mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 07:50:04 +00:00
af7f588d8f
This feature allows the scheduler to expose a per-memory map concurrency ID to user-space. This concurrency ID is within the possible cpus range, and is temporarily (and uniquely) assigned while threads are actively running within a memory map. If a memory map has fewer threads than cores, or is limited to run on few cores concurrently through sched affinity or cgroup cpusets, the concurrency IDs will be values close to 0, thus allowing efficient use of user-space memory for per-cpu data structures. This feature is meant to be exposed by a new rseq thread area field. The primary purpose of this feature is to do the heavy-lifting needed by memory allocators to allow them to use per-cpu data structures efficiently in the following situations: - Single-threaded applications, - Multi-threaded applications on large systems (many cores) with limited cpu affinity mask, - Multi-threaded applications on large systems (many cores) with restricted cgroup cpuset per container. One of the key concern from scheduler maintainers is the overhead associated with additional spin locks or atomic operations in the scheduler fast-path. This is why the following optimization is implemented. On context switch between threads belonging to the same memory map, transfer the mm_cid from prev to next without any atomic ops. This takes care of use-cases involving frequent context switch between threads belonging to the same memory map. Additional optimizations can be done if the spin locks added when context switching between threads belonging to different memory maps end up being a performance bottleneck. Those are left out of this patch though. A performance impact would have to be clearly demonstrated to justify the added complexity. The credit goes to Paul Turner (Google) for the original virtual cpu id idea. This feature is implemented based on the discussions with Paul Turner and Peter Oskolkov (Google), but I took the liberty to implement scheduler fast-path optimizations and my own NUMA-awareness scheme. The rumor has it that Google have been running a rseq vcpu_id extension internally in production for a year. The tcmalloc source code indeed has comments hinting at a vcpu_id prototype extension to the rseq system call [1]. The following benchmarks do not show any significant overhead added to the scheduler context switch by this feature: * perf bench sched messaging (process) Baseline: 86.5±0.3 ms With mm_cid: 86.7±2.6 ms * perf bench sched messaging (threaded) Baseline: 84.3±3.0 ms With mm_cid: 84.7±2.6 ms * hackbench (process) Baseline: 82.9±2.7 ms With mm_cid: 82.9±2.9 ms * hackbench (threaded) Baseline: 85.2±2.6 ms With mm_cid: 84.4±2.9 ms [1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26 Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
4805 lines
123 KiB
C
4805 lines
123 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/kernel/signal.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
|
|
*
|
|
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
|
|
* Changes to use preallocated sigqueue structures
|
|
* to allow signals to be sent reliably.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/user.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/coredump.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/signalfd.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/task_work.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/audit.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/signal.h>
|
|
|
|
#include <asm/param.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/siginfo.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/syscall.h> /* for syscall_get_* */
|
|
|
|
/*
|
|
* SLAB caches for signal bits.
|
|
*/
|
|
|
|
static struct kmem_cache *sigqueue_cachep;
|
|
|
|
int print_fatal_signals __read_mostly;
|
|
|
|
static void __user *sig_handler(struct task_struct *t, int sig)
|
|
{
|
|
return t->sighand->action[sig - 1].sa.sa_handler;
|
|
}
|
|
|
|
static inline bool sig_handler_ignored(void __user *handler, int sig)
|
|
{
|
|
/* Is it explicitly or implicitly ignored? */
|
|
return handler == SIG_IGN ||
|
|
(handler == SIG_DFL && sig_kernel_ignore(sig));
|
|
}
|
|
|
|
static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
|
|
{
|
|
void __user *handler;
|
|
|
|
handler = sig_handler(t, sig);
|
|
|
|
/* SIGKILL and SIGSTOP may not be sent to the global init */
|
|
if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
|
|
return true;
|
|
|
|
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
|
|
handler == SIG_DFL && !(force && sig_kernel_only(sig)))
|
|
return true;
|
|
|
|
/* Only allow kernel generated signals to this kthread */
|
|
if (unlikely((t->flags & PF_KTHREAD) &&
|
|
(handler == SIG_KTHREAD_KERNEL) && !force))
|
|
return true;
|
|
|
|
return sig_handler_ignored(handler, sig);
|
|
}
|
|
|
|
static bool sig_ignored(struct task_struct *t, int sig, bool force)
|
|
{
|
|
/*
|
|
* Blocked signals are never ignored, since the
|
|
* signal handler may change by the time it is
|
|
* unblocked.
|
|
*/
|
|
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
|
|
return false;
|
|
|
|
/*
|
|
* Tracers may want to know about even ignored signal unless it
|
|
* is SIGKILL which can't be reported anyway but can be ignored
|
|
* by SIGNAL_UNKILLABLE task.
|
|
*/
|
|
if (t->ptrace && sig != SIGKILL)
|
|
return false;
|
|
|
|
return sig_task_ignored(t, sig, force);
|
|
}
|
|
|
|
/*
|
|
* Re-calculate pending state from the set of locally pending
|
|
* signals, globally pending signals, and blocked signals.
|
|
*/
|
|
static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
|
|
{
|
|
unsigned long ready;
|
|
long i;
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
|
|
ready |= signal->sig[i] &~ blocked->sig[i];
|
|
break;
|
|
|
|
case 4: ready = signal->sig[3] &~ blocked->sig[3];
|
|
ready |= signal->sig[2] &~ blocked->sig[2];
|
|
ready |= signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 2: ready = signal->sig[1] &~ blocked->sig[1];
|
|
ready |= signal->sig[0] &~ blocked->sig[0];
|
|
break;
|
|
|
|
case 1: ready = signal->sig[0] &~ blocked->sig[0];
|
|
}
|
|
return ready != 0;
|
|
}
|
|
|
|
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
|
|
|
|
static bool recalc_sigpending_tsk(struct task_struct *t)
|
|
{
|
|
if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
|
|
PENDING(&t->pending, &t->blocked) ||
|
|
PENDING(&t->signal->shared_pending, &t->blocked) ||
|
|
cgroup_task_frozen(t)) {
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We must never clear the flag in another thread, or in current
|
|
* when it's possible the current syscall is returning -ERESTART*.
