Dave Airlie 9aa99bb197 drm/loongson: fix build after debugfs include change
This failed to build here after the header rework.

Fixes: 33d5ae6cacf4 ("drm/print: drop include debugfs.h and include where needed")
Signed-off-by: Dave Airlie <airlied@redhat.com>
2024-04-26 14:30:36 +10:00

1026 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2023 Loongson Technology Corporation Limited
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_vblank.h>
#include "lsdc_drv.h"
/*
* After the CRTC soft reset, the vblank counter would be reset to zero.
* But the address and other settings in the CRTC register remain the same
* as before.
*/
static void lsdc_crtc0_soft_reset(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val;
val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG);
val &= CFG_VALID_BITS_MASK;
/* Soft reset bit, active low */
val &= ~CFG_RESET_N;
val &= ~CFG_PIX_FMT_MASK;
lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val);
udelay(1);
val |= CFG_RESET_N | LSDC_PF_XRGB8888 | CFG_OUTPUT_ENABLE;
lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val);
/* Wait about a vblank time */
mdelay(20);
}
static void lsdc_crtc1_soft_reset(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val;
val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG);
val &= CFG_VALID_BITS_MASK;
/* Soft reset bit, active low */
val &= ~CFG_RESET_N;
val &= ~CFG_PIX_FMT_MASK;
lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val);
udelay(1);
val |= CFG_RESET_N | LSDC_PF_XRGB8888 | CFG_OUTPUT_ENABLE;
lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val);
/* Wait about a vblank time */
msleep(20);
}
static void lsdc_crtc0_enable(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val;
val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG);
/*
* This may happen in extremely rare cases, but a soft reset can
* bring it back to normal. We add a warning here, hoping to catch
* something if it happens.
*/
if (val & CRTC_ANCHORED) {
drm_warn(&ldev->base, "%s stall\n", lcrtc->base.name);
return lsdc_crtc0_soft_reset(lcrtc);
}
lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val | CFG_OUTPUT_ENABLE);
}
static void lsdc_crtc0_disable(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_clr(ldev, LSDC_CRTC0_CFG_REG, CFG_OUTPUT_ENABLE);
udelay(9);
}
static void lsdc_crtc1_enable(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val;
/*
* This may happen in extremely rare cases, but a soft reset can
* bring it back to normal. We add a warning here, hoping to catch
* something if it happens.
*/
val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG);
if (val & CRTC_ANCHORED) {
drm_warn(&ldev->base, "%s stall\n", lcrtc->base.name);
return lsdc_crtc1_soft_reset(lcrtc);
}
lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val | CFG_OUTPUT_ENABLE);
}
static void lsdc_crtc1_disable(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_clr(ldev, LSDC_CRTC1_CFG_REG, CFG_OUTPUT_ENABLE);
udelay(9);
}
/* All Loongson display controllers have hardware scanout position recoders */
static void lsdc_crtc0_scan_pos(struct lsdc_crtc *lcrtc, int *hpos, int *vpos)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val;
val = lsdc_rreg32(ldev, LSDC_CRTC0_SCAN_POS_REG);
*hpos = val >> 16;
*vpos = val & 0xffff;
}
static void lsdc_crtc1_scan_pos(struct lsdc_crtc *lcrtc, int *hpos, int *vpos)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val;
val = lsdc_rreg32(ldev, LSDC_CRTC1_SCAN_POS_REG);
*hpos = val >> 16;
*vpos = val & 0xffff;
}
static void lsdc_crtc0_enable_vblank(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_set(ldev, LSDC_INT_REG, INT_CRTC0_VSYNC_EN);
}
static void lsdc_crtc0_disable_vblank(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_clr(ldev, LSDC_INT_REG, INT_CRTC0_VSYNC_EN);
}
static void lsdc_crtc1_enable_vblank(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_set(ldev, LSDC_INT_REG, INT_CRTC1_VSYNC_EN);
}
static void lsdc_crtc1_disable_vblank(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_clr(ldev, LSDC_INT_REG, INT_CRTC1_VSYNC_EN);
}
static void lsdc_crtc0_flip(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_set(ldev, LSDC_CRTC0_CFG_REG, CFG_PAGE_FLIP);
}
static void lsdc_crtc1_flip(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_set(ldev, LSDC_CRTC1_CFG_REG, CFG_PAGE_FLIP);
}
/*
* CRTC0 clone from CRTC1 or CRTC1 clone from CRTC0 using hardware logic
* This may be useful for custom cloning (TWIN) applications. Saving the
* bandwidth compared with the clone (mirroring) display mode provided by
* drm core.
