Dan Carpenter 6bba3c0ac5
PCI: endpoint: Fix error handling in epf_ntb_epc_cleanup()
There are two issues related to epf_ntb_epc_cleanup():

  1) It should call epf_ntb_config_sspad_bar_clear()
  2) The epf_ntb_bind() function should call epf_ntb_epc_cleanup()
     to cleanup.

I also changed the ordering a bit.  Unwinding should be done in the
mirror order from how they are allocated.

Fixes: e35f56bb0330 ("PCI: endpoint: Support NTB transfer between RC and EP")
Link: https://lore.kernel.org/linux-pci/aaffbe8d-7094-4083-8146-185f4a84e8a1@moroto.mountain
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Krzysztof Wilczyński <kwilczynski@kernel.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
2024-07-04 14:40:53 +00:00

1460 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Endpoint Function Driver to implement Non-Transparent Bridge functionality
* Between PCI RC and EP
*
* Copyright (C) 2020 Texas Instruments
* Copyright (C) 2022 NXP
*
* Based on pci-epf-ntb.c
* Author: Frank Li <Frank.Li@nxp.com>
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
/*
* +------------+ +---------------------------------------+
* | | | |
* +------------+ | +--------------+
* | NTB | | | NTB |
* | NetDev | | | NetDev |
* +------------+ | +--------------+
* | NTB | | | NTB |
* | Transfer | | | Transfer |
* +------------+ | +--------------+
* | | | | |
* | PCI NTB | | | |
* | EPF | | | |
* | Driver | | | PCI Virtual |
* | | +---------------+ | NTB Driver |
* | | | PCI EP NTB |<------>| |
* | | | FN Driver | | |
* +------------+ +---------------+ +--------------+
* | | | | | |
* | PCI Bus | <-----> | PCI EP Bus | | Virtual PCI |
* | | PCI | | | Bus |
* +------------+ +---------------+--------+--------------+
* PCIe Root Port PCI EP
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#include <linux/ntb.h>
static struct workqueue_struct *kpcintb_workqueue;
#define COMMAND_CONFIGURE_DOORBELL 1
#define COMMAND_TEARDOWN_DOORBELL 2
#define COMMAND_CONFIGURE_MW 3
#define COMMAND_TEARDOWN_MW 4
#define COMMAND_LINK_UP 5
#define COMMAND_LINK_DOWN 6
#define COMMAND_STATUS_OK 1
#define COMMAND_STATUS_ERROR 2
#define LINK_STATUS_UP BIT(0)
#define SPAD_COUNT 64
#define DB_COUNT 4
#define NTB_MW_OFFSET 2
#define DB_COUNT_MASK GENMASK(15, 0)
#define MSIX_ENABLE BIT(16)
#define MAX_DB_COUNT 32
#define MAX_MW 4
enum epf_ntb_bar {
BAR_CONFIG,
BAR_DB,
BAR_MW0,
BAR_MW1,
BAR_MW2,
};
/*
* +--------------------------------------------------+ Base
* | |
* | |
* | |
* | Common Control Register |
* | |
* | |
* | |
* +-----------------------+--------------------------+ Base+spad_offset
* | | |
* | Peer Spad Space | Spad Space |
* | | |
* | | |
* +-----------------------+--------------------------+ Base+spad_offset
* | | | +spad_count * 4
* | | |
* | Spad Space | Peer Spad Space |
* | | |
* +-----------------------+--------------------------+
* Virtual PCI PCIe Endpoint
* NTB Driver NTB Driver
*/
struct epf_ntb_ctrl {
u32 command;
u32 argument;
u16 command_status;
u16 link_status;
u32 topology;
u64 addr;
u64 size;
u32 num_mws;
u32 reserved;
u32 spad_offset;
u32 spad_count;
u32 db_entry_size;
u32 db_data[MAX_DB_COUNT];
u32 db_offset[MAX_DB_COUNT];
} __packed;
struct epf_ntb {
struct ntb_dev ntb;
struct pci_epf *epf;
struct config_group group;
u32 num_mws;
u32 db_count;
u32 spad_count;
u64 mws_size[MAX_MW];
u64 db;
u32 vbus_number;
u16 vntb_pid;
u16 vntb_vid;
bool linkup;
u32 spad_size;
enum pci_barno epf_ntb_bar[6];
struct epf_ntb_ctrl *reg;
u32 *epf_db;
phys_addr_t vpci_mw_phy[MAX_MW];
void __iomem *vpci_mw_addr[MAX_MW];
struct delayed_work cmd_handler;
};
#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
#define ntb_ndev(__ntb) container_of(__ntb, struct epf_ntb, ntb)
static struct pci_epf_header epf_ntb_header = {
.vendorid = PCI_ANY_ID,
.deviceid = PCI_ANY_ID,
.baseclass_code = PCI_BASE_CLASS_MEMORY,
.interrupt_pin = PCI_INTERRUPT_INTA,
};
/**
* epf_ntb_link_up() - Raise link_up interrupt to Virtual Host (VHOST)
* @ntb: NTB device that facilitates communication between HOST and VHOST
* @link_up: true or false indicating Link is UP or Down
*
* Once NTB function in HOST invoke ntb_link_enable(),