|
|
* So we don't clear it here, and only callers who know they should do.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
|
|
* This is superfluous when called on current, the wakeup is a harmless no-op.
|
|
*/
|
|
void recalc_sigpending_and_wake(struct task_struct *t)
|
|
{
|
|
if (recalc_sigpending_tsk(t))
|
|
signal_wake_up(t, 0);
|
|
}
|
|
|
|
void recalc_sigpending(void)
|
|
{
|
|
if (!recalc_sigpending_tsk(current) && !freezing(current))
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
|
|
}
|
|
EXPORT_SYMBOL(recalc_sigpending);
|
|
|
|
void calculate_sigpending(void)
|
|
{
|
|
/* Have any signals or users of TIF_SIGPENDING been delayed
|
|
* until after fork?
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
set_tsk_thread_flag(current, TIF_SIGPENDING);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
/* Given the mask, find the first available signal that should be serviced. */
|
|
|
|
#define SYNCHRONOUS_MASK \
|
|
(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
|
|
sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
|
|
|
|
int next_signal(struct sigpending *pending, sigset_t *mask)
|
|
{
|
|
unsigned long i, *s, *m, x;
|
|
int sig = 0;
|
|
|
|
s = pending->signal.sig;
|
|
m = mask->sig;
|
|
|
|
/*
|
|
* Handle the first word specially: it contains the
|
|
* synchronous signals that need to be dequeued first.
|
|
*/
|
|
x = *s &~ *m;
|
|
if (x) {
|
|
if (x & SYNCHRONOUS_MASK)
|
|
x &= SYNCHRONOUS_MASK;
|
|
sig = ffz(~x) + 1;
|
|
return sig;
|
|
}
|
|
|
|
switch (_NSIG_WORDS) {
|
|
default:
|
|
for (i = 1; i < _NSIG_WORDS; ++i) {
|
|
x = *++s &~ *++m;
|
|
if (!x)
|
|
continue;
|
|
sig = ffz(~x) + i*_NSIG_BPW + 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
x = s[1] &~ m[1];
|
|
if (!x)
|
|
break;
|
|
sig = ffz(~x) + _NSIG_BPW + 1;
|
|
break;
|
|
|
|
case 1:
|
|
/* Nothing to do */
|
|
break;
|
|
}
|
|
|
|
return sig;
|
|
}
|
|
|
|
static inline void print_dropped_signal(int sig)
|
|
{
|
|
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
|
|
|
|
if (!print_fatal_signals)
|
|
return;
|
|
|
|
if (!__ratelimit(&ratelimit_state))
|
|
return;
|
|
|
|
pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
|
|
current->comm, current->pid, sig);
|
|
}
|
|
|
|
/**
|
|
* task_set_jobctl_pending - set jobctl pending bits
|
|
* @task: target task
|
|
* @mask: pending bits to set
|
|
*
|
|
* Clear @mask from @task->jobctl. @mask must be subset of
|
|
* %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
|
|
* %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
|
|
* cleared. If @task is already being killed or exiting, this function
|
|
* becomes noop.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*
|
|
* RETURNS:
|
|
* %true if @mask is set, %false if made noop because @task was dying.
|
|
*/
|
|
bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
|
|
{
|
|
BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
|
|
JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
|
|
BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
|
|
|
|
if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
|
|
return false;
|
|
|
|
if (mask & JOBCTL_STOP_SIGMASK)
|
|
task->jobctl &= ~JOBCTL_STOP_SIGMASK;
|
|
|
|
task->jobctl |= mask;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* task_clear_jobctl_trapping - clear jobctl trapping bit
|
|
* @task: target task
|
|
*
|
|
* If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
|
|
* Clear it and wake up the ptracer. Note that we don't need any further
|
|
* locking. @task->siglock guarantees that @task->parent points to the
|
|
* ptracer.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
void task_clear_jobctl_trapping(struct task_struct *task)
|
|
{
|
|
if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
|
|
task->jobctl &= ~JOBCTL_TRAPPING;
|
|
smp_mb(); /* advised by wake_up_bit() */
|
|
wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* task_clear_jobctl_pending - clear jobctl pending bits
|
|
* @task: target task
|
|
* @mask: pending bits to clear
|
|
*
|
|
* Clear @mask from @task->jobctl. @mask must be subset of
|
|
* %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
|
|
* STOP bits are cleared together.
|
|
*
|
|
* If clearing of @mask leaves no stop or trap pending, this function calls
|
|
* task_clear_jobctl_trapping().
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
|
|
{
|
|
BUG_ON(mask & ~JOBCTL_PENDING_MASK);
|
|
|
|
if (mask & JOBCTL_STOP_PENDING)
|
|
mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
|
|
|
|
task->jobctl &= ~mask;
|
|
|
|
if (!(task->jobctl & JOBCTL_PENDING_MASK))
|
|
task_clear_jobctl_trapping(task);
|
|
}
|
|
|
|
/**
|
|
* task_participate_group_stop - participate in a group stop
|
|
* @task: task participating in a group stop
|
|
*
|
|
* @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
|
|
* Group stop states are cleared and the group stop count is consumed if
|
|
* %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
|
|
* stop, the appropriate `SIGNAL_*` flags are set.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*
|
|
* RETURNS:
|
|
* %true if group stop completion should be notified to the parent, %false
|
|
* otherwise.
|
|
*/
|
|
static bool task_participate_group_stop(struct task_struct *task)
|
|
{
|
|
struct signal_struct *sig = task->signal;
|
|
bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
|
|
|
|
WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
|
|
|
|
task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
|
|
|
|
if (!consume)
|
|
return false;
|
|
|
|
if (!WARN_ON_ONCE(sig->group_stop_count == 0))
|
|
sig->group_stop_count--;
|
|
|
|
/*
|
|
* Tell the caller to notify completion iff we are entering into a
|
|
* fresh group stop. Read comment in do_signal_stop() for details.