*/
static void lsdc_crtc0_clone(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_set(ldev, LSDC_CRTC0_CFG_REG, CFG_HW_CLONE);
}
static void lsdc_crtc1_clone(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_ureg32_set(ldev, LSDC_CRTC1_CFG_REG, CFG_HW_CLONE);
}
static void lsdc_crtc0_set_mode(struct lsdc_crtc *lcrtc,
const struct drm_display_mode *mode)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_wreg32(ldev, LSDC_CRTC0_HDISPLAY_REG,
(mode->crtc_htotal << 16) | mode->crtc_hdisplay);
lsdc_wreg32(ldev, LSDC_CRTC0_VDISPLAY_REG,
(mode->crtc_vtotal << 16) | mode->crtc_vdisplay);
lsdc_wreg32(ldev, LSDC_CRTC0_HSYNC_REG,
(mode->crtc_hsync_end << 16) | mode->crtc_hsync_start | HSYNC_EN);
lsdc_wreg32(ldev, LSDC_CRTC0_VSYNC_REG,
(mode->crtc_vsync_end << 16) | mode->crtc_vsync_start | VSYNC_EN);
}
static void lsdc_crtc1_set_mode(struct lsdc_crtc *lcrtc,
const struct drm_display_mode *mode)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_wreg32(ldev, LSDC_CRTC1_HDISPLAY_REG,
(mode->crtc_htotal << 16) | mode->crtc_hdisplay);
lsdc_wreg32(ldev, LSDC_CRTC1_VDISPLAY_REG,
(mode->crtc_vtotal << 16) | mode->crtc_vdisplay);
lsdc_wreg32(ldev, LSDC_CRTC1_HSYNC_REG,
(mode->crtc_hsync_end << 16) | mode->crtc_hsync_start | HSYNC_EN);
lsdc_wreg32(ldev, LSDC_CRTC1_VSYNC_REG,
(mode->crtc_vsync_end << 16) | mode->crtc_vsync_start | VSYNC_EN);
}
/*
* This is required for S3 support.
* After resuming from suspend, LSDC_CRTCx_CFG_REG (x = 0 or 1) is filled
* with garbage value, which causes the CRTC hang there.
*
* This function provides minimal settings for the affected registers.
* This overrides the firmware's settings on startup, making the CRTC work
* on our own, similar to the functional of GPU POST (Power On Self Test).
* Only touch CRTC hardware-related parts.
*/
static void lsdc_crtc0_reset(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, CFG_RESET_N | LSDC_PF_XRGB8888);
}
static void lsdc_crtc1_reset(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, CFG_RESET_N | LSDC_PF_XRGB8888);
}
static const struct lsdc_crtc_hw_ops ls7a1000_crtc_hw_ops[2] = {
{
.enable = lsdc_crtc0_enable,
.disable = lsdc_crtc0_disable,
.enable_vblank = lsdc_crtc0_enable_vblank,
.disable_vblank = lsdc_crtc0_disable_vblank,
.flip = lsdc_crtc0_flip,
.clone = lsdc_crtc0_clone,
.set_mode = lsdc_crtc0_set_mode,
.get_scan_pos = lsdc_crtc0_scan_pos,
.soft_reset = lsdc_crtc0_soft_reset,
.reset = lsdc_crtc0_reset,
},
{
.enable = lsdc_crtc1_enable,
.disable = lsdc_crtc1_disable,
.enable_vblank = lsdc_crtc1_enable_vblank,
.disable_vblank = lsdc_crtc1_disable_vblank,
.flip = lsdc_crtc1_flip,
.clone = lsdc_crtc1_clone,
.set_mode = lsdc_crtc1_set_mode,
.get_scan_pos = lsdc_crtc1_scan_pos,
.soft_reset = lsdc_crtc1_soft_reset,
.reset = lsdc_crtc1_reset,
},
};
/*
* The 32-bit hardware vblank counter has been available since LS7A2000
* and LS2K2000. The counter increases even though the CRTC is disabled,
* it will be reset only if the CRTC is being soft reset.
