)++; \
|
|
(rh) += (ih); \
|
|
} while (0)
|
|
|
|
#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
|
|
|
|
#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
|
|
do { \
|
|
u64 _i1 = (i1), _i2 = (i2); \
|
|
u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
|
|
rh = MUL32(_i1>>32, _i2>>32); \
|
|
rl = MUL32(_i1, _i2); \
|
|
ADD128(rh, rl, (m >> 32), (m << 32)); \
|
|
} while (0)
|
|
|
|
#define MUL64(rh, rl, i1, i2) \
|
|
do { \
|
|
u64 _i1 = (i1), _i2 = (i2); \
|
|
u64 m1 = MUL32(_i1, _i2>>32); \
|
|
u64 m2 = MUL32(_i1>>32, _i2); \
|
|
rh = MUL32(_i1>>32, _i2>>32); \
|
|
rl = MUL32(_i1, _i2); \
|
|
ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
|
|
ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
|
|
} while (0)
|
|
|
|
/*
|
|
* For highest performance the L1 NH and L2 polynomial hashes should be
|
|
* carefully implemented to take advantage of one's target architecture.
|
|
* Here these two hash functions are defined multiple time; once for
|
|
* 64-bit architectures, once for 32-bit SSE2 architectures, and once
|
|
* for the rest (32-bit) architectures.
|
|
* For each, nh_16 *must* be defined (works on multiples of 16 bytes).
|
|
* Optionally, nh_vmac_nhbytes can be defined (for multiples of
|
|
* VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
|
|
* NH computations at once).
|
|
*/
|
|
|
|
#ifdef CONFIG_64BIT
|
|
|
|
#define nh_16(mp, kp, nw, rh, rl) \
|
|
do { \
|
|
int i; u64 th, tl; \
|
|
rh = rl = 0; \
|
|
for (i = 0; i < nw; i += 2) { \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
|
|
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
|
|
do { \
|
|
int i; u64 th, tl; \
|
|
rh1 = rl1 = rh = rl = 0; \
|
|
for (i = 0; i < nw; i += 2) { \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
|
|
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
|
|
pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
|
|
ADD128(rh1, rl1, th, tl); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
|
|
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
|
|
do { \
|
|
int i; u64 th, tl; \
|
|
rh = rl = 0; \
|
|
for (i = 0; i < nw; i += 8) { \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
|
|
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
|
|
pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
|
|
pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
|
|
pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
|
|
do { \
|
|
int i; u64 th, tl; \
|
|
rh1 = rl1 = rh = rl = 0; \
|
|
for (i = 0; i < nw; i += 8) { \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
|
|
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
|
|
pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
|
|
ADD128(rh1, rl1, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
|
|
pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
|
|
pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
|
|
ADD128(rh1, rl1, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
|
|
pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
|
|
pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
|
|
ADD128(rh1, rl1, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
|
|
pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
|
|
ADD128(rh, rl, th, tl); \
|
|
MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
|
|
pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
|
|
ADD128(rh1, rl1, th, tl); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define poly_step(ah, al, kh, kl, mh, ml) \
|
|
do { \
|
|
u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
|
|
/* compute ab*cd, put bd into result registers */ \
|
|
PMUL64(t3h, t3l, al, kh); \
|
|
PMUL64(t2h, t2l, ah, kl); \
|
|
PMUL64(t1h, t1l, ah, 2*kh); \
|
|
PMUL64(ah, al, al, kl); \
|
|
/* add 2 * ac to result */ \
|
|
ADD128(ah, al, t1h, t1l); \
|
|
/* add together ad + bc */ \
|
|
ADD128(t2h, t2l, t3h, t3l); \
|
|
/* now (ah,al), (t2l,2*t2h) need summing */ \
|
|
/* first add the high registers, carrying into t2h */ \
|
|
ADD128(t2h, ah, z, t2l); \
|
|
/* double t2h and add top bit of ah */ \
|
|
t2h = 2 * t2h + (ah >> 63); \
|
|
ah &= m63; \
|
|
/* now add the low registers */ \
|
|
ADD128(ah, al, mh, ml); \
|
|
ADD128(ah, al, z, t2h); \
|
|
} while (0)
|
|
|
|
#else /* ! CONFIG_64BIT */
|
|
|
|
#ifndef nh_16
|
|