|
|
*/
|
|
if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
|
|
signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void task_join_group_stop(struct task_struct *task)
|
|
{
|
|
unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
if (sig->group_stop_count) {
|
|
sig->group_stop_count++;
|
|
mask |= JOBCTL_STOP_CONSUME;
|
|
} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
|
|
return;
|
|
|
|
/* Have the new thread join an on-going signal group stop */
|
|
task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
|
|
}
|
|
|
|
/*
|
|
* allocate a new signal queue record
|
|
* - this may be called without locks if and only if t == current, otherwise an
|
|
* appropriate lock must be held to stop the target task from exiting
|
|
*/
|
|
static struct sigqueue *
|
|
__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
|
|
int override_rlimit, const unsigned int sigqueue_flags)
|
|
{
|
|
struct sigqueue *q = NULL;
|
|
struct ucounts *ucounts = NULL;
|
|
long sigpending;
|
|
|
|
/*
|
|
* Protect access to @t credentials. This can go away when all
|
|
* callers hold rcu read lock.
|
|
*
|
|
* NOTE! A pending signal will hold on to the user refcount,
|
|
* and we get/put the refcount only when the sigpending count
|
|
* changes from/to zero.
|
|
*/
|
|
rcu_read_lock();
|
|
ucounts = task_ucounts(t);
|
|
sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
rcu_read_unlock();
|
|
if (!sigpending)
|
|
return NULL;
|
|
|
|
if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
|
|
q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
|
|
} else {
|
|
print_dropped_signal(sig);
|
|
}
|
|
|
|
if (unlikely(q == NULL)) {
|
|
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
} else {
|
|
INIT_LIST_HEAD(&q->list);
|
|
q->flags = sigqueue_flags;
|
|
q->ucounts = ucounts;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
static void __sigqueue_free(struct sigqueue *q)
|
|
{
|
|
if (q->flags & SIGQUEUE_PREALLOC)
|
|
return;
|
|
if (q->ucounts) {
|
|
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
|
|
q->ucounts = NULL;
|
|
}
|
|
kmem_cache_free(sigqueue_cachep, q);
|
|
}
|
|
|
|
void flush_sigqueue(struct sigpending *queue)
|
|
{
|
|
struct sigqueue *q;
|
|
|
|
sigemptyset(&queue->signal);
|
|
while (!list_empty(&queue->list)) {
|
|
q = list_entry(queue->list.next, struct sigqueue , list);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush all pending signals for this kthread.
|
|
*/
|
|
void flush_signals(struct task_struct *t)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
clear_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
flush_sigqueue(&t->pending);
|
|
flush_sigqueue(&t->signal->shared_pending);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_signals);
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
static void __flush_itimer_signals(struct sigpending *pending)
|
|
{
|
|
sigset_t signal, retain;
|
|
struct sigqueue *q, *n;
|
|
|
|
signal = pending->signal;
|
|
sigemptyset(&retain);
|
|
|
|
list_for_each_entry_safe(q, n, &pending->list, list) {
|
|
int sig = q->info.si_signo;
|
|
|
|
if (likely(q->info.si_code != SI_TIMER)) {
|
|
sigaddset(&retain, sig);
|
|
} else {
|
|
sigdelset(&signal, sig);
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
|
|
sigorsets(&pending->signal, &signal, &retain);
|
|
}
|
|
|
|
void flush_itimer_signals(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tsk->sighand->siglock, flags);
|
|
__flush_itimer_signals(&tsk->pending);
|
|
__flush_itimer_signals(&tsk->signal->shared_pending);
|
|
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
|
|
}
|
|
#endif
|
|
|
|
void ignore_signals(struct task_struct *t)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < _NSIG; ++i)
|
|
t->sighand->action[i].sa.sa_handler = SIG_IGN;
|
|
|
|
flush_signals(t);
|
|
}
|
|
|
|
/*
|
|
* Flush all handlers for a task.
|
|
*/
|
|
|
|
void
|
|
flush_signal_handlers(struct task_struct *t, int force_default)
|
|
{
|
|
int i;
|
|
struct k_sigaction *ka = &t->sighand->action[0];
|
|
for (i = _NSIG ; i != 0 ; i--) {
|
|
if (force_default || ka->sa.sa_handler != SIG_IGN)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
ka->sa.sa_flags = 0;
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
ka->sa.sa_restorer = NULL;
|
|
#endif
|
|
sigemptyset(&ka->sa.sa_mask);
|
|
ka++;
|
|
}
|
|
}
|
|
|
|
bool unhandled_signal(struct task_struct *tsk, int sig)
|
|
{
|
|
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
|
|
if (is_global_init(tsk))
|
|
return true;
|
|
|
|
if (handler != SIG_IGN && handler != SIG_DFL)
|
|
return false;
|
|
|
|
/* if ptraced, let the tracer determine */
|
|
return !tsk->ptrace;
|
|
}
|
|
|
|
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
|
|
bool *resched_timer)
|
|
{
|
|
struct sigqueue *q, *first = NULL;
|
|
|
|
/*
|
|
* Collect the siginfo appropriate to this signal. Check if
|
|
* there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry(q, &list->list, list) {
|
|
if (q->info.si_signo == sig) {
|
|
if (first)
|
|
goto still_pending;
|
|
first = q;
|
|
}
|
|
}
|
|
|
|
sigdelset(&list->signal, sig);
|
|
|
|
if (first) {
|
|
still_pending:
|
|
list_del_init(&first->list);
|
|
copy_siginfo(info, &first->info);
|
|
|
|
*resched_timer =
|
|
(first->flags & SIGQUEUE_PREALLOC) &&
|
|
(info->si_code == SI_TIMER) &&
|
|
(info->si_sys_private);
|
|
|
|
__sigqueue_free(first);
|
|
} else {
|
|
/*
|
|
* Ok, it wasn't in the queue. This must be
|
|
* a fast-pathed signal or we must have been
|
|
* out of queue space. So zero out the info.