* this NTB function driver will trigger a link event to VHOST.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
{
if (link_up)
ntb->reg->link_status |= LINK_STATUS_UP;
else
ntb->reg->link_status &= ~LINK_STATUS_UP;
ntb_link_event(&ntb->ntb);
return 0;
}
/**
* epf_ntb_configure_mw() - Configure the Outbound Address Space for VHOST
* to access the memory window of HOST
* @ntb: NTB device that facilitates communication between HOST and VHOST
* @mw: Index of the memory window (either 0, 1, 2 or 3)
*
* EP Outbound Window
* +--------+ +-----------+
* | | | |
* | | | |
* | | | |
* | | | |
* | | +-----------+
* | Virtual| | Memory Win|
* | NTB | -----------> | |
* | Driver | | |
* | | +-----------+
* | | | |
* | | | |
* +--------+ +-----------+
* VHOST PCI EP
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_configure_mw(struct epf_ntb *ntb, u32 mw)
{
phys_addr_t phys_addr;
u8 func_no, vfunc_no;
u64 addr, size;
int ret = 0;
phys_addr = ntb->vpci_mw_phy[mw];
addr = ntb->reg->addr;
size = ntb->reg->size;
func_no = ntb->epf->func_no;
vfunc_no = ntb->epf->vfunc_no;
ret = pci_epc_map_addr(ntb->epf->epc, func_no, vfunc_no, phys_addr, addr, size);
if (ret)
dev_err(&ntb->epf->epc->dev,
"Failed to map memory window %d address\n", mw);
return ret;
}
/**
* epf_ntb_teardown_mw() - Teardown the configured OB ATU
* @ntb: NTB device that facilitates communication between HOST and VHOST
* @mw: Index of the memory window (either 0, 1, 2 or 3)
*
* Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
* pci_epc_unmap_addr()
*/
static void epf_ntb_teardown_mw(struct epf_ntb *ntb, u32 mw)
{
pci_epc_unmap_addr(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no,
ntb->vpci_mw_phy[mw]);
}
/**
* epf_ntb_cmd_handler() - Handle commands provided by the NTB HOST
* @work: work_struct for the epf_ntb_epc
*
* Workqueue function that gets invoked for the two epf_ntb_epc
* periodically (once every 5ms) to see if it has received any commands
* from NTB HOST. The HOST can send commands to configure doorbell or
* configure memory window or to update link status.
*/
static void epf_ntb_cmd_handler(struct work_struct *work)
{
struct epf_ntb_ctrl *ctrl;
u32 command, argument;
struct epf_ntb *ntb;
struct device *dev;
int ret;
int i;
ntb = container_of(work, struct epf_ntb, cmd_handler.work);
for (i = 1; i < ntb->db_count; i++) {
if (ntb->epf_db[i]) {
ntb->db |= 1 << (i - 1);
ntb_db_event(&ntb->ntb, i);
ntb->epf_db[i] = 0;
}
}
ctrl = ntb->reg;
command = ctrl->command;
if (!command)
goto reset_handler;
argument = ctrl->argument;
ctrl->command = 0;
ctrl->argument = 0;
ctrl = ntb->reg;
dev = &ntb->epf->dev;
switch (command) {
case COMMAND_CONFIGURE_DOORBELL:
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_TEARDOWN_DOORBELL:
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_CONFIGURE_MW:
ret = epf_ntb_configure_mw(ntb, argument);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_TEARDOWN_MW:
epf_ntb_teardown_mw(ntb, argument);
ctrl->command_status = COMMAND_STATUS_OK;
break;
case COMMAND_LINK_UP:
ntb->linkup = true;
ret = epf_ntb_link_up(ntb, true);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
goto reset_handler;
case COMMAND_LINK_DOWN:
ntb->linkup = false;
ret = epf_ntb_link_up(ntb, false);
if (ret < 0)
ctrl->command_status = COMMAND_STATUS_ERROR;
else
ctrl->command_status = COMMAND_STATUS_OK;
break;
default:
dev_err(dev, "UNKNOWN command: %d\n", command);
break;
}
reset_handler:
queue_delayed_work(kpcintb_workqueue, &ntb->cmd_handler,
msecs_to_jiffies(5));
}
/**
* epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
* @ntb: EPC associated with one of the HOST which holds peer's outbound
* address.
*
* Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
* self scratchpad region (removes inbound ATU configuration). While BAR0 is
* the default self scratchpad BAR, an NTB could have other BARs for self
* scratchpad (because of reserved BARs). This function can get the exact BAR
* used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
*
* Please note the self scratchpad region and config region is combined to
* a single region and mapped using the same BAR. Also note VHOST's peer
* scratchpad is HOST's self scratchpad.
