mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 05:45:20 +00:00
c7e08c816c
The KEBA I2C controller is found in the system FPGA of KEBA PLC devices. It is used to connect EEPROMs and hardware monitoring chips. The It is a simple I2C controller with a fixed bus speed of 100 kbit/s. The whole message transmission is executed by the driver. The driver triggers all steps over control, status and data register. There are no FIFOs or interrupts. Signed-off-by: Gerhard Engleder <eg@keba.com> Signed-off-by: Andi Shyti <andi.shyti@kernel.org>
599 lines
14 KiB
C
599 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) KEBA Industrial Automation Gmbh 2024
|
|
*
|
|
* Driver for KEBA I2C controller FPGA IP core
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/misc/keba.h>
|
|
|
|
#define KI2C "i2c-keba"
|
|
|
|
#define KI2C_CAPABILITY_REG 0x02
|
|
#define KI2C_CAPABILITY_CRYPTO 0x01
|
|
#define KI2C_CAPABILITY_DC 0x02
|
|
|
|
#define KI2C_CONTROL_REG 0x04
|
|
#define KI2C_CONTROL_MEN 0x01
|
|
#define KI2C_CONTROL_MSTA 0x02
|
|
#define KI2C_CONTROL_RSTA 0x04
|
|
#define KI2C_CONTROL_MTX 0x08
|
|
#define KI2C_CONTROL_TXAK 0x10
|
|
#define KI2C_CONTROL_DISABLE 0x00
|
|
|
|
#define KI2C_CONTROL_DC_REG 0x05
|
|
#define KI2C_CONTROL_DC_SDA 0x01
|
|
#define KI2C_CONTROL_DC_SCL 0x02
|
|
|
|
#define KI2C_STATUS_REG 0x08
|
|
#define KI2C_STATUS_IN_USE 0x01
|
|
#define KI2C_STATUS_ACK_CYC 0x02
|
|
#define KI2C_STATUS_RXAK 0x04
|
|
#define KI2C_STATUS_MCF 0x08
|
|
|
|
#define KI2C_STATUS_DC_REG 0x09
|
|
#define KI2C_STATUS_DC_SDA 0x01
|
|
#define KI2C_STATUS_DC_SCL 0x02
|
|
|
|
#define KI2C_DATA_REG 0x0c
|
|
|
|
#define KI2C_INUSE_SLEEP_US (2 * USEC_PER_MSEC)
|
|
#define KI2C_INUSE_TIMEOUT_US (10 * USEC_PER_SEC)
|
|
|
|
#define KI2C_POLL_DELAY_US 5
|
|
|
|
struct ki2c {
|
|
struct keba_i2c_auxdev *auxdev;
|
|
void __iomem *base;
|
|
struct i2c_adapter adapter;
|
|
|
|
struct i2c_client **client;
|
|
int client_size;
|
|
};
|
|
|
|
static int ki2c_inuse_lock(struct ki2c *ki2c)
|
|
{
|
|
u8 sts;
|
|
int ret;
|
|
|
|
/*
|
|
* The I2C controller has an IN_USE bit for locking access to the
|
|
* controller. This enables the use of I2C controller by other none
|
|
* Linux processors.
|
|
*
|
|
* If the I2C controller is free, then the first read returns
|
|
* IN_USE == 0. After that the I2C controller is locked and further
|
|
* reads of IN_USE return 1.
|
|
*
|
|
* The I2C controller is unlocked by writing 1 into IN_USE.
|
|
*
|
|
* The IN_USE bit acts as a hardware semaphore for the I2C controller.
|
|
* Poll for semaphore, but sleep while polling to free the CPU.