#define nh_16(mp, kp, nw, rh, rl) \
|
|
do { \
|
|
u64 t1, t2, m1, m2, t; \
|
|
int i; \
|
|
rh = rl = t = 0; \
|
|
for (i = 0; i < nw; i += 2) { \
|
|
t1 = pe64_to_cpup(mp+i) + kp[i]; \
|
|
t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
|
|
m2 = MUL32(t1 >> 32, t2); \
|
|
m1 = MUL32(t1, t2 >> 32); \
|
|
ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
|
|
MUL32(t1, t2)); \
|
|
rh += (u64)(u32)(m1 >> 32) \
|
|
+ (u32)(m2 >> 32); \
|
|
t += (u64)(u32)m1 + (u32)m2; \
|
|
} \
|
|
ADD128(rh, rl, (t >> 32), (t << 32)); \
|
|
} while (0)
|
|
#endif
|
|
|
|
static void poly_step_func(u64 *ahi, u64 *alo,
|
|
const u64 *kh, const u64 *kl,
|
|
const u64 *mh, const u64 *ml)
|
|
{
|
|
#define a0 (*(((u32 *)alo)+INDEX_LOW))
|
|
#define a1 (*(((u32 *)alo)+INDEX_HIGH))
|
|
#define a2 (*(((u32 *)ahi)+INDEX_LOW))
|
|
#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
|
|
#define k0 (*(((u32 *)kl)+INDEX_LOW))
|
|
#define k1 (*(((u32 *)kl)+INDEX_HIGH))
|
|
#define k2 (*(((u32 *)kh)+INDEX_LOW))
|
|
#define k3 (*(((u32 *)kh)+INDEX_HIGH))
|
|
|
|
u64 p, q, t;
|
|
u32 t2;
|
|
|
|
p = MUL32(a3, k3);
|
|
p += p;
|
|
p += *(u64 *)mh;
|
|
p += MUL32(a0, k2);
|
|
p += MUL32(a1, k1);
|
|
p += MUL32(a2, k0);
|
|
t = (u32)(p);
|
|
p >>= 32;
|
|
p += MUL32(a0, k3);
|
|
p += MUL32(a1, k2);
|
|
p += MUL32(a2, k1);
|
|
p += MUL32(a3, k0);
|
|
t |= ((u64)((u32)p & 0x7fffffff)) << 32;
|
|
p >>= 31;
|
|
p += (u64)(((u32 *)ml)[INDEX_LOW]);
|
|
p += MUL32(a0, k0);
|
|
q = MUL32(a1, k3);
|
|
q += MUL32(a2, k2);
|
|
q += MUL32(a3, k1);
|
|
q += q;
|
|
p += q;
|
|
t2 = (u32)(p);
|
|
p >>= 32;
|
|
p += (u64)(((u32 *)ml)[INDEX_HIGH]);
|
|
p += MUL32(a0, k1);
|
|
p += MUL32(a1, k0);
|
|
q = MUL32(a2, k3);
|
|
q += MUL32(a3, k2);
|
|
q += q;
|
|
p += q;
|
|
*(u64 *)(alo) = (p << 32) | t2;
|
|
p >>= 32;
|
|
*(u64 *)(ahi) = p + t;
|
|
|
|
#undef a0
|
|
#undef a1
|
|
#undef a2
|
|
#undef a3
|
|
#undef k0
|
|
#undef k1
|
|
#undef k2
|
|
#undef k3
|
|
}
|
|
|
|
#define poly_step(ah, al, kh, kl, mh, ml) \
|
|
poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
|
|
|
|
#endif /* end of specialized NH and poly definitions */
|
|
|
|
/* At least nh_16 is defined. Defined others as needed here */
|
|
#ifndef nh_16_2
|
|
#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
|
|
do { \
|
|
nh_16(mp, kp, nw, rh, rl); \
|
|
nh_16(mp, ((kp)+2), nw, rh2, rl2); \
|
|
} while (0)
|
|
#endif
|
|
#ifndef nh_vmac_nhbytes
|
|
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
|
|
nh_16(mp, kp, nw, rh, rl)
|
|
#endif
|
|
#ifndef nh_vmac_nhbytes_2
|
|
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
|
|
do { \
|
|
nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
|
|
nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
|
|
} while (0)
|
|
#endif
|
|
|
|
static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
|
|
{
|
|
u64 rh, rl, t, z = 0;
|
|
|
|
/* fully reduce (p1,p2)+(len,0) mod p127 */
|
|
t = p1 >> 63;
|
|
p1 &= m63;
|
|
ADD128(p1, p2, len, t);
|
|
/* At this point, (p1,p2) is at most 2^127+(len<<64) */
|
|
t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
|
|
ADD128(p1, p2, z, t);
|
|
p1 &= m63;
|
|
|
|
/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
|
|
t = p1 + (p2 >> 32);
|
|
t += (t >> 32);
|
|
t += (u32)t > 0xfffffffeu;
|
|
p1 += (t >> 32);
|
|
p2 += (p1 << 32);
|
|
|
|
/* compute (p1+k1)%p64 and (p2+k2)%p64 */
|
|
p1 += k1;
|
|
p1 += (0 - (p1 < k1)) & 257;
|
|
p2 += k2;
|
|
p2 += (0 - (p2 < k2)) & 257;
|
|
|
|
/* compute (p1+k1)*(p2+k2)%p64 */
|
|
MUL64(rh, rl, p1, p2);
|
|
t = rh >> 56;
|
|
ADD128(t, rl, z, rh);
|
|
rh <<= 8;
|
|
ADD128(t, rl, z, rh);
|
|
t += t << 8;
|
|
rl += t;
|
|
rl += (0 - (rl < t)) & 257;
|
|
rl += (0 - (rl > p64-1)) & 257;
|
|
return rl;
|
|
}
|
|
|
|
/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
|
|
static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
|
|
struct vmac_desc_ctx *dctx,
|
|
const __le64 *mptr, unsigned int blocks)
|
|
{
|
|
const u64 *kptr = tctx->nhkey;
|
|
const u64 pkh = tctx->polykey[0];
|
|
const u64 pkl = tctx->polykey[1];
|
|
u64 ch = dctx->polytmp[0];
|
|
u64 cl = dctx->polytmp[1];
|
|
u64 rh, rl;
|
|
|
|
if (!dctx->first_block_processed) {
|
|
dctx->first_block_processed = true;
|
|
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