* Those registers are also readable for ls7a1000, but its value does not
* change.
*/
static u32 lsdc_crtc0_get_vblank_count(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
return lsdc_rreg32(ldev, LSDC_CRTC0_VSYNC_COUNTER_REG);
}
static u32 lsdc_crtc1_get_vblank_count(struct lsdc_crtc *lcrtc)
{
struct lsdc_device *ldev = lcrtc->ldev;
return lsdc_rreg32(ldev, LSDC_CRTC1_VSYNC_COUNTER_REG);
}
/*
* The DMA step bit fields are available since LS7A2000/LS2K2000, for
* supporting odd resolutions. But a large DMA step save the bandwidth.
* The larger, the better. Behavior of writing those bits on LS7A1000
* or LS2K1000 is underfined.
*/
static void lsdc_crtc0_set_dma_step(struct lsdc_crtc *lcrtc,
enum lsdc_dma_steps dma_step)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val = lsdc_rreg32(ldev, LSDC_CRTC0_CFG_REG);
val &= ~CFG_DMA_STEP_MASK;
val |= dma_step << CFG_DMA_STEP_SHIFT;
lsdc_wreg32(ldev, LSDC_CRTC0_CFG_REG, val);
}
static void lsdc_crtc1_set_dma_step(struct lsdc_crtc *lcrtc,
enum lsdc_dma_steps dma_step)
{
struct lsdc_device *ldev = lcrtc->ldev;
u32 val = lsdc_rreg32(ldev, LSDC_CRTC1_CFG_REG);
val &= ~CFG_DMA_STEP_MASK;
val |= dma_step << CFG_DMA_STEP_SHIFT;
lsdc_wreg32(ldev, LSDC_CRTC1_CFG_REG, val);
}
static const struct lsdc_crtc_hw_ops ls7a2000_crtc_hw_ops[2] = {
{
.enable = lsdc_crtc0_enable,
.disable = lsdc_crtc0_disable,
.enable_vblank = lsdc_crtc0_enable_vblank,
.disable_vblank = lsdc_crtc0_disable_vblank,
.flip = lsdc_crtc0_flip,
.clone = lsdc_crtc0_clone,
.set_mode = lsdc_crtc0_set_mode,
.soft_reset = lsdc_crtc0_soft_reset,
.get_scan_pos = lsdc_crtc0_scan_pos,
.set_dma_step = lsdc_crtc0_set_dma_step,
.get_vblank_counter = lsdc_crtc0_get_vblank_count,
.reset = lsdc_crtc0_reset,
},
{
.enable = lsdc_crtc1_enable,
.disable = lsdc_crtc1_disable,
.enable_vblank = lsdc_crtc1_enable_vblank,
.disable_vblank = lsdc_crtc1_disable_vblank,
.flip = lsdc_crtc1_flip,
.clone = lsdc_crtc1_clone,
.set_mode = lsdc_crtc1_set_mode,
.get_scan_pos = lsdc_crtc1_scan_pos,
.soft_reset = lsdc_crtc1_soft_reset,
.set_dma_step = lsdc_crtc1_set_dma_step,
.get_vblank_counter = lsdc_crtc1_get_vblank_count,
.reset = lsdc_crtc1_reset,
},
};
static void lsdc_crtc_reset(struct drm_crtc *crtc)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops;
struct lsdc_crtc_state *priv_crtc_state;
if (crtc->state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
priv_crtc_state = kzalloc(sizeof(*priv_crtc_state), GFP_KERNEL);
if (!priv_crtc_state)
__drm_atomic_helper_crtc_reset(crtc, NULL);
else
__drm_atomic_helper_crtc_reset(crtc, &priv_crtc_state->base);
/* Reset the CRTC hardware, this is required for S3 support */
ops->reset(lcrtc);
}
static void lsdc_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(state);
__drm_atomic_helper_crtc_destroy_state(&priv_state->base);
kfree(priv_state);
}