*
* Returns: void
*/
static void epf_ntb_config_sspad_bar_clear(struct epf_ntb *ntb)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
barno = ntb->epf_ntb_bar[BAR_CONFIG];
epf_bar = &ntb->epf->bar[barno];
pci_epc_clear_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
}
/**
* epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Map BAR0 of EP CONTROLLER which contains the VHOST's config and
* self scratchpad region.
*
* Please note the self scratchpad region and config region is combined to
* a single region and mapped using the same BAR.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_config_sspad_bar_set(struct epf_ntb *ntb)
{
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
u8 func_no, vfunc_no;
struct device *dev;
int ret;
dev = &ntb->epf->dev;
func_no = ntb->epf->func_no;
vfunc_no = ntb->epf->vfunc_no;
barno = ntb->epf_ntb_bar[BAR_CONFIG];
epf_bar = &ntb->epf->bar[barno];
ret = pci_epc_set_bar(ntb->epf->epc, func_no, vfunc_no, epf_bar);
if (ret) {
dev_err(dev, "inft: Config/Status/SPAD BAR set failed\n");
return ret;
}
return 0;
}
/**
* epf_ntb_config_spad_bar_free() - Free the physical memory associated with
* config + scratchpad region
* @ntb: NTB device that facilitates communication between HOST and VHOST
*/
static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
{
enum pci_barno barno;
barno = ntb->epf_ntb_bar[BAR_CONFIG];
pci_epf_free_space(ntb->epf, ntb->reg, barno, 0);
}
/**
* epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
* region
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Allocate the Local Memory mentioned in the above diagram. The size of
* CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
* is obtained from "spad-count" configfs entry.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb)
{
size_t align;
enum pci_barno barno;
struct epf_ntb_ctrl *ctrl;
u32 spad_size, ctrl_size;
u64 size;
struct pci_epf *epf = ntb->epf;
struct device *dev = &epf->dev;
u32 spad_count;
void *base;
int i;
const struct pci_epc_features *epc_features = pci_epc_get_features(epf->epc,
epf->func_no,
epf->vfunc_no);
barno = ntb->epf_ntb_bar[BAR_CONFIG];
size = epc_features->bar[barno].fixed_size;
align = epc_features->align;
if ((!IS_ALIGNED(size, align)))
return -EINVAL;
spad_count = ntb->spad_count;
ctrl_size = sizeof(struct epf_ntb_ctrl);
spad_size = 2 * spad_count * sizeof(u32);
if (!align) {
ctrl_size = roundup_pow_of_two(ctrl_size);
spad_size = roundup_pow_of_two(spad_size);
} else {
ctrl_size = ALIGN(ctrl_size, align);
spad_size = ALIGN(spad_size, align);
}
if (!size)
size = ctrl_size + spad_size;
else if (size < ctrl_size + spad_size)
return -EINVAL;
base = pci_epf_alloc_space(epf, size, barno, epc_features, 0);
if (!base) {
dev_err(dev, "Config/Status/SPAD alloc region fail\n");
return -ENOMEM;
}
ntb->reg = base;
ctrl = ntb->reg;
ctrl->spad_offset = ctrl_size;
ctrl->spad_count = spad_count;
ctrl->num_mws = ntb->num_mws;
ntb->spad_size = spad_size;
ctrl->db_entry_size = sizeof(u32);
for (i = 0; i < ntb->db_count; i++) {
ntb->reg->db_data[i] = 1 + i;
ntb->reg->db_offset[i] = 0;
}
return 0;
}
/**
* epf_ntb_configure_interrupt() - Configure MSI/MSI-X capability
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Configure MSI/MSI-X capability for each interface with number of
* interrupts equal to "db_count" configfs entry.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_configure_interrupt(struct epf_ntb *ntb)
{
const struct pci_epc_features *epc_features;
struct device *dev;
u32 db_count;
int ret;
dev = &ntb->epf->dev;
epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
if (!(epc_features->msix_capable || epc_features->msi_capable)) {
dev_err(dev, "MSI or MSI-X is required for doorbell\n");
return -EINVAL;
}
db_count = ntb->db_count;
if (db_count > MAX_DB_COUNT) {
dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
return -EINVAL;
}
ntb->db_count = db_count;
if (epc_features->msi_capable) {
ret = pci_epc_set_msi(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no,
16);
if (ret) {
dev_err(dev, "MSI configuration failed\n");
return ret;
}
}
return 0;
}
/**
* epf_ntb_db_bar_init() - Configure Doorbell window BARs
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_db_bar_init(struct epf_ntb *ntb)
{
const struct pci_epc_features *epc_features;