|
|
rh &= m62;
|
|
ADD128(ch, cl, rh, rl);
|
|
mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
blocks--;
|
|
}
|
|
|
|
while (blocks--) {
|
|
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
|
|
rh &= m62;
|
|
poly_step(ch, cl, pkh, pkl, rh, rl);
|
|
mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
}
|
|
|
|
dctx->polytmp[0] = ch;
|
|
dctx->polytmp[1] = cl;
|
|
}
|
|
|
|
static int vmac_setkey(struct crypto_shash *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
|
|
__be64 out[2];
|
|
u8 in[16] = { 0 };
|
|
unsigned int i;
|
|
int err;
|
|
|
|
if (keylen != VMAC_KEY_LEN)
|
|
return -EINVAL;
|
|
|
|
err = crypto_cipher_setkey(tctx->cipher, key, keylen);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Fill nh key */
|
|
in[0] = 0x80;
|
|
for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
|
|
crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
|
|
tctx->nhkey[i] = be64_to_cpu(out[0]);
|
|
tctx->nhkey[i+1] = be64_to_cpu(out[1]);
|
|
in[15]++;
|
|
}
|
|
|
|
/* Fill poly key */
|
|
in[0] = 0xC0;
|
|
in[15] = 0;
|
|
for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
|
|
crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
|
|
tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
|
|
tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
|
|
in[15]++;
|
|
}
|
|
|
|
/* Fill ip key */
|
|
in[0] = 0xE0;
|
|
in[15] = 0;
|
|
for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
|
|
do {
|
|
crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
|
|
tctx->l3key[i] = be64_to_cpu(out[0]);
|
|
tctx->l3key[i+1] = be64_to_cpu(out[1]);
|
|
in[15]++;
|
|
} while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmac_init(struct shash_desc *desc)
|
|
{
|
|
const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
|
|
|
|
dctx->partial_size = 0;
|
|
dctx->first_block_processed = false;
|
|
memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
|
|
dctx->nonce_size = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
|
|
{
|
|
const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
|
|
unsigned int n;
|
|
|
|
/* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
|
|
if (dctx->nonce_size < VMAC_NONCEBYTES) {
|
|
n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
|
|
memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
|
|
dctx->nonce_size += n;
|
|
p += n;
|
|
len -= n;
|
|
}
|
|
|
|
if (dctx->partial_size) {
|
|
n = min(len, VMAC_NHBYTES - dctx->partial_size);
|
|
memcpy(&dctx->partial[dctx->partial_size], p, n);
|
|
dctx->partial_size += n;
|
|
p += n;
|
|
len -= n;
|
|
if (dctx->partial_size == VMAC_NHBYTES) {
|
|
vhash_blocks(tctx, dctx, dctx->partial_words, 1);
|
|
dctx->partial_size = 0;
|
|
}
|
|
}
|
|
|
|
if (len >= VMAC_NHBYTES) {
|
|
n = round_down(len, VMAC_NHBYTES);
|
|
/* TODO: 'p' may be misaligned here */
|
|
vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
|
|
p += n;
|
|
len -= n;
|
|
}
|
|
|
|
if (len) {
|
|
memcpy(dctx->partial, p, len);
|
|
dctx->partial_size = len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
|
|
struct vmac_desc_ctx *dctx)
|
|
{
|
|
unsigned int partial = dctx->partial_size;
|
|
u64 ch = dctx->polytmp[0];
|
|
u64 cl = dctx->polytmp[1];
|
|
|
|
/* L1 and L2-hash the final block if needed */
|
|
if (partial) {
|
|
/* Zero-pad to next 128-bit boundary */
|
|
unsigned int n = round_up(partial, 16);
|
|
u64 rh, rl;
|
|
|
|
memset(&dctx->partial[partial], 0, n - partial);
|
|
nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
|
|
rh &= m62;
|
|
if (dctx->first_block_processed)
|
|
poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
|
|
rh, rl);
|
|
else
|
|
ADD128(ch, cl, rh, rl);
|
|
}
|
|
|
|
/* L3-hash the 128-bit output of L2-hash */
|
|
return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
|
|
}
|
|
|
|
static int vmac_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
|
|
int index;
|
|
u64 hash, pad;
|
|
|
|
if (dctx->nonce_size != VMAC_NONCEBYTES)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The VMAC specification requires a nonce at least 1 bit shorter than
|
|
* the block cipher's block length, so we actually only accept a 127-bit
|
|
* nonce. We define the unused bit to be the first one and require that
|
|
* it be 0, so the needed prepending of a 0 bit is implicit.