static struct drm_crtc_state *
lsdc_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct lsdc_crtc_state *new_priv_state;
struct lsdc_crtc_state *old_priv_state;
new_priv_state = kzalloc(sizeof(*new_priv_state), GFP_KERNEL);
if (!new_priv_state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &new_priv_state->base);
old_priv_state = to_lsdc_crtc_state(crtc->state);
memcpy(&new_priv_state->pparms, &old_priv_state->pparms,
sizeof(new_priv_state->pparms));
return &new_priv_state->base;
}
static u32 lsdc_crtc_get_vblank_counter(struct drm_crtc *crtc)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
/* 32-bit hardware vblank counter */
return lcrtc->hw_ops->get_vblank_counter(lcrtc);
}
static int lsdc_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
if (!lcrtc->has_vblank)
return -EINVAL;
lcrtc->hw_ops->enable_vblank(lcrtc);
return 0;
}
static void lsdc_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
if (!lcrtc->has_vblank)
return;
lcrtc->hw_ops->disable_vblank(lcrtc);
}
/*
* CRTC related debugfs
* Primary planes and cursor planes belong to the CRTC as well.
* For the sake of convenience, plane-related registers are also add here.
*/
#define REG_DEF(reg) { \
.name = __stringify_1(LSDC_##reg##_REG), \
.offset = LSDC_##reg##_REG, \
}
static const struct lsdc_reg32 lsdc_crtc_regs_array[2][21] = {
[0] = {
REG_DEF(CRTC0_CFG),
REG_DEF(CRTC0_FB_ORIGIN),
REG_DEF(CRTC0_DVO_CONF),
REG_DEF(CRTC0_HDISPLAY),
REG_DEF(CRTC0_HSYNC),
REG_DEF(CRTC0_VDISPLAY),
REG_DEF(CRTC0_VSYNC),
REG_DEF(CRTC0_GAMMA_INDEX),
REG_DEF(CRTC0_GAMMA_DATA),
REG_DEF(CRTC0_SYNC_DEVIATION),
REG_DEF(CRTC0_VSYNC_COUNTER),
REG_DEF(CRTC0_SCAN_POS),
REG_DEF(CRTC0_STRIDE),
REG_DEF(CRTC0_FB1_ADDR_HI),
REG_DEF(CRTC0_FB1_ADDR_LO),
REG_DEF(CRTC0_FB0_ADDR_HI),
REG_DEF(CRTC0_FB0_ADDR_LO),
REG_DEF(CURSOR0_CFG),
REG_DEF(CURSOR0_POSITION),
REG_DEF(CURSOR0_BG_COLOR),
REG_DEF(CURSOR0_FG_COLOR),
},
[1] = {
REG_DEF(CRTC1_CFG),
REG_DEF(CRTC1_FB_ORIGIN),
REG_DEF(CRTC1_DVO_CONF),
REG_DEF(CRTC1_HDISPLAY),
REG_DEF(CRTC1_HSYNC),
REG_DEF(CRTC1_VDISPLAY),
REG_DEF(CRTC1_VSYNC),
REG_DEF(CRTC1_GAMMA_INDEX),
REG_DEF(CRTC1_GAMMA_DATA),
REG_DEF(CRTC1_SYNC_DEVIATION),
REG_DEF(CRTC1_VSYNC_COUNTER),
REG_DEF(CRTC1_SCAN_POS),
REG_DEF(CRTC1_STRIDE),
REG_DEF(CRTC1_FB1_ADDR_HI),
REG_DEF(CRTC1_FB1_ADDR_LO),
REG_DEF(CRTC1_FB0_ADDR_HI),
REG_DEF(CRTC1_FB0_ADDR_LO),
REG_DEF(CURSOR1_CFG),
REG_DEF(CURSOR1_POSITION),
REG_DEF(CURSOR1_BG_COLOR),
REG_DEF(CURSOR1_FG_COLOR),
},
};
static int lsdc_crtc_show_regs(struct seq_file *m, void *arg)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
struct lsdc_device *ldev = lcrtc->ldev;
unsigned int i;
for (i = 0; i < lcrtc->nreg; i++) {
const struct lsdc_reg32 *preg = &lcrtc->preg[i];
u32 offset = preg->offset;
seq_printf(m, "%s (0x%04x): 0x%08x\n",
preg->name, offset, lsdc_rreg32(ldev, offset));
}
return 0;
}