|
|
*/
|
|
ret = readb_poll_timeout(ki2c->base + KI2C_STATUS_REG,
|
|
sts, (sts & KI2C_STATUS_IN_USE) == 0,
|
|
KI2C_INUSE_SLEEP_US, KI2C_INUSE_TIMEOUT_US);
|
|
if (ret)
|
|
dev_err(&ki2c->auxdev->auxdev.dev, "%s err!\n", __func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ki2c_inuse_unlock(struct ki2c *ki2c)
|
|
{
|
|
/* unlock the controller by writing 1 into IN_USE */
|
|
iowrite8(KI2C_STATUS_IN_USE, ki2c->base + KI2C_STATUS_REG);
|
|
}
|
|
|
|
static int ki2c_wait_for_bit(void __iomem *addr, u8 mask, unsigned long timeout)
|
|
{
|
|
u8 val;
|
|
|
|
return readb_poll_timeout(addr, val, (val & mask), KI2C_POLL_DELAY_US,
|
|
jiffies_to_usecs(timeout));
|
|
}
|
|
|
|
static int ki2c_wait_for_mcf(struct ki2c *ki2c)
|
|
{
|
|
return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, KI2C_STATUS_MCF,
|
|
ki2c->adapter.timeout);
|
|
}
|
|
|
|
static int ki2c_wait_for_data(struct ki2c *ki2c)
|
|
{
|
|
int ret;
|
|
|
|
ret = ki2c_wait_for_mcf(ki2c);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG,
|
|
KI2C_STATUS_ACK_CYC,
|
|
ki2c->adapter.timeout);
|
|
}
|
|
|
|
static int ki2c_wait_for_data_ack(struct ki2c *ki2c)
|
|
{
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
ret = ki2c_wait_for_data(ki2c);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* RXAK == 0 means ACK reveived */
|
|
reg = ioread8(ki2c->base + KI2C_STATUS_REG);
|
|
if (reg & KI2C_STATUS_RXAK)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ki2c_has_capability(struct ki2c *ki2c, unsigned int cap)
|
|
{
|
|
unsigned int reg = ioread8(ki2c->base + KI2C_CAPABILITY_REG);
|
|
|
|
return (reg & cap) != 0;
|
|
}
|
|
|
|
static int ki2c_get_scl(struct ki2c *ki2c)
|
|
{
|
|
unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
|
|
|
|
/* capability KI2C_CAPABILITY_DC required */
|
|
return (reg & KI2C_STATUS_DC_SCL) != 0;
|
|
}
|
|
|
|
static int ki2c_get_sda(struct ki2c *ki2c)
|
|
{
|
|
unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
|
|
|
|
/* capability KI2C_CAPABILITY_DC required */
|
|
return (reg & KI2C_STATUS_DC_SDA) != 0;
|
|
}
|
|
|
|
static void ki2c_set_scl(struct ki2c *ki2c, int val)
|
|
{
|
|
u8 control_dc;
|
|
|
|
/* capability KI2C_CAPABILITY_DC and KI2C_CONTROL_MEN = 0 reqired */
|
|
control_dc = ioread8(ki2c->base + KI2C_CONTROL_DC_REG);
|
|
if (val)
|
|
control_dc |= KI2C_CONTROL_DC_SCL;
|
|
else
|
|
control_dc &= ~KI2C_CONTROL_DC_SCL;
|
|
iowrite8(control_dc, ki2c->base + KI2C_CONTROL_DC_REG);
|
|
}
|
|
|
|
/*
|
|
* Resetting bus bitwise is done by checking SDA and applying clock cycles as
|
|
* long as SDA is low. 9 clock cycles are applied at most.