|
|
*/
|
|
clear_siginfo(info);
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
info->si_pid = 0;
|
|
info->si_uid = 0;
|
|
}
|
|
}
|
|
|
|
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
|
|
kernel_siginfo_t *info, bool *resched_timer)
|
|
{
|
|
int sig = next_signal(pending, mask);
|
|
|
|
if (sig)
|
|
collect_signal(sig, pending, info, resched_timer);
|
|
return sig;
|
|
}
|
|
|
|
/*
|
|
* Dequeue a signal and return the element to the caller, which is
|
|
* expected to free it.
|
|
*
|
|
* All callers have to hold the siglock.
|
|
*/
|
|
int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
|
|
kernel_siginfo_t *info, enum pid_type *type)
|
|
{
|
|
bool resched_timer = false;
|
|
int signr;
|
|
|
|
/* We only dequeue private signals from ourselves, we don't let
|
|
* signalfd steal them
|
|
*/
|
|
*type = PIDTYPE_PID;
|
|
signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
|
|
if (!signr) {
|
|
*type = PIDTYPE_TGID;
|
|
signr = __dequeue_signal(&tsk->signal->shared_pending,
|
|
mask, info, &resched_timer);
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
/*
|
|
* itimer signal ?
|
|
*
|
|
* itimers are process shared and we restart periodic
|
|
* itimers in the signal delivery path to prevent DoS
|
|
* attacks in the high resolution timer case. This is
|
|
* compliant with the old way of self-restarting
|
|
* itimers, as the SIGALRM is a legacy signal and only
|
|
* queued once. Changing the restart behaviour to
|
|
* restart the timer in the signal dequeue path is
|
|
* reducing the timer noise on heavy loaded !highres
|
|
* systems too.
|
|
*/
|
|
if (unlikely(signr == SIGALRM)) {
|
|
struct hrtimer *tmr = &tsk->signal->real_timer;
|
|
|
|
if (!hrtimer_is_queued(tmr) &&
|
|
tsk->signal->it_real_incr != 0) {
|
|
hrtimer_forward(tmr, tmr->base->get_time(),
|
|
tsk->signal->it_real_incr);
|
|
hrtimer_restart(tmr);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
recalc_sigpending();
|
|
if (!signr)
|
|
return 0;
|
|
|
|
if (unlikely(sig_kernel_stop(signr))) {
|
|
/*
|
|
* Set a marker that we have dequeued a stop signal. Our
|
|
* caller might release the siglock and then the pending
|
|
* stop signal it is about to process is no longer in the
|
|
* pending bitmasks, but must still be cleared by a SIGCONT
|
|
* (and overruled by a SIGKILL). So those cases clear this
|
|
* shared flag after we've set it. Note that this flag may
|
|
* remain set after the signal we return is ignored or
|
|
* handled. That doesn't matter because its only purpose
|
|
* is to alert stop-signal processing code when another
|
|
* processor has come along and cleared the flag.
|
|
*/
|
|
current->jobctl |= JOBCTL_STOP_DEQUEUED;
|
|
}
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
if (resched_timer) {
|
|
/*
|
|
* Release the siglock to ensure proper locking order
|
|
* of timer locks outside of siglocks. Note, we leave
|
|
* irqs disabled here, since the posix-timers code is
|
|
* about to disable them again anyway.
|
|
*/
|
|
spin_unlock(&tsk->sighand->siglock);
|
|
posixtimer_rearm(info);
|
|
spin_lock(&tsk->sighand->siglock);
|
|
|
|
/* Don't expose the si_sys_private value to userspace */
|
|
info->si_sys_private = 0;
|
|
}
|
|
#endif
|
|
return signr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dequeue_signal);
|
|
|
|
static int dequeue_synchronous_signal(kernel_siginfo_t *info)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct sigpending *pending = &tsk->pending;
|
|
struct sigqueue *q, *sync = NULL;
|
|
|
|
/*
|
|
* Might a synchronous signal be in the queue?
|
|
*/
|
|
if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
|
|
return 0;
|
|
|
|
/*
|
|
* Return the first synchronous signal in the queue.
|
|
*/
|
|
list_for_each_entry(q, &pending->list, list) {
|
|
/* Synchronous signals have a positive si_code */
|
|
if ((q->info.si_code > SI_USER) &&
|
|
(sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
|
|
sync = q;
|
|
goto next;
|
|
}
|
|
}
|
|
return 0;
|
|
next:
|
|
/*
|
|
* Check if there is another siginfo for the same signal.
|
|
*/
|
|
list_for_each_entry_continue(q, &pending->list, list) {
|
|
if (q->info.si_signo == sync->info.si_signo)
|
|
goto still_pending;
|
|
}
|
|
|
|
sigdelset(&pending->signal, sync->info.si_signo);
|
|
recalc_sigpending();
|
|
still_pending:
|
|
list_del_init(&sync->list);
|
|
copy_siginfo(info, &sync->info);
|
|
__sigqueue_free(sync);
|
|
return info->si_signo;
|
|
}
|
|
|
|
/*
|
|
* Tell a process that it has a new active signal..
|
|
*
|
|
* NOTE! we rely on the previous spin_lock to
|
|
* lock interrupts for us! We can only be called with
|
|
* "siglock" held, and the local interrupt must
|
|
* have been disabled when that got acquired!
|
|
*
|
|
* No need to set need_resched since signal event passing
|
|
* goes through ->blocked
|
|
*/
|
|
void signal_wake_up_state(struct task_struct *t, unsigned int state)
|
|
{
|
|
lockdep_assert_held(&t->sighand->siglock);
|
|
|
|
set_tsk_thread_flag(t, TIF_SIGPENDING);
|
|
|
|
/*
|
|
* TASK_WAKEKILL also means wake it up in the stopped/traced/killable
|
|
* case. We don't check t->state here because there is a race with it
|
|
* executing another processor and just now entering stopped state.
|
|
* By using wake_up_state, we ensure the process will wake up and
|
|
* handle its death signal.
|
|
*/
|
|
if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
|
|
kick_process(t);
|
|
}
|
|
|
|
/*
|
|
* Remove signals in mask from the pending set and queue.
|
|
* Returns 1 if any signals were found.
|
|
*
|
|
* All callers must be holding the siglock.
|
|
*/
|
|
static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
|
|
{
|
|
struct sigqueue *q, *n;
|
|
sigset_t m;
|
|
|
|
sigandsets(&m, mask, &s->signal);
|
|
if (sigisemptyset(&m))
|
|
return;
|
|
|
|
sigandnsets(&s->signal, &s->signal, mask);
|
|
list_for_each_entry_safe(q, n, &s->list, list) {
|
|
if (sigismember(mask, q->info.si_signo)) {
|
|
list_del_init(&q->list);
|
|
__sigqueue_free(q);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int is_si_special(const struct kernel_siginfo *info)
|
|
{
|
|
return info <= SEND_SIG_PRIV;
|
|
}
|
|
|
|
static inline bool si_fromuser(const struct kernel_siginfo *info)
|
|
{
|
|
return info == SEND_SIG_NOINFO ||
|
|
(!is_si_special(info) && SI_FROMUSER(info));
|
|
}
|
|
|
|
/*
|
|
* called with RCU read lock from check_kill_permission()
|
|
*/
|
|
static bool kill_ok_by_cred(struct task_struct *t)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
const struct cred *tcred = __task_cred(t);
|
|
|
|
return uid_eq(cred->euid, tcred->suid) ||
|
|
uid_eq(cred->euid, tcred->uid) ||
|
|
uid_eq(cred->uid, tcred->suid) ||
|
|
uid_eq(cred->uid, tcred->uid) ||
|
|
ns_capable(tcred->user_ns, CAP_KILL);
|
|
}
|
|
|
|
/*
|
|
* Bad permissions for sending the signal
|
|
* - the caller must hold the RCU read lock
|
|
*/
|
|
static int check_kill_permission(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *t)
|
|
{
|
|
struct pid *sid;
|
|
int error;
|
|
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
if (!si_fromuser(info))
|
|
return 0;
|
|
|
|
error = audit_signal_info(sig, t); /* Let audit system see the signal */
|
|
if (error)
|
|
return error;
|
|
|
|
if (!same_thread_group(current, t) &&
|
|
!kill_ok_by_cred(t)) {
|
|
switch (sig) {
|
|
case SIGCONT:
|
|
sid = task_session(t);
|
|
/*
|
|
* We don't return the error if sid == NULL. The
|
|
* task was unhashed, the caller must notice this.
|
|
*/
|
|
if (!sid || sid == task_session(current))
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
return security_task_kill(t, info, sig, NULL);
|
|
}
|
|
|
|
/**
|
|
* ptrace_trap_notify - schedule trap to notify ptracer
|
|
* @t: tracee wanting to notify tracer
|
|
*
|
|
* This function schedules sticky ptrace trap which is cleared on the next
|
|
* TRAP_STOP to notify ptracer of an event. @t must have been seized by
|
|
* ptracer.
|
|
*
|
|
* If @t is running, STOP trap will be taken. If trapped for STOP and
|
|
* ptracer is listening for events, tracee is woken up so that it can
|
|
* re-trap for the new event. If trapped otherwise, STOP trap will be
|
|
* eventually taken without returning to userland after the existing traps
|
|
* are finished by PTRACE_CONT.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @task->sighand->siglock held.
|
|
*/
|
|
static void ptrace_trap_notify(struct task_struct *t)
|
|
{
|
|
WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
|
|
lockdep_assert_held(&t->sighand->siglock);
|
|
|
|
task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
|
|
ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
|
|
}
|
|
|
|
/*
|
|
* Handle magic process-wide effects of stop/continue signals. Unlike
|
|
* the signal actions, these happen immediately at signal-generation
|
|
* time regardless of blocking, ignoring, or handling. This does the
|
|
* actual continuing for SIGCONT, but not the actual stopping for stop
|
|
* signals. The process stop is done as a signal action for SIG_DFL.
|
|
*
|
|
* Returns true if the signal should be actually delivered, otherwise
|
|
* it should be dropped.
|
|
*/
|
|
static bool prepare_signal(int sig, struct task_struct *p, bool force)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
sigset_t flush;
|
|
|
|
if (signal->flags & SIGNAL_GROUP_EXIT) {
|
|
if (signal->core_state)
|
|
return sig == SIGKILL;
|
|
/*
|
|
* The process is in the middle of dying, drop the signal.
|
|
*/
|
|
return false;
|
|
} else if (sig_kernel_stop(sig)) {
|
|
/*
|
|
* This is a stop signal. Remove SIGCONT from all queues.
|
|
*/
|
|
siginitset(&flush, sigmask(SIGCONT));
|
|
flush_sigqueue_mask(&flush, &signal->shared_pending);
|
|
for_each_thread(p, t)
|
|
flush_sigqueue_mask(&flush, &t->pending);
|
|
} else if (sig == SIGCONT) {
|
|
unsigned int why;
|
|
/*
|
|
* Remove all stop signals from all queues, wake all threads.
|
|
*/
|
|
siginitset(&flush, SIG_KERNEL_STOP_MASK);
|
|
flush_sigqueue_mask(&flush, &signal->shared_pending);
|
|
for_each_thread(p, t) {
|
|
flush_sigqueue_mask(&flush, &t->pending);
|
|
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
|
|
if (likely(!(t->ptrace & PT_SEIZED))) {
|
|
t->jobctl &= ~JOBCTL_STOPPED;
|
|
wake_up_state(t, __TASK_STOPPED);
|
|
} else
|
|
ptrace_trap_notify(t);
|
|
}
|
|
|
|
/*
|
|
* Notify the parent with CLD_CONTINUED if we were stopped.