static int lsdc_crtc_show_scan_position(struct seq_file *m, void *arg)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
int x, y;
lcrtc->hw_ops->get_scan_pos(lcrtc, &x, &y);
seq_printf(m, "Scanout position: x: %08u, y: %08u\n", x, y);
return 0;
}
static int lsdc_crtc_show_vblank_counter(struct seq_file *m, void *arg)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
if (lcrtc->hw_ops->get_vblank_counter)
seq_printf(m, "%s vblank counter: %08u\n\n", lcrtc->base.name,
lcrtc->hw_ops->get_vblank_counter(lcrtc));
return 0;
}
static int lsdc_pixpll_show_clock(struct seq_file *m, void *arg)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct lsdc_crtc *lcrtc = (struct lsdc_crtc *)node->info_ent->data;
struct lsdc_pixpll *pixpll = &lcrtc->pixpll;
const struct lsdc_pixpll_funcs *funcs = pixpll->funcs;
struct drm_crtc *crtc = &lcrtc->base;
struct drm_display_mode *mode = &crtc->state->mode;
struct drm_printer printer = drm_seq_file_printer(m);
unsigned int out_khz;
out_khz = funcs->get_rate(pixpll);
seq_printf(m, "%s: %dx%d@%d\n", crtc->name,
mode->hdisplay, mode->vdisplay, drm_mode_vrefresh(mode));
seq_printf(m, "Pixel clock required: %d kHz\n", mode->clock);
seq_printf(m, "Actual frequency output: %u kHz\n", out_khz);
seq_printf(m, "Diff: %d kHz\n", out_khz - mode->clock);
funcs->print(pixpll, &printer);
return 0;
}
static struct drm_info_list lsdc_crtc_debugfs_list[2][4] = {
[0] = {
{ "regs", lsdc_crtc_show_regs, 0, NULL },
{ "pixclk", lsdc_pixpll_show_clock, 0, NULL },
{ "scanpos", lsdc_crtc_show_scan_position, 0, NULL },
{ "vblanks", lsdc_crtc_show_vblank_counter, 0, NULL },
},
[1] = {
{ "regs", lsdc_crtc_show_regs, 0, NULL },
{ "pixclk", lsdc_pixpll_show_clock, 0, NULL },
{ "scanpos", lsdc_crtc_show_scan_position, 0, NULL },
{ "vblanks", lsdc_crtc_show_vblank_counter, 0, NULL },
},
};
/* operate manually */
static int lsdc_crtc_man_op_show(struct seq_file *m, void *data)
{
seq_puts(m, "soft_reset: soft reset this CRTC\n");
seq_puts(m, "enable: enable this CRTC\n");
seq_puts(m, "disable: disable this CRTC\n");
seq_puts(m, "flip: trigger the page flip\n");
seq_puts(m, "clone: clone the another crtc with hardware logic\n");
return 0;
}
static int lsdc_crtc_man_op_open(struct inode *inode, struct file *file)
{
struct drm_crtc *crtc = inode->i_private;
return single_open(file, lsdc_crtc_man_op_show, crtc);
}
static ssize_t lsdc_crtc_man_op_write(struct file *file,
const char __user *ubuf,
size_t len,
loff_t *offp)
{
struct seq_file *m = file->private_data;
struct lsdc_crtc *lcrtc = m->private;
const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops;
char buf[16];
if (len > sizeof(buf) - 1)
return -EINVAL;
if (copy_from_user(buf, ubuf, len))
return -EFAULT;
buf[len] = '\0';
if (sysfs_streq(buf, "soft_reset"))
ops->soft_reset(lcrtc);
else if (sysfs_streq(buf, "enable"))
ops->enable(lcrtc);
else if (sysfs_streq(buf, "disable"))