|
|
*
|
|
* Clock cycles are generated and udelay() determines the duration of clock
|
|
* cycles. Generated clock rate is 100 KHz and so duration of both clock levels
|
|
* is: delay in ns = (10^6 / 100) / 2
|
|
*/
|
|
#define KI2C_RECOVERY_CLK_CNT (9 * 2)
|
|
#define KI2C_RECOVERY_UDELAY 5
|
|
static int ki2c_reset_bus_bitwise(struct ki2c *ki2c)
|
|
{
|
|
int val = 1;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
/* disable I2C controller (MEN = 0) to get direct access to SCL/SDA */
|
|
iowrite8(0, ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
/* generate clock cycles */
|
|
ki2c_set_scl(ki2c, val);
|
|
udelay(KI2C_RECOVERY_UDELAY);
|
|
for (i = 0; i < KI2C_RECOVERY_CLK_CNT; i++) {
|
|
if (val) {
|
|
/* SCL shouldn't be low here */
|
|
if (!ki2c_get_scl(ki2c)) {
|
|
dev_err(&ki2c->auxdev->auxdev.dev,
|
|
"SCL is stuck low!\n");
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
/* break if SDA is high */
|
|
if (ki2c_get_sda(ki2c))
|
|
break;
|
|
}
|
|
|
|
val = !val;
|
|
ki2c_set_scl(ki2c, val);
|
|
udelay(KI2C_RECOVERY_UDELAY);
|
|
}
|
|
|
|
if (!ki2c_get_sda(ki2c)) {
|
|
dev_err(&ki2c->auxdev->auxdev.dev, "SDA is still low!\n");
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
/* reenable controller */
|
|
iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Resetting bus bytewise is done by writing start bit, 9 data bits and stop
|
|
* bit.
|
|
*
|
|
* This is not 100% safe. If target is an EEPROM and a write access was
|
|
* interrupted during the ACK cycle, this approach might not be able to recover
|
|
* the bus. The reason is, that after the 9 clock cycles the EEPROM will be in
|
|
* ACK cycle again and will hold SDA low like it did before the start of the
|
|
* routine. Furthermore the EEPROM might get written one additional byte with
|
|
* 0xff into it. Thus, use bitwise approach whenever possible, especially when
|
|
* EEPROMs are on the bus.
|
|
*/
|
|
static int ki2c_reset_bus_bytewise(struct ki2c *ki2c)
|
|
{
|
|
int ret;
|
|
|
|
/* hold data line high for 9 clock cycles */
|
|
iowrite8(0xFF, ki2c->base + KI2C_DATA_REG);
|
|
|
|
/* create start condition */
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
ret = ki2c_wait_for_mcf(ki2c);
|
|
if (ret < 0) {
|
|
dev_err(&ki2c->auxdev->auxdev.dev, "Start condition failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* create stop condition */
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_TXAK,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
ret = ki2c_wait_for_mcf(ki2c);
|
|
if (ret < 0)
|
|
dev_err(&ki2c->auxdev->auxdev.dev, "Stop condition failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ki2c_reset_bus(struct ki2c *ki2c)
|
|
{
|
|
int ret;
|
|
|
|
ret = ki2c_inuse_lock(ki2c);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* If the I2C controller is capable of direct control of SCL/SDA, then a
|
|
* bitwise reset is used. Otherwise fall back to bytewise reset.
|
|
*/
|
|
if (ki2c_has_capability(ki2c, KI2C_CAPABILITY_DC))
|
|
ret = ki2c_reset_bus_bitwise(ki2c);
|
|
else
|
|
ret = ki2c_reset_bus_bytewise(ki2c);
|
|
|
|
ki2c_inuse_unlock(ki2c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ki2c_write_target_addr(struct ki2c *ki2c, struct i2c_msg *m)
|
|
{
|
|
u8 addr;
|
|
|
|
addr = m->addr << 1;
|
|
/* Bit 0 signals RD/WR */
|
|
if (m->flags & I2C_M_RD)
|
|
addr |= 0x01;
|
|
|
|
iowrite8(addr, ki2c->base + KI2C_DATA_REG);
|
|
}
|
|
|
|
static int ki2c_start_addr(struct ki2c *ki2c, struct i2c_msg *m)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Store target address byte in the controller. This has to be done
|
|
* before sending START condition.
|
|
*/
|
|
ki2c_write_target_addr(ki2c, m);
|
|
|
|
/* enable controller for TX */
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
/* send START condition and target address byte */
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
ret = ki2c_wait_for_data_ack(ki2c);
|
|
if (ret < 0)
|
|
/*
|
|
* For EEPROMs this is normal behavior during internal write
|
|
* operation.