|
|
*
|
|
* If we were in the middle of a group stop, we pretend it
|
|
* was already finished, and then continued. Since SIGCHLD
|
|
* doesn't queue we report only CLD_STOPPED, as if the next
|
|
* CLD_CONTINUED was dropped.
|
|
*/
|
|
why = 0;
|
|
if (signal->flags & SIGNAL_STOP_STOPPED)
|
|
why |= SIGNAL_CLD_CONTINUED;
|
|
else if (signal->group_stop_count)
|
|
why |= SIGNAL_CLD_STOPPED;
|
|
|
|
if (why) {
|
|
/*
|
|
* The first thread which returns from do_signal_stop()
|
|
* will take ->siglock, notice SIGNAL_CLD_MASK, and
|
|
* notify its parent. See get_signal().
|
|
*/
|
|
signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
|
|
signal->group_stop_count = 0;
|
|
signal->group_exit_code = 0;
|
|
}
|
|
}
|
|
|
|
return !sig_ignored(p, sig, force);
|
|
}
|
|
|
|
/*
|
|
* Test if P wants to take SIG. After we've checked all threads with this,
|
|
* it's equivalent to finding no threads not blocking SIG. Any threads not
|
|
* blocking SIG were ruled out because they are not running and already
|
|
* have pending signals. Such threads will dequeue from the shared queue
|
|
* as soon as they're available, so putting the signal on the shared queue
|
|
* will be equivalent to sending it to one such thread.
|
|
*/
|
|
static inline bool wants_signal(int sig, struct task_struct *p)
|
|
{
|
|
if (sigismember(&p->blocked, sig))
|
|
return false;
|
|
|
|
if (p->flags & PF_EXITING)
|
|
return false;
|
|
|
|
if (sig == SIGKILL)
|
|
return true;
|
|
|
|
if (task_is_stopped_or_traced(p))
|
|
return false;
|
|
|
|
return task_curr(p) || !task_sigpending(p);
|
|
}
|
|
|
|
static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
|
|
{
|
|
struct signal_struct *signal = p->signal;
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Now find a thread we can wake up to take the signal off the queue.
|
|
*
|
|
* If the main thread wants the signal, it gets first crack.
|
|
* Probably the least surprising to the average bear.
|
|
*/
|
|
if (wants_signal(sig, p))
|
|
t = p;
|
|
else if ((type == PIDTYPE_PID) || thread_group_empty(p))
|
|
/*
|
|
* There is just one thread and it does not need to be woken.
|
|
* It will dequeue unblocked signals before it runs again.
|
|
*/
|
|
return;
|
|
else {
|
|
/*
|
|
* Otherwise try to find a suitable thread.
|
|
*/
|
|
t = signal->curr_target;
|
|
while (!wants_signal(sig, t)) {
|
|
t = next_thread(t);
|
|
if (t == signal->curr_target)
|
|
/*
|
|
* No thread needs to be woken.
|
|
* Any eligible threads will see
|
|
* the signal in the queue soon.
|
|
*/
|
|
return;
|
|
}
|
|
signal->curr_target = t;
|
|
}
|
|
|
|
/*
|
|
* Found a killable thread. If the signal will be fatal,
|
|
* then start taking the whole group down immediately.
|
|
*/
|
|
if (sig_fatal(p, sig) &&
|
|
(signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
|
|
!sigismember(&t->real_blocked, sig) &&
|
|
(sig == SIGKILL || !p->ptrace)) {
|
|
/*
|
|
* This signal will be fatal to the whole group.
|
|
*/
|
|
if (!sig_kernel_coredump(sig)) {
|
|
/*
|
|
* Start a group exit and wake everybody up.
|
|
* This way we don't have other threads
|
|
* running and doing things after a slower
|
|
* thread has the fatal signal pending.
|
|
*/
|
|
signal->flags = SIGNAL_GROUP_EXIT;
|
|
signal->group_exit_code = sig;
|
|
signal->group_stop_count = 0;
|
|
t = p;
|
|
do {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
} while_each_thread(p, t);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The signal is already in the shared-pending queue.
|
|
* Tell the chosen thread to wake up and dequeue it.
|
|
*/
|
|
signal_wake_up(t, sig == SIGKILL);
|
|
return;
|
|
}
|
|
|
|
static inline bool legacy_queue(struct sigpending *signals, int sig)
|
|
{
|
|
return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
|
|
}
|
|
|
|
static int __send_signal_locked(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *t, enum pid_type type, bool force)
|
|
{
|
|
struct sigpending *pending;
|
|
struct sigqueue *q;
|
|
int override_rlimit;
|
|
int ret = 0, result;
|
|
|
|
lockdep_assert_held(&t->sighand->siglock);
|
|
|
|
result = TRACE_SIGNAL_IGNORED;
|
|
if (!prepare_signal(sig, t, force))
|
|
goto ret;
|
|
|
|
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
|
|
/*
|
|
* Short-circuit ignored signals and support queuing
|
|
* exactly one non-rt signal, so that we can get more
|
|
* detailed information about the cause of the signal.
|
|
*/
|
|
result = TRACE_SIGNAL_ALREADY_PENDING;
|
|
if (legacy_queue(pending, sig))
|
|
goto ret;
|
|
|
|
result = TRACE_SIGNAL_DELIVERED;
|
|
/*
|
|
* Skip useless siginfo allocation for SIGKILL and kernel threads.
|
|
*/
|
|
if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
|
|
goto out_set;
|
|
|
|
/*
|
|
* Real-time signals must be queued if sent by sigqueue, or
|
|
* some other real-time mechanism. It is implementation
|
|
* defined whether kill() does so. We attempt to do so, on
|
|
* the principle of least surprise, but since kill is not
|
|
* allowed to fail with EAGAIN when low on memory we just
|
|
* make sure at least one signal gets delivered and don't
|
|
* pass on the info struct.