ops->disable(lcrtc);
else if (sysfs_streq(buf, "flip"))
ops->flip(lcrtc);
else if (sysfs_streq(buf, "clone"))
ops->clone(lcrtc);
return len;
}
static const struct file_operations lsdc_crtc_man_op_fops = {
.owner = THIS_MODULE,
.open = lsdc_crtc_man_op_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = lsdc_crtc_man_op_write,
};
static int lsdc_crtc_late_register(struct drm_crtc *crtc)
{
struct lsdc_display_pipe *dispipe = crtc_to_display_pipe(crtc);
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
struct drm_minor *minor = crtc->dev->primary;
unsigned int index = dispipe->index;
unsigned int i;
lcrtc->preg = lsdc_crtc_regs_array[index];
lcrtc->nreg = ARRAY_SIZE(lsdc_crtc_regs_array[index]);
lcrtc->p_info_list = lsdc_crtc_debugfs_list[index];
lcrtc->n_info_list = ARRAY_SIZE(lsdc_crtc_debugfs_list[index]);
for (i = 0; i < lcrtc->n_info_list; ++i)
lcrtc->p_info_list[i].data = lcrtc;
drm_debugfs_create_files(lcrtc->p_info_list, lcrtc->n_info_list,
crtc->debugfs_entry, minor);
/* Manual operations supported */
debugfs_create_file("ops", 0644, crtc->debugfs_entry, lcrtc,
&lsdc_crtc_man_op_fops);
return 0;
}
static void lsdc_crtc_atomic_print_state(struct drm_printer *p,
const struct drm_crtc_state *state)
{
const struct lsdc_crtc_state *priv_state;
const struct lsdc_pixpll_parms *pparms;
priv_state = container_of_const(state, struct lsdc_crtc_state, base);
pparms = &priv_state->pparms;
drm_printf(p, "\tInput clock divider = %u\n", pparms->div_ref);
drm_printf(p, "\tMedium clock multiplier = %u\n", pparms->loopc);
drm_printf(p, "\tOutput clock divider = %u\n", pparms->div_out);
}
static const struct drm_crtc_funcs ls7a1000_crtc_funcs = {
.reset = lsdc_crtc_reset,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = lsdc_crtc_atomic_duplicate_state,
.atomic_destroy_state = lsdc_crtc_atomic_destroy_state,
.late_register = lsdc_crtc_late_register,
.enable_vblank = lsdc_crtc_enable_vblank,
.disable_vblank = lsdc_crtc_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.atomic_print_state = lsdc_crtc_atomic_print_state,
};
static const struct drm_crtc_funcs ls7a2000_crtc_funcs = {
.reset = lsdc_crtc_reset,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = lsdc_crtc_atomic_duplicate_state,
.atomic_destroy_state = lsdc_crtc_atomic_destroy_state,
.late_register = lsdc_crtc_late_register,
.get_vblank_counter = lsdc_crtc_get_vblank_counter,
.enable_vblank = lsdc_crtc_enable_vblank,
.disable_vblank = lsdc_crtc_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.atomic_print_state = lsdc_crtc_atomic_print_state,
};
static enum drm_mode_status
lsdc_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode)
{
struct drm_device *ddev = crtc->dev;
struct lsdc_device *ldev = to_lsdc(ddev);
const struct lsdc_desc *descp = ldev->descp;
unsigned int pitch;
if (mode->hdisplay > descp->max_width)