|
|
*/
|
|
if (dctx->nonce.bytes[0] & 0x80)
|
|
return -EINVAL;
|
|
|
|
/* Finish calculating the VHASH of the message */
|
|
hash = vhash_final(tctx, dctx);
|
|
|
|
/* Generate pseudorandom pad by encrypting the nonce */
|
|
BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
|
|
index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
|
|
dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
|
|
crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
|
|
dctx->nonce.bytes);
|
|
pad = be64_to_cpu(dctx->nonce.pads[index]);
|
|
|
|
/* The VMAC is the sum of VHASH and the pseudorandom pad */
|
|
put_unaligned_be64(hash + pad, out);
|
|
return 0;
|
|
}
|
|
|
|
static int vmac_init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
|
|
struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
|
|
struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_cipher *cipher;
|
|
|
|
cipher = crypto_spawn_cipher(spawn);
|
|
if (IS_ERR(cipher))
|
|
return PTR_ERR(cipher);
|
|
|
|
tctx->cipher = cipher;
|
|
return 0;
|
|
}
|
|
|
|
static void vmac_exit_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
|
|
|
|
crypto_free_cipher(tctx->cipher);
|
|
}
|
|
|
|
static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
{
|
|
struct shash_instance *inst;
|
|
struct crypto_cipher_spawn *spawn;
|
|
struct crypto_alg *alg;
|
|
u32 mask;
|
|
int err;
|
|
|
|
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
|
|
if (err)
|
|
return err;
|
|
|
|
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
|
|
if (!inst)
|
|
return -ENOMEM;
|
|
spawn = shash_instance_ctx(inst);
|
|
|
|
err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
|
|
crypto_attr_alg_name(tb[1]), 0, mask);
|
|
if (err)
|
|
goto err_free_inst;
|
|
alg = crypto_spawn_cipher_alg(spawn);
|
|
|
|
err = -EINVAL;
|
|
if (alg->cra_blocksize != VMAC_NONCEBYTES)
|
|
goto err_free_inst;
|
|
|
|
err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
|
|
if (err)
|
|
goto err_free_inst;
|
|
|
|
inst->alg.base.cra_priority = alg->cra_priority;
|
|
inst->alg.base.cra_blocksize = alg->cra_blocksize;
|
|
inst->alg.base.cra_alignmask = alg->cra_alignmask;
|
|
|
|
inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
|
|
inst->alg.base.cra_init = vmac_init_tfm;
|
|
inst->alg.base.cra_exit = vmac_exit_tfm;
|
|
|
|
inst->alg.descsize = sizeof(struct vmac_desc_ctx);
|
|
inst->alg.digestsize = VMAC_TAG_LEN / 8;
|
|
inst->alg.init = vmac_init;
|
|
inst->alg.update = vmac_update;
|
|
inst->alg.final = vmac_final;
|
|
inst->alg.setkey = vmac_setkey;
|
|
|
|
inst->free = shash_free_singlespawn_instance;
|
|
|
|
err = shash_register_instance(tmpl, inst);
|
|
if (err) {
|
|
err_free_inst:
|
|
shash_free_singlespawn_instance(inst);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static struct crypto_template vmac64_tmpl = {
|
|
.name = "vmac64",
|
|
.create = vmac_create,
|
|
.module = THIS_MODULE,
|
|
};
|
|
|
|
static int __init vmac_module_init(void)
|
|
{
|
|
return crypto_register_template(&vmac64_tmpl);
|
|
}
|
|
|
|
static void __exit vmac_module_exit(void)
|
|
{
|
|
crypto_unregister_template(&vmac64_tmpl);
|
|
}
|
|
|
|
subsys_initcall(vmac_module_init);
|
|
module_exit(vmac_module_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("VMAC hash algorithm");
|
|
MODULE_ALIAS_CRYPTO("vmac64");
|
|
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
|