|
|
*/
|
|
if (sig < SIGRTMIN)
|
|
override_rlimit = (is_si_special(info) || info->si_code >= 0);
|
|
else
|
|
override_rlimit = 0;
|
|
|
|
q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
|
|
|
|
if (q) {
|
|
list_add_tail(&q->list, &pending->list);
|
|
switch ((unsigned long) info) {
|
|
case (unsigned long) SEND_SIG_NOINFO:
|
|
clear_siginfo(&q->info);
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_USER;
|
|
q->info.si_pid = task_tgid_nr_ns(current,
|
|
task_active_pid_ns(t));
|
|
rcu_read_lock();
|
|
q->info.si_uid =
|
|
from_kuid_munged(task_cred_xxx(t, user_ns),
|
|
current_uid());
|
|
rcu_read_unlock();
|
|
break;
|
|
case (unsigned long) SEND_SIG_PRIV:
|
|
clear_siginfo(&q->info);
|
|
q->info.si_signo = sig;
|
|
q->info.si_errno = 0;
|
|
q->info.si_code = SI_KERNEL;
|
|
q->info.si_pid = 0;
|
|
q->info.si_uid = 0;
|
|
break;
|
|
default:
|
|
copy_siginfo(&q->info, info);
|
|
break;
|
|
}
|
|
} else if (!is_si_special(info) &&
|
|
sig >= SIGRTMIN && info->si_code != SI_USER) {
|
|
/*
|
|
* Queue overflow, abort. We may abort if the
|
|
* signal was rt and sent by user using something
|
|
* other than kill().
|
|
*/
|
|
result = TRACE_SIGNAL_OVERFLOW_FAIL;
|
|
ret = -EAGAIN;
|
|
goto ret;
|
|
} else {
|
|
/*
|
|
* This is a silent loss of information. We still
|
|
* send the signal, but the *info bits are lost.
|
|
*/
|
|
result = TRACE_SIGNAL_LOSE_INFO;
|
|
}
|
|
|
|
out_set:
|
|
signalfd_notify(t, sig);
|
|
sigaddset(&pending->signal, sig);
|
|
|
|
/* Let multiprocess signals appear after on-going forks */
|
|
if (type > PIDTYPE_TGID) {
|
|
struct multiprocess_signals *delayed;
|
|
hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
|
|
sigset_t *signal = &delayed->signal;
|
|
/* Can't queue both a stop and a continue signal */
|
|
if (sig == SIGCONT)
|
|
sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
|
|
else if (sig_kernel_stop(sig))
|
|
sigdelset(signal, SIGCONT);
|
|
sigaddset(signal, sig);
|
|
}
|
|
}
|
|
|
|
complete_signal(sig, t, type);
|
|
ret:
|
|
trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
|
|
{
|
|
bool ret = false;
|
|
switch (siginfo_layout(info->si_signo, info->si_code)) {
|
|
case SIL_KILL:
|
|
case SIL_CHLD:
|
|
case SIL_RT:
|
|
ret = true;
|
|
break;
|
|
case SIL_TIMER:
|
|
case SIL_POLL:
|
|
case SIL_FAULT:
|
|
case SIL_FAULT_TRAPNO:
|
|
case SIL_FAULT_MCEERR:
|
|
case SIL_FAULT_BNDERR:
|
|
case SIL_FAULT_PKUERR:
|
|
case SIL_FAULT_PERF_EVENT:
|
|
case SIL_SYS:
|
|
ret = false;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int send_signal_locked(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *t, enum pid_type type)
|
|
{
|
|
/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
|
|
bool force = false;
|
|
|
|
if (info == SEND_SIG_NOINFO) {
|
|
/* Force if sent from an ancestor pid namespace */
|
|
force = !task_pid_nr_ns(current, task_active_pid_ns(t));
|
|
} else if (info == SEND_SIG_PRIV) {
|
|
/* Don't ignore kernel generated signals */
|
|
force = true;
|
|
} else if (has_si_pid_and_uid(info)) {
|
|
/* SIGKILL and SIGSTOP is special or has ids */
|
|
struct user_namespace *t_user_ns;
|
|
|
|
rcu_read_lock();
|
|
t_user_ns = task_cred_xxx(t, user_ns);
|
|
if (current_user_ns() != t_user_ns) {
|
|
kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
|
|
info->si_uid = from_kuid_munged(t_user_ns, uid);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/* A kernel generated signal? */
|
|
force = (info->si_code == SI_KERNEL);
|
|
|
|
/* From an ancestor pid namespace? */
|
|
if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
|
|
info->si_pid = 0;
|
|
force = true;
|
|
}
|
|
}
|
|
return __send_signal_locked(sig, info, t, type, force);
|
|
}
|
|
|
|
static void print_fatal_signal(int signr)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(current);
|
|
pr_info("potentially unexpected fatal signal %d.\n", signr);
|
|
|
|
#if defined(__i386__) && !defined(__arch_um__)
|
|
pr_info("code at %08lx: ", regs->ip);
|
|
{
|
|
int i;
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned char insn;
|
|
|
|
if (get_user(insn, (unsigned char *)(regs->ip + i)))
|
|
break;
|
|
pr_cont("%02x ", insn);
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
#endif
|
|
preempt_disable();
|
|
show_regs(regs);
|
|
preempt_enable();
|
|
}
|
|
|
|
static int __init setup_print_fatal_signals(char *str)
|
|
{
|
|
get_option (&str, &print_fatal_signals);
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("print-fatal-signals=", setup_print_fatal_signals);
|
|
|
|
int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
|
|
enum pid_type type)
|
|
{
|
|
unsigned long flags;
|
|
int ret = -ESRCH;
|
|
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = send_signal_locked(sig, info, p, type);
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
enum sig_handler {
|
|
HANDLER_CURRENT, /* If reachable use the current handler */
|
|
HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
|
|
HANDLER_EXIT, /* Only visible as the process exit code */
|
|
};
|
|
|
|
/*
|
|
* Force a signal that the process can't ignore: if necessary
|
|
* we unblock the signal and change any SIG_IGN to SIG_DFL.
|
|
*
|
|
* Note: If we unblock the signal, we always reset it to SIG_DFL,
|
|
* since we do not want to have a signal handler that was blocked
|
|
* be invoked when user space had explicitly blocked it.
|
|
*
|
|
* We don't want to have recursive SIGSEGV's etc, for example,
|
|
* that is why we also clear SIGNAL_UNKILLABLE.
|
|
*/
|
|
static int
|
|
force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
|
|
enum sig_handler handler)
|
|
{
|
|
unsigned long int flags;
|
|
int ret, blocked, ignored;
|
|
struct k_sigaction *action;
|
|
int sig = info->si_signo;
|
|
|
|
spin_lock_irqsave(&t->sighand->siglock, flags);
|
|
action = &t->sighand->action[sig-1];
|
|
ignored = action->sa.sa_handler == SIG_IGN;
|
|
blocked = sigismember(&t->blocked, sig);
|
|
if (blocked || ignored || (handler != HANDLER_CURRENT)) {
|
|
action->sa.sa_handler = SIG_DFL;
|
|
if (handler == HANDLER_EXIT)
|
|
action->sa.sa_flags |= SA_IMMUTABLE;
|
|
if (blocked) {
|
|
sigdelset(&t->blocked, sig);
|
|
recalc_sigpending_and_wake(t);
|
|
}
|
|
}
|
|
/*
|
|
* Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
|
|
* debugging to leave init killable. But HANDLER_EXIT is always fatal.
|
|
*/
|
|
if (action->sa.sa_handler == SIG_DFL &&
|
|
(!t->ptrace || (handler == HANDLER_EXIT)))
|
|
t->signal->flags &= ~SIGNAL_UNKILLABLE;
|
|
ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
|
|
spin_unlock_irqrestore(&t->sighand->siglock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int force_sig_info(struct kernel_siginfo *info)
|
|
{
|
|
return force_sig_info_to_task(info, current, HANDLER_CURRENT);
|
|
}
|
|
|
|
/*
|
|
* Nuke all other threads in the group.
|
|
*/
|
|
int zap_other_threads(struct task_struct *p)
|
|
{
|
|
struct task_struct *t = p;
|
|
int count = 0;
|
|
|
|
p->signal->group_stop_count = 0;
|
|
|
|
while_each_thread(p, t) {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
count++;
|
|
|
|
/* Don't bother with already dead threads */
|
|
if (t->exit_state)
|
|
continue;
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
|
|
unsigned long *flags)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
|
|
rcu_read_lock();
|
|
for (;;) {
|
|
sighand = rcu_dereference(tsk->sighand);
|
|
if (unlikely(sighand == NULL))
|
|
break;
|
|
|
|
/*
|
|
* This sighand can be already freed and even reused, but
|
|
* we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
|
|
* initializes ->siglock: this slab can't go away, it has
|
|
* the same object type, ->siglock can't be reinitialized.
|
|
*
|
|
* We need to ensure that tsk->sighand is still the same
|
|
* after we take the lock, we can race with de_thread() or
|
|
* __exit_signal(). In the latter case the next iteration
|
|
* must see ->sighand == NULL.
|
|
*/
|
|
spin_lock_irqsave(&sighand->siglock, *flags);
|
|
if (likely(sighand == rcu_access_pointer(tsk->sighand)))
|
|
break;
|
|
spin_unlock_irqrestore(&sighand->siglock, *flags);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return sighand;
|
|
}
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
void lockdep_assert_task_sighand_held(struct task_struct *task)
|
|
{
|
|
struct sighand_struct *sighand;
|
|
|
|
rcu_read_lock();
|
|
sighand = rcu_dereference(task->sighand);
|
|
if (sighand)
|
|
lockdep_assert_held(&sighand->siglock);
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* send signal info to all the members of a group
|
|
*/
|
|
int group_send_sig_info(int sig, struct kernel_siginfo *info,
|
|
struct task_struct *p, enum pid_type type)
|
|
{
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
ret = check_kill_permission(sig, info, p);
|
|
rcu_read_unlock();
|
|
|
|
if (!ret && sig)
|
|
ret = do_send_sig_info(sig, info, p, type);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __kill_pgrp_info() sends a signal to a process group: this is what the tty
|
|
* control characters do (^C, ^Z etc)
|
|
* - the caller must hold at least a readlock on tasklist_lock
|
|
*/
|
|
int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
|
|
{
|
|
struct task_struct *p = NULL;
|
|
int retval, success;
|
|
|
|
success = 0;
|
|
retval = -ESRCH;
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
|
|
success |= !err;
|
|
retval = err;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
return success ? 0 : retval;
|
|
}
|
|
|
|
int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
|
|
{
|
|
int error = -ESRCH;
|
|
struct task_struct *p;
|
|
|
|
for (;;) {
|
|
rcu_read_lock();
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (p)
|
|
error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
|
|
rcu_read_unlock();
|
|
if (likely(!p || error != -ESRCH))
|
|
return error;
|
|
|
|
/*
|
|
* The task was unhashed in between, try again. If it
|
|
* is dead, pid_task() will return NULL, if we race with
|
|
* de_thread() it will find the new leader.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
|
|
{
|
|
int error;
|
|
rcu_read_lock();
|
|
error = kill_pid_info(sig, info, find_vpid(pid));
|
|
rcu_read_unlock();
|
|
return error;
|
|
}
|
|
|
|
static inline bool kill_as_cred_perm(const struct cred *cred,
|
|
struct task_struct *target)
|
|
{
|
|
const struct cred *pcred = __task_cred(target);
|
|
|
|
return uid_eq(cred->euid, pcred