return MODE_BAD_HVALUE;
if (mode->vdisplay > descp->max_height)
return MODE_BAD_VVALUE;
if (mode->clock > descp->max_pixel_clk) {
drm_dbg_kms(ddev, "mode %dx%d, pixel clock=%d is too high\n",
mode->hdisplay, mode->vdisplay, mode->clock);
return MODE_CLOCK_HIGH;
}
/* 4 for DRM_FORMAT_XRGB8888 */
pitch = mode->hdisplay * 4;
if (pitch % descp->pitch_align) {
drm_dbg_kms(ddev, "align to %u bytes is required: %u\n",
descp->pitch_align, pitch);
return MODE_BAD_WIDTH;
}
return MODE_OK;
}
static int lsdc_pixpll_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
struct lsdc_pixpll *pixpll = &lcrtc->pixpll;
const struct lsdc_pixpll_funcs *pfuncs = pixpll->funcs;
struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(state);
unsigned int clock = state->mode.clock;
int ret;
ret = pfuncs->compute(pixpll, clock, &priv_state->pparms);
if (ret) {
drm_warn(crtc->dev, "Failed to find PLL params for %ukHz\n",
clock);
return -EINVAL;
}
return 0;
}
static int lsdc_crtc_helper_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->enable)
return 0;
return lsdc_pixpll_atomic_check(crtc, crtc_state);
}
static void lsdc_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
const struct lsdc_crtc_hw_ops *crtc_hw_ops = lcrtc->hw_ops;
struct lsdc_pixpll *pixpll = &lcrtc->pixpll;
const struct lsdc_pixpll_funcs *pixpll_funcs = pixpll->funcs;
struct drm_crtc_state *state = crtc->state;
struct drm_display_mode *mode = &state->mode;
struct lsdc_crtc_state *priv_state = to_lsdc_crtc_state(state);
pixpll_funcs->update(pixpll, &priv_state->pparms);
if (crtc_hw_ops->set_dma_step) {
unsigned int width_in_bytes = mode->hdisplay * 4;
enum lsdc_dma_steps dma_step;
/*
* Using DMA step as large as possible, for improving
* hardware DMA efficiency.
*/
if (width_in_bytes % 256 == 0)
dma_step = LSDC_DMA_STEP_256_BYTES;
else if (width_in_bytes % 128 == 0)
dma_step = LSDC_DMA_STEP_128_BYTES;
else if (width_in_bytes % 64 == 0)
dma_step = LSDC_DMA_STEP_64_BYTES;
else /* width_in_bytes % 32 == 0 */
dma_step = LSDC_DMA_STEP_32_BYTES;
crtc_hw_ops->set_dma_step(lcrtc, dma_step);
}
crtc_hw_ops->set_mode(lcrtc, mode);
}
static void lsdc_crtc_send_vblank(struct drm_crtc *crtc)
{
struct drm_device *ddev = crtc->dev;
unsigned long flags;
if (!crtc->state || !crtc->state->event)
return;
drm_dbg(ddev, "Send vblank manually\n");
spin_lock_irqsave(&ddev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
spin_unlock_irqrestore(&ddev->event_lock, flags);
}
static void lsdc_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
if (lcrtc->has_vblank)
drm_crtc_vblank_on(crtc);
lcrtc->hw_ops->enable(lcrtc);
}
static void lsdc_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
if (lcrtc->has_vblank)
drm_crtc_vblank_off(crtc);
lcrtc->hw_ops->disable(lcrtc);
/*
* Make sure we issue a vblank event after disabling the CRTC if
* someone was waiting it.