|
|
*/
|
|
dev_dbg(&ki2c->auxdev->auxdev.dev,
|
|
"%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ki2c_repstart_addr(struct ki2c *ki2c, struct i2c_msg *m)
|
|
{
|
|
int ret;
|
|
|
|
/* repeated start and write is not supported */
|
|
if ((m->flags & I2C_M_RD) == 0) {
|
|
dev_err(&ki2c->auxdev->auxdev.dev,
|
|
"Repeated start not supported for writes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* send repeated start */
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_RSTA,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
ret = ki2c_wait_for_mcf(ki2c);
|
|
if (ret < 0) {
|
|
dev_err(&ki2c->auxdev->auxdev.dev,
|
|
"%s wait for MCF err at 0x%02x!\n", __func__, m->addr);
|
|
return ret;
|
|
}
|
|
|
|
/* write target-address byte */
|
|
ki2c_write_target_addr(ki2c, m);
|
|
|
|
ret = ki2c_wait_for_data_ack(ki2c);
|
|
if (ret < 0)
|
|
dev_err(&ki2c->auxdev->auxdev.dev,
|
|
"%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ki2c_stop(struct ki2c *ki2c)
|
|
{
|
|
iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
|
|
ki2c_wait_for_mcf(ki2c);
|
|
}
|
|
|
|
static int ki2c_write(struct ki2c *ki2c, const u8 *data, int len)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
/* write data byte */
|
|
iowrite8(data[i], ki2c->base + KI2C_DATA_REG);
|
|
|
|
ret = ki2c_wait_for_data_ack(ki2c);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ki2c_read(struct ki2c *ki2c, u8 *data, int len)
|
|
{
|
|
u8 control;
|
|
int ret;
|
|
int i;
|
|
|
|
if (len == 0)
|
|
return 0; /* nothing to do */
|
|
|
|
control = KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA;
|
|
|
|
/* if just one byte => send tx-nack after transfer */
|
|
if (len == 1)
|
|
control |= KI2C_CONTROL_TXAK;
|
|
|
|
iowrite8(control, ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
/* dummy read to start transfer on bus */
|
|
ioread8(ki2c->base + KI2C_DATA_REG);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
ret = ki2c_wait_for_data(ki2c);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (i == len - 2)
|
|
/* send tx-nack after transfer of last byte */
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
else if (i == len - 1)
|
|
/*
|
|
* switch to TX on last byte, so that reading DATA
|
|
* register does not trigger another read transfer
|
|
*/
|
|
iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_MTX,
|
|
ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
/* read byte and start next transfer (if not last byte) */
|
|
data[i] = ioread8(ki2c->base + KI2C_DATA_REG);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static int ki2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
|
|
{
|
|
struct ki2c *ki2c = i2c_get_adapdata(adap);
|
|
int ret;
|
|
int i;
|
|
|
|
ret = ki2c_inuse_lock(ki2c);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
struct i2c_msg *m = &msgs[i];
|
|
|
|
if (i == 0)
|
|
ret = ki2c_start_addr(ki2c, m);
|
|
else
|
|
ret = ki2c_repstart_addr(ki2c, m);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
if (m->flags & I2C_M_RD)
|
|
ret = ki2c_read(ki2c, m->buf, m->len);
|
|
else
|
|
ret = ki2c_write(ki2c, m->buf, m->len);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
ki2c_stop(ki2c);
|
|
|
|
ki2c_inuse_unlock(ki2c);
|
|
|
|
return ret < 0 ? ret : num;
|
|
}
|
|
|
|
static void ki2c_unregister_devices(struct ki2c *ki2c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ki2c->client_size; i++) {
|
|