struct device *dev = &ntb->epf->dev;
int ret;
struct pci_epf_bar *epf_bar;
void __iomem *mw_addr;
enum pci_barno barno;
size_t size = sizeof(u32) * ntb->db_count;
epc_features = pci_epc_get_features(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no);
barno = ntb->epf_ntb_bar[BAR_DB];
mw_addr = pci_epf_alloc_space(ntb->epf, size, barno, epc_features, 0);
if (!mw_addr) {
dev_err(dev, "Failed to allocate OB address\n");
return -ENOMEM;
}
ntb->epf_db = mw_addr;
epf_bar = &ntb->epf->bar[barno];
ret = pci_epc_set_bar(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no, epf_bar);
if (ret) {
dev_err(dev, "Doorbell BAR set failed\n");
goto err_alloc_peer_mem;
}
return ret;
err_alloc_peer_mem:
pci_epf_free_space(ntb->epf, mw_addr, barno, 0);
return -1;
}
static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws);
/**
* epf_ntb_db_bar_clear() - Clear doorbell BAR and free memory
* allocated in peer's outbound address space
* @ntb: NTB device that facilitates communication between HOST and VHOST
*/
static void epf_ntb_db_bar_clear(struct epf_ntb *ntb)
{
enum pci_barno barno;
barno = ntb->epf_ntb_bar[BAR_DB];
pci_epf_free_space(ntb->epf, ntb->epf_db, barno, 0);
pci_epc_clear_bar(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no,
&ntb->epf->bar[barno]);
}
/**
* epf_ntb_mw_bar_init() - Configure Memory window BARs
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_mw_bar_init(struct epf_ntb *ntb)
{
int ret = 0;
int i;
u64 size;
enum pci_barno barno;
struct device *dev = &ntb->epf->dev;
for (i = 0; i < ntb->num_mws; i++) {
size = ntb->mws_size[i];
barno = ntb->epf_ntb_bar[BAR_MW0 + i];
ntb->epf->bar[barno].barno = barno;
ntb->epf->bar[barno].size = size;
ntb->epf->bar[barno].addr = NULL;
ntb->epf->bar[barno].phys_addr = 0;
ntb->epf->bar[barno].flags |= upper_32_bits(size) ?
PCI_BASE_ADDRESS_MEM_TYPE_64 :
PCI_BASE_ADDRESS_MEM_TYPE_32;
ret = pci_epc_set_bar(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no,
&ntb->epf->bar[barno]);
if (ret) {
dev_err(dev, "MW set failed\n");
goto err_alloc_mem;
}
/* Allocate EPC outbound memory windows to vpci vntb device */
ntb->vpci_mw_addr[i] = pci_epc_mem_alloc_addr(ntb->epf->epc,
&ntb->vpci_mw_phy[i],
size);
if (!ntb->vpci_mw_addr[i]) {
ret = -ENOMEM;
dev_err(dev, "Failed to allocate source address\n");
goto err_set_bar;
}
}
return ret;
err_set_bar:
pci_epc_clear_bar(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no,
&ntb->epf->bar[barno]);
err_alloc_mem:
epf_ntb_mw_bar_clear(ntb, i);
return ret;
}
/**
* epf_ntb_mw_bar_clear() - Clear Memory window BARs
* @ntb: NTB device that facilitates communication between HOST and VHOST
* @num_mws: the number of Memory window BARs that to be cleared
*/
static void epf_ntb_mw_bar_clear(struct epf_ntb *ntb, int num_mws)
{
enum pci_barno barno;
int i;
for (i = 0; i < num_mws; i++) {
barno = ntb->epf_ntb_bar[BAR_MW0 + i];
pci_epc_clear_bar(ntb->epf->epc,
ntb->epf->func_no,
ntb->epf->vfunc_no,
&ntb->epf->bar[barno]);
pci_epc_mem_free_addr(ntb->epf->epc,
ntb->vpci_mw_phy[i],
ntb->vpci_mw_addr[i],
ntb->mws_size[i]);
}
}
/**
* epf_ntb_epc_destroy() - Cleanup NTB EPC interface
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
*/
static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
{
pci_epc_remove_epf(ntb->epf->epc, ntb->epf, 0);
pci_epc_put(ntb->epf->epc);
}
/**
* epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
* constructs (scratchpad region, doorbell, memorywindow)
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
{
const struct pci_epc_features *epc_features;
enum pci_barno barno;
enum epf_ntb_bar bar;
struct device *dev;
u32 num_mws;
int i;
barno = BAR_0;
num_mws = ntb->num_mws;
dev = &ntb->epf->dev;
epc_features = pci_epc_get_features(ntb->epf->epc, ntb->epf->func_no, ntb->epf->vfunc_no);
/* These are required BARs which are mandatory for NTB functionality */
for (bar = BAR_CONFIG; bar <= BAR_MW0; bar++, barno++) {
barno = pci_epc_get_next_free_bar(epc_features, barno);
if (barno < 0) {
dev_err(dev, "Fail to get NTB function BAR\n");
return barno;
}
ntb->epf_ntb_bar[bar] = barno;
}
/* These are optional BARs which don't impact NTB functionality */
for (bar = BAR_MW1, i = 1; i < num_mws; bar++, barno++, i++) {
barno = pci_epc_get_next_free_bar(epc_features, barno);
if (barno < 0) {
ntb->num_mws = i;
dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
}
ntb->epf_ntb_bar[bar] = barno;
}
return 0;
}
/**
* epf_ntb_epc_init() - Initialize NTB interface
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Wrapper to initialize a particular EPC interface and start the workqueue
* to check for commands from HOST. This function will write to the
* EP controller HW for configuring it.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_epc_init(struct epf_ntb *ntb)
{
u8 func_no, vfunc_no;
struct pci_epc *epc;
struct pci_epf *epf;
struct device *dev;
int ret;
epf = ntb->epf;
dev = &epf->dev;
epc = epf->epc;
func_no = ntb->epf->func_no;
vfunc_no = ntb->epf->vfunc_no;
ret = epf_ntb_config_sspad_bar_set(ntb);
if (ret) {
dev_err(dev, "Config/self SPAD BAR init failed");
return ret;
}
ret = epf_ntb_configure_interrupt(ntb);
if (ret) {
dev_err(dev, "Interrupt configuration failed\n");
goto err_config_interrupt;
}
ret = epf_ntb_db_bar_init(ntb);
if (ret) {
dev_err(dev, "DB BAR init failed\n");
goto err_db_bar_init;
}
ret = epf_ntb_mw_bar_init(ntb);
if (ret) {
dev_err(dev, "MW BAR init failed\n");
goto err_mw_bar_init;
}
if (vfunc_no <= 1) {
ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
if (ret) {
dev_err(dev, "Configuration header write failed\n");
goto err_write_header;
}
}
INIT_DELAYED_WORK(&ntb->cmd_handler, epf_ntb_cmd_handler);
queue_work(kpcintb_workqueue, &ntb->cmd_handler.work);
return 0;
err_write_header:
epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
err_mw_bar_init:
epf_ntb_db_bar_clear(ntb);
err_db_bar_init:
err_config_interrupt:
epf_ntb_config_sspad_bar_clear(ntb);
return ret;
}
/**
* epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
* @ntb: NTB device that facilitates communication between HOST and VHOST
*
* Wrapper to cleanup all NTB interfaces.
*/
static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
{
epf_ntb_mw_bar_clear(ntb, ntb->num_mws);
epf_ntb_db_bar_clear(ntb);
epf_ntb_config_sspad_bar_clear(ntb);
}
#define EPF_NTB_R(_name) \
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
char *page) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
\
return sprintf(page, "%d\n", ntb->_name); \
}
#define EPF_NTB_W(_name) \
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
const char *page, size_t len) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
u32 val; \
int ret; \
\
ret = kstrtou32(page, 0, &val); \
if (ret) \
return ret; \
\
ntb->_name = val; \
\
return len; \
}
#define EPF_NTB_MW_R(_name) \
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
char *page) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
struct device *dev = &ntb->epf->dev; \
int win_no; \
\
if (sscanf(#_name, "mw%d", &win_no) != 1) \
return -EINVAL; \
\
if (win_no <= 0 || win_no > ntb->num_mws) { \
dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
return -EINVAL; \
} \
\
return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]); \
}
#define EPF_NTB_MW_W(_name) \
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
const char *page, size_t len) \
{ \
struct config_group *group = to_config_group(item); \
struct epf_ntb *ntb = to_epf_ntb(group); \
struct device *dev = &ntb->epf->dev; \
int win_no; \
u64 val; \
int ret; \
\
ret = kstrtou64(page, 0, &val); \
if (ret) \
return ret; \
\
if (sscanf(#_name, "mw%d", &win_no) != 1) \
return -EINVAL; \
\
if (win_no <= 0 || win_no > ntb->num_mws) { \
dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
return -EINVAL; \
} \
\
ntb->mws_size[win_no - 1] = val; \
\
return len; \
}
static ssize_t epf_ntb_num_mws_store(struct config_item *item,
const char *page, size_t len)
{
struct config_group *group = to_config_group(item);
struct epf_ntb *ntb = to_epf_ntb(group);
u32 val;
int ret;
ret = kstrtou32(page, 0, &val);
if (ret)
return ret;
if (val > MAX_MW)
return -EINVAL;
ntb->num_mws = val;
return len;
}
EPF_NTB_R(spad_count)
EPF_NTB_W(spad_count)
EPF_NTB_R(db_count)
EPF_NTB_W(db_count)
EPF_NTB_R(num_mws)
EPF_NTB_R(vbus_number)
EPF_NTB_W(vbus_number)
EPF_NTB_R(vntb_pid)
EPF_NTB_W(vntb_pid)
EPF_NTB_R(vntb_vid)
EPF_NTB_W(vntb_vid)
EPF_NTB_MW_R(mw1)
EPF_NTB_MW_W(mw1)
EPF_NTB_MW_R(mw2)
EPF_NTB_MW_W(mw2)
EPF_NTB_MW_R(mw3)
EPF_NTB_MW_W(mw3)
EPF_NTB_MW_R(mw4)
EPF_NTB_MW_W(mw4)
CONFIGFS_ATTR(epf_ntb_, spad_count);
CONFIGFS_ATTR(epf_ntb_, db_count);
CONFIGFS_ATTR(epf_ntb_, num_mws);
CONFIGFS_ATTR(epf_ntb_, mw1);
CONFIGFS_ATTR(epf_ntb_, mw2);
CONFIGFS_ATTR(epf_ntb_, mw3);
CONFIGFS_ATTR(epf_ntb_, mw4);
CONFIGFS_ATTR(epf_ntb_, vbus_number);
CONFIGFS_ATTR(epf_ntb_, vntb_pid);
CONFIGFS_ATTR(epf_ntb_, vntb_vid);
static struct configfs_attribute *epf_ntb_attrs[] = {
&epf_ntb_attr_spad_count,
&epf_ntb_attr_db_count,
&epf_ntb_attr_num_mws,
&epf_ntb_attr_mw1,
&epf_ntb_attr_mw2,
&epf_ntb_attr_mw3,
&epf_ntb_attr_mw4,
&epf_ntb_attr_vbus_number,
&epf_ntb_attr_vntb_pid,
&epf_ntb_attr_vntb_vid,
NULL,
};
static const struct config_item_type ntb_group_type = {
.ct_attrs = epf_ntb_attrs,
.ct_owner = THIS_MODULE,
};
/**
* epf_ntb_add_cfs() - Add configfs directory specific to NTB
* @epf: NTB endpoint function device
* @group: A pointer to the config_group structure referencing a group of
* config_items of a specific type that belong to a specific sub-system.
*
* Add configfs directory specific to NTB. This directory will hold
* NTB specific properties like db_count, spad_count, num_mws etc.,
*
* Returns: Pointer to config_group
*/
static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
struct config_group *group)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
struct config_group *ntb_group = &ntb->group;
struct device *dev = &epf->dev;
config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
return ntb_group;
}
/*==== virtual PCI bus driver, which only load virtual NTB PCI driver ====*/
static u32 pci_space[] = {
0xffffffff, /* Device ID, Vendor ID */
0, /* Status, Command */
0xffffffff, /* Base Class, Subclass, Prog Intf, Revision ID */
0x40, /* BIST, Header Type, Latency Timer, Cache Line Size */
0, /* BAR 0 */
0, /* BAR 1 */
0, /* BAR 2 */
0, /* BAR 3 */
0, /* BAR 4 */
0, /* BAR 5 */
0, /* Cardbus CIS Pointer */
0, /* Subsystem ID, Subsystem Vendor ID */
0, /* ROM Base Address */
0, /* Reserved, Capabilities Pointer */
0, /* Reserved */
0, /* Max_Lat, Min_Gnt, Interrupt Pin, Interrupt Line */
};
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val)
{
if (devfn == 0) {
memcpy(val, ((u8 *)pci_space) + where, size);
return PCIBIOS_SUCCESSFUL;
}
return PCIBIOS_DEVICE_NOT_FOUND;
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val)
{
return 0;
}
static struct pci_ops vpci_ops = {
.read = pci_read,
.write = pci_write,
};
static int vpci_scan_bus(void *sysdata)
{
struct pci_bus *vpci_bus;
struct epf_ntb *ndev = sysdata;
vpci_bus = pci_scan_bus(ndev->vbus_number, &vpci_ops, sysdata);
if (!vpci_bus) {
pr_err("create pci bus failed\n");
return -EINVAL;
}
pci_bus_add_devices(vpci_bus);
return 0;
}
/*==================== Virtual PCIe NTB driver ==========================*/
static int vntb_epf_mw_count(struct ntb_dev *ntb, int pidx)
{
struct epf_ntb *ndev = ntb_ndev(ntb);
return ndev->num_mws;
}
static int vntb_epf_spad_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->spad_count;
}
static int vntb_epf_peer_mw_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->num_mws;
}
static u64 vntb_epf_db_valid_mask(struct ntb_dev *ntb)
{
return BIT_ULL(ntb_ndev(ntb)->db_count) - 1;
}
static int vntb_epf_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
{
return 0;
}
static int vntb_epf_mw_set_trans(struct ntb_dev *ndev, int pidx, int idx,
dma_addr_t addr, resource_size_t size)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
struct pci_epf_bar *epf_bar;
enum pci_barno barno;
int ret;
struct device *dev;
dev = &ntb->ntb.dev;
barno = ntb->epf_ntb_bar[BAR_MW0 + idx];
epf_bar = &ntb->epf->bar[barno];
epf_bar->phys_addr = addr;
epf_bar->barno = barno;
epf_bar->size = size;
ret = pci_epc_set_bar(ntb->epf->epc, 0, 0, epf_bar);
if (ret) {
dev_err(dev, "failure set mw trans\n");
return ret;
}
return 0;
}
static int vntb_epf_mw_clear_trans(struct ntb_dev *ntb, int pidx, int idx)
{
return 0;
}
static int vntb_epf_peer_mw_get_addr(struct ntb_dev *ndev, int idx,
phys_addr_t *base, resource_size_t *size)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
if (base)
*base = ntb->vpci_mw_phy[idx];
if (size)
*size = ntb->mws_size[idx];
return 0;
}
static int vntb_epf_link_enable(struct ntb_dev *ntb,
enum ntb_speed max_speed,
enum ntb_width max_width)
{
return 0;
}
static u32 vntb_epf_spad_read(struct ntb_dev *ndev, int idx)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
int off = ntb->reg->spad_offset, ct = ntb->reg->spad_count * sizeof(u32);
u32 val;
void __iomem *base = (void __iomem *)ntb->reg;
val = readl(base + off + ct + idx * sizeof(u32));
return val;
}
static int vntb_epf_spad_write(struct ntb_dev *ndev, int idx, u32 val)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
struct epf_ntb_ctrl *ctrl = ntb->reg;
int off = ctrl->spad_offset, ct = ctrl->spad_count * sizeof(u32);
void __iomem *base = (void __iomem *)ntb->reg;
writel(val, base + off + ct + idx * sizeof(u32));
return 0;
}
static u32 vntb_epf_peer_spad_read(struct ntb_dev *ndev, int pidx, int idx)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
struct epf_ntb_ctrl *ctrl = ntb->reg;
int off = ctrl->spad_offset;
void __iomem *base = (void __iomem *)ntb->reg;
u32 val;
val = readl(base + off + idx * sizeof(u32));
return val;
}
static int vntb_epf_peer_spad_write(struct ntb_dev *ndev, int pidx, int idx, u32 val)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
struct epf_ntb_ctrl *ctrl = ntb->reg;
int off = ctrl->spad_offset;
void __iomem *base = (void __iomem *)ntb->reg;
writel(val, base + off + idx * sizeof(u32));
return 0;
}
static int vntb_epf_peer_db_set(struct ntb_dev *ndev, u64 db_bits)
{
u32 interrupt_num = ffs(db_bits) + 1;
struct epf_ntb *ntb = ntb_ndev(ndev);
u8 func_no, vfunc_no;
int ret;
func_no = ntb->epf->func_no;
vfunc_no = ntb->epf->vfunc_no;
ret = pci_epc_raise_irq(ntb->epf->epc, func_no, vfunc_no,
PCI_IRQ_MSI, interrupt_num + 1);
if (ret)
dev_err(&ntb->ntb.dev, "Failed to raise IRQ\n");
return ret;
}
static u64 vntb_epf_db_read(struct ntb_dev *ndev)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
return ntb->db;
}
static int vntb_epf_mw_get_align(struct ntb_dev *ndev, int pidx, int idx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
if (addr_align)
*addr_align = SZ_4K;
if (size_align)
*size_align = 1;
if (size_max)
*size_max = ntb->mws_size[idx];
return 0;
}
static u64 vntb_epf_link_is_up(struct ntb_dev *ndev,
enum ntb_speed *speed,
enum ntb_width *width)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
return ntb->reg->link_status;
}
static int vntb_epf_db_clear_mask(struct ntb_dev *ndev, u64 db_bits)
{
return 0;
}
static int vntb_epf_db_clear(struct ntb_dev *ndev, u64 db_bits)
{
struct epf_ntb *ntb = ntb_ndev(ndev);
ntb->db &= ~db_bits;
return 0;
}
static int vntb_epf_link_disable(struct ntb_dev *ntb)
{
return 0;
}
static const struct ntb_dev_ops vntb_epf_ops = {
.mw_count = vntb_epf_mw_count,
.spad_count = vntb_epf_spad_count,
.peer_mw_count = vntb_epf_peer_mw_count,
.db_valid_mask = vntb_epf_db_valid_mask,
.db_set_mask = vntb_epf_db_set_mask,
.mw_set_trans = vntb_epf_mw_set_trans,
.mw_clear_trans = vntb_epf_mw_clear_trans,
.peer_mw_get_addr = vntb_epf_peer_mw_get_addr,
.link_enable = vntb_epf_link_enable,
.spad_read = vntb_epf_spad_read,
.spad_write = vntb_epf_spad_write,
.peer_spad_read = vntb_epf_peer_spad_read,
.peer_spad_write = vntb_epf_peer_spad_write,
.peer_db_set = vntb_epf_peer_db_set,
.db_read = vntb_epf_db_read,
.mw_get_align = vntb_epf_mw_get_align,
.link_is_up = vntb_epf_link_is_up,
.db_clear_mask = vntb_epf_db_clear_mask,
.db_clear = vntb_epf_db_clear,
.link_disable = vntb_epf_link_disable,
};
static int pci_vntb_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int ret;
struct epf_ntb *ndev = (struct epf_ntb *)pdev->sysdata;
struct device *dev = &pdev->dev;
ndev->ntb.pdev = pdev;
ndev->ntb.topo = NTB_TOPO_NONE;
ndev->ntb.ops = &vntb_epf_ops;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "Cannot set DMA mask\n");
return ret;
}
ret = ntb_register_device(&ndev->ntb);
if (ret) {
dev_err(dev, "Failed to register NTB device\n");
return ret;
}
dev_dbg(dev, "PCI Virtual NTB driver loaded\n");
return 0;
}
static struct pci_device_id pci_vntb_table[] = {
{
PCI_DEVICE(0xffff, 0xffff),
},
{},
};
static struct pci_driver vntb_pci_driver = {
.name = "pci-vntb",
.id_table = pci_vntb_table,
.probe = pci_vntb_probe,
};
/* ============ PCIe EPF Driver Bind ====================*/
/**
* epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
* @epf: NTB endpoint function device
*
* Initialize both the endpoint controllers associated with NTB function device.
* Invoked when a primary interface or secondary interface is bound to EPC
* device. This function will succeed only when EPC is bound to both the
* interfaces.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_bind(struct pci_epf *epf)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
struct device *dev = &epf->dev;
int ret;
if (!epf->epc) {
dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
return 0;
}
ret = epf_ntb_init_epc_bar(ntb);
if (ret) {
dev_err(dev, "Failed to create NTB EPC\n");
goto err_bar_init;
}
ret = epf_ntb_config_spad_bar_alloc(ntb);
if (ret) {
dev_err(dev, "Failed to allocate BAR memory\n");
goto err_bar_alloc;
}
ret = epf_ntb_epc_init(ntb);
if (ret) {
dev_err(dev, "Failed to initialize EPC\n");
goto err_bar_alloc;
}
epf_set_drvdata(epf, ntb);
pci_space[0] = (ntb->vntb_pid << 16) | ntb->vntb_vid;
pci_vntb_table[0].vendor = ntb->vntb_vid;
pci_vntb_table[0].device = ntb->vntb_pid;
ret = pci_register_driver(&vntb_pci_driver);
if (ret) {
dev_err(dev, "failure register vntb pci driver\n");
goto err_epc_cleanup;
}
ret = vpci_scan_bus(ntb);
if (ret)
goto err_unregister;
return 0;
err_unregister:
pci_unregister_driver(&vntb_pci_driver);
err_epc_cleanup:
epf_ntb_epc_cleanup(ntb);
err_bar_alloc:
epf_ntb_config_spad_bar_free(ntb);
err_bar_init:
epf_ntb_epc_destroy(ntb);
return ret;
}
/**
* epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
* @epf: NTB endpoint function device
*
* Cleanup the initialization from epf_ntb_bind()
*/
static void epf_ntb_unbind(struct pci_epf *epf)
{
struct epf_ntb *ntb = epf_get_drvdata(epf);
epf_ntb_epc_cleanup(ntb);
epf_ntb_config_spad_bar_free(ntb);
epf_ntb_epc_destroy(ntb);
pci_unregister_driver(&vntb_pci_driver);
}
// EPF driver probe
static const struct pci_epf_ops epf_ntb_ops = {
.bind = epf_ntb_bind,
.unbind = epf_ntb_unbind,
.add_cfs = epf_ntb_add_cfs,
};
/**
* epf_ntb_probe() - Probe NTB function driver
* @epf: NTB endpoint function device
* @id: NTB endpoint function device ID
*
* Probe NTB function driver when endpoint function bus detects a NTB
* endpoint function.
*
* Returns: Zero for success, or an error code in case of failure
*/
static int epf_ntb_probe(struct pci_epf *epf,
const struct pci_epf_device_id *id)
{
struct epf_ntb *ntb;
struct device *dev;
dev = &epf->dev;
ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
if (!ntb)
return -ENOMEM;
epf->header = &epf_ntb_header;
ntb->epf = epf;
ntb->vbus_number = 0xff;
epf_set_drvdata(epf, ntb);
dev_info(dev, "pci-ep epf driver loaded\n");
return 0;
}
static const struct pci_epf_device_id epf_ntb_ids[] = {
{
.name = "pci_epf_vntb",
},
{},
};
static struct pci_epf_driver epf_ntb_driver = {
.driver.name = "pci_epf_vntb",
.probe = epf_ntb_probe,
.id_table = epf_ntb_ids,
.ops = &epf_ntb_ops,
.owner = THIS_MODULE,
};
static int __init epf_ntb_init(void)
{
int ret;
kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
WQ_HIGHPRI, 0);
ret = pci_epf_register_driver(&epf_ntb_driver);
if (ret) {
destroy_workqueue(kpcintb_workqueue);
pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
return ret;
}
return 0;
}
module_init(epf_ntb_init);
static void __exit epf_ntb_exit(void)
{
pci_epf_unregister_driver(&epf_ntb_driver);
destroy_workqueue(kpcintb_workqueue);
}
module_exit(epf_ntb_exit);
MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
MODULE_AUTHOR("Frank Li <Frank.li@nxp.com>");
MODULE_LICENSE("GPL v2");