*/
lsdc_crtc_send_vblank(crtc);
}
static void lsdc_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
spin_lock_irq(&crtc->dev->event_lock);
if (crtc->state->event) {
if (drm_crtc_vblank_get(crtc) == 0)
drm_crtc_arm_vblank_event(crtc, crtc->state->event);
else
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irq(&crtc->dev->event_lock);
}
static bool lsdc_crtc_get_scanout_position(struct drm_crtc *crtc,
bool in_vblank_irq,
int *vpos,
int *hpos,
ktime_t *stime,
ktime_t *etime,
const struct drm_display_mode *mode)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
const struct lsdc_crtc_hw_ops *ops = lcrtc->hw_ops;
int vsw, vbp, vactive_start, vactive_end, vfp_end;
int x, y;
vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
vactive_start = vsw + vbp + 1;
vactive_end = vactive_start + mode->crtc_vdisplay;
/* last scan line before VSYNC */
vfp_end = mode->crtc_vtotal;
if (stime)
*stime = ktime_get();
ops->get_scan_pos(lcrtc, &x, &y);
if (y > vactive_end)
y = y - vfp_end - vactive_start;
else
y -= vactive_start;
*vpos = y;
*hpos = 0;
if (etime)
*etime = ktime_get();
return true;
}
static const struct drm_crtc_helper_funcs lsdc_crtc_helper_funcs = {
.mode_valid = lsdc_crtc_mode_valid,
.mode_set_nofb = lsdc_crtc_mode_set_nofb,
.atomic_enable = lsdc_crtc_atomic_enable,
.atomic_disable = lsdc_crtc_atomic_disable,
.atomic_check = lsdc_crtc_helper_atomic_check,
.atomic_flush = lsdc_crtc_atomic_flush,
.get_scanout_position = lsdc_crtc_get_scanout_position,
};
int ls7a1000_crtc_init(struct drm_device *ddev,
struct drm_crtc *crtc,
struct drm_plane *primary,
struct drm_plane *cursor,
unsigned int index,
bool has_vblank)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
int ret;
ret = lsdc_pixpll_init(&lcrtc->pixpll, ddev, index);
if (ret) {
drm_err(ddev, "pixel pll init failed: %d\n", ret);
return ret;
}
lcrtc->ldev = to_lsdc(ddev);
lcrtc->has_vblank = has_vblank;
lcrtc->hw_ops = &ls7a1000_crtc_hw_ops[index];
ret = drm_crtc_init_with_planes(ddev, crtc, primary, cursor,
&ls7a1000_crtc_funcs,
"LS-CRTC-%d", index);
if (ret) {
drm_err(ddev, "crtc init with planes failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &lsdc_crtc_helper_funcs);
ret = drm_mode_crtc_set_gamma_size(crtc, 256);
if (ret)
return ret;
drm_crtc_enable_color_mgmt(crtc, 0, false, 256);
return 0;
}
int ls7a2000_crtc_init(struct drm_device *ddev,
struct drm_crtc *crtc,
struct drm_plane *primary,
struct drm_plane *cursor,
unsigned int index,
bool has_vblank)
{
struct lsdc_crtc *lcrtc = to_lsdc_crtc(crtc);
int ret;
ret = lsdc_pixpll_init(&lcrtc->pixpll, ddev, index);
if (ret) {
drm_err(ddev, "crtc init with pll failed: %d\n", ret);
return ret;
}
lcrtc->ldev = to_lsdc(ddev);
lcrtc->has_vblank = has_vblank;
lcrtc->hw_ops = &ls7a2000_crtc_hw_ops[index];
ret = drm_crtc_init_with_planes(ddev, crtc, primary, cursor,
&ls7a2000_crtc_funcs,
"LS-CRTC-%u", index);
if (ret) {
drm_err(ddev, "crtc init with planes failed: %d\n", ret);
return ret;
}
drm_crtc_helper_add(crtc, &lsdc_crtc_helper_funcs);
ret = drm_mode_crtc_set_gamma_size(crtc, 256);
if (ret)
return ret;
drm_crtc_enable_color_mgmt(crtc, 0, false, 256);
return 0;
}