struct i2c_client *client = ki2c->client[i];
|
|
|
|
if (client)
|
|
i2c_unregister_device(client);
|
|
}
|
|
}
|
|
|
|
static int ki2c_register_devices(struct ki2c *ki2c)
|
|
{
|
|
struct i2c_board_info *info = ki2c->auxdev->info;
|
|
int i;
|
|
|
|
/* register all known I2C devices */
|
|
for (i = 0; i < ki2c->client_size; i++) {
|
|
struct i2c_client *client;
|
|
unsigned short const addr_list[2] = { info[i].addr,
|
|
I2C_CLIENT_END };
|
|
|
|
client = i2c_new_scanned_device(&ki2c->adapter, &info[i],
|
|
addr_list, NULL);
|
|
if (!IS_ERR(client)) {
|
|
ki2c->client[i] = client;
|
|
} else if (PTR_ERR(client) != -ENODEV) {
|
|
ki2c->client_size = i;
|
|
ki2c_unregister_devices(ki2c);
|
|
|
|
return PTR_ERR(client);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 ki2c_func(struct i2c_adapter *adap)
|
|
{
|
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
|
}
|
|
|
|
static const struct i2c_algorithm ki2c_algo = {
|
|
.master_xfer = ki2c_xfer,
|
|
.functionality = ki2c_func,
|
|
};
|
|
|
|
static int ki2c_probe(struct auxiliary_device *auxdev,
|
|
const struct auxiliary_device_id *id)
|
|
{
|
|
struct device *dev = &auxdev->dev;
|
|
struct i2c_adapter *adap;
|
|
struct ki2c *ki2c;
|
|
int ret;
|
|
|
|
ki2c = devm_kzalloc(dev, sizeof(*ki2c), GFP_KERNEL);
|
|
if (!ki2c)
|
|
return -ENOMEM;
|
|
ki2c->auxdev = container_of(auxdev, struct keba_i2c_auxdev, auxdev);
|
|
ki2c->client = devm_kcalloc(dev, ki2c->auxdev->info_size,
|
|
sizeof(*ki2c->client), GFP_KERNEL);
|
|
if (!ki2c->client)
|
|
return -ENOMEM;
|
|
ki2c->client_size = ki2c->auxdev->info_size;
|
|
auxiliary_set_drvdata(auxdev, ki2c);
|
|
|
|
ki2c->base = devm_ioremap_resource(dev, &ki2c->auxdev->io);
|
|
if (IS_ERR(ki2c->base))
|
|
return PTR_ERR(ki2c->base);
|
|
|
|
adap = &ki2c->adapter;
|
|
strscpy(adap->name, "KEBA I2C adapter", sizeof(adap->name));
|
|
adap->owner = THIS_MODULE;
|
|
adap->class = I2C_CLASS_HWMON;
|
|
adap->algo = &ki2c_algo;
|
|
adap->dev.parent = dev;
|
|
|
|
i2c_set_adapdata(adap, ki2c);
|
|
|
|
/* enable controller */
|
|
iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
/* reset bus before probing I2C devices */
|
|
ret = ki2c_reset_bus(ki2c);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = devm_i2c_add_adapter(dev, adap);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to add adapter (%d)!\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = ki2c_register_devices(ki2c);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to register devices (%d)!\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
|
|
return ret;
|
|
}
|
|
|
|
static void ki2c_remove(struct auxiliary_device *auxdev)
|
|
{
|
|
struct ki2c *ki2c = auxiliary_get_drvdata(auxdev);
|
|
|
|
ki2c_unregister_devices(ki2c);
|
|
|
|
/* disable controller */
|
|
iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
|
|
|
|
auxiliary_set_drvdata(auxdev, NULL);
|
|
}
|
|
|
|
static const struct auxiliary_device_id ki2c_devtype_aux[] = {
|
|
{ .name = "keba.i2c" },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(auxiliary, ki2c_devtype_aux);
|
|
|
|
static struct auxiliary_driver ki2c_driver_aux = {
|
|
.name = KI2C,
|
|
.id_table = ki2c_devtype_aux,
|
|
.probe = ki2c_probe,
|
|
.remove = ki2c_remove,
|
|
};
|
|
module_auxiliary_driver(ki2c_driver_aux);
|
|
|
|
MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
|
|
MODULE_DESCRIPTION("KEBA I2C bus controller driver");
|
|
MODULE_LICENSE("GPL");
|