linux-next/virt/kvm/coalesced_mmio.c
Wei Wang 5ea5ca3c2b KVM: destruct kvm_io_device while unregistering it from kvm_io_bus
Current usage of kvm_io_device requires users to destruct it with an extra
call of kvm_iodevice_destructor after the device gets unregistered from
kvm_io_bus. This is not necessary and can cause errors if a user forgot
to make the extra call.

Simplify the usage by combining kvm_iodevice_destructor into
kvm_io_bus_unregister_dev. This reduces LOCs a bit for users and can
avoid the leakage of destructing the device explicitly.

Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230207123713.3905-2-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-06-13 14:18:09 -07:00

207 lines
4.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* KVM coalesced MMIO
*
* Copyright (c) 2008 Bull S.A.S.
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
*
* Author: Laurent Vivier <Laurent.Vivier@bull.net>
*
*/
#include <kvm/iodev.h>
#include <linux/kvm_host.h>
#include <linux/slab.h>
#include <linux/kvm.h>
#include "coalesced_mmio.h"
static inline struct kvm_coalesced_mmio_dev *to_mmio(struct kvm_io_device *dev)
{
return container_of(dev, struct kvm_coalesced_mmio_dev, dev);
}
static int coalesced_mmio_in_range(struct kvm_coalesced_mmio_dev *dev,
gpa_t addr, int len)
{
/* is it in a batchable area ?
* (addr,len) is fully included in
* (zone->addr, zone->size)
*/
if (len < 0)
return 0;
if (addr + len < addr)
return 0;
if (addr < dev->zone.addr)
return 0;
if (addr + len > dev->zone.addr + dev->zone.size)
return 0;
return 1;
}
static int coalesced_mmio_has_room(struct kvm_coalesced_mmio_dev *dev, u32 last)
{
struct kvm_coalesced_mmio_ring *ring;
unsigned avail;
/* Are we able to batch it ? */
/* last is the first free entry
* check if we don't meet the first used entry
* there is always one unused entry in the buffer
*/
ring = dev->kvm->coalesced_mmio_ring;
avail = (ring->first - last - 1) % KVM_COALESCED_MMIO_MAX;
if (avail == 0) {
/* full */
return 0;
}
return 1;
}
static int coalesced_mmio_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this, gpa_t addr,
int len, const void *val)
{
struct kvm_coalesced_mmio_dev *dev = to_mmio(this);
struct kvm_coalesced_mmio_ring *ring = dev->kvm->coalesced_mmio_ring;
__u32 insert;
if (!coalesced_mmio_in_range(dev, addr, len))
return -EOPNOTSUPP;
spin_lock(&dev->kvm->ring_lock);
insert = READ_ONCE(ring->last);
if (!coalesced_mmio_has_room(dev, insert) ||
insert >= KVM_COALESCED_MMIO_MAX) {
spin_unlock(&dev->kvm->ring_lock);
return -EOPNOTSUPP;
}
/* copy data in first free entry of the ring */
ring->coalesced_mmio[insert].phys_addr = addr;
ring->coalesced_mmio[insert].len = len;
memcpy(ring->coalesced_mmio[insert].data, val, len);
ring->coalesced_mmio[insert].pio = dev->zone.pio;
smp_wmb();
ring->last = (insert + 1) % KVM_COALESCED_MMIO_MAX;
spin_unlock(&dev->kvm->ring_lock);
return 0;
}
static void coalesced_mmio_destructor(struct kvm_io_device *this)
{
struct kvm_coalesced_mmio_dev *dev = to_mmio(this);
list_del(&dev->list);
kfree(dev);
}
static const struct kvm_io_device_ops coalesced_mmio_ops = {
.write = coalesced_mmio_write,
.destructor = coalesced_mmio_destructor,
};
int kvm_coalesced_mmio_init(struct kvm *kvm)
{
struct page *page;
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!page)
return -ENOMEM;
kvm->coalesced_mmio_ring = page_address(page);
/*
* We're using this spinlock to sync access to the coalesced ring.
* The list doesn't need its own lock since device registration and
* unregistration should only happen when kvm->slots_lock is held.
*/
spin_lock_init(&kvm->ring_lock);
INIT_LIST_HEAD(&kvm->coalesced_zones);
return 0;
}
void kvm_coalesced_mmio_free(struct kvm *kvm)
{
if (kvm->coalesced_mmio_ring)
free_page((unsigned long)kvm->coalesced_mmio_ring);
}
int kvm_vm_ioctl_register_coalesced_mmio(struct kvm *kvm,
struct kvm_coalesced_mmio_zone *zone)
{
int ret;
struct kvm_coalesced_mmio_dev *dev;
if (zone->pio != 1 && zone->pio != 0)
return -EINVAL;
dev = kzalloc(sizeof(struct kvm_coalesced_mmio_dev),
GFP_KERNEL_ACCOUNT);
if (!dev)
return -ENOMEM;
kvm_iodevice_init(&dev->dev, &coalesced_mmio_ops);
dev->kvm = kvm;
dev->zone = *zone;
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm,
zone->pio ? KVM_PIO_BUS : KVM_MMIO_BUS,
zone->addr, zone->size, &dev->dev);
if (ret < 0)
goto out_free_dev;
list_add_tail(&dev->list, &kvm->coalesced_zones);
mutex_unlock(&kvm->slots_lock);
return 0;
out_free_dev:
mutex_unlock(&kvm->slots_lock);
kfree(dev);
return ret;
}
int kvm_vm_ioctl_unregister_coalesced_mmio(struct kvm *kvm,
struct kvm_coalesced_mmio_zone *zone)
{
struct kvm_coalesced_mmio_dev *dev, *tmp;
int r;
if (zone->pio != 1 && zone->pio != 0)
return -EINVAL;
mutex_lock(&kvm->slots_lock);
list_for_each_entry_safe(dev, tmp, &kvm->coalesced_zones, list) {
if (zone->pio == dev->zone.pio &&
coalesced_mmio_in_range(dev, zone->addr, zone->size)) {
r = kvm_io_bus_unregister_dev(kvm,
zone->pio ? KVM_PIO_BUS : KVM_MMIO_BUS, &dev->dev);
/*
* On failure, unregister destroys all devices on the
* bus, including the target device. There's no need
* to restart the walk as there aren't any zones left.
*/
if (r)
break;
}
}
mutex_unlock(&kvm->slots_lock);
/*
* Ignore the result of kvm_io_bus_unregister_dev(), from userspace's
* perspective, the coalesced MMIO is most definitely unregistered.
*/
return 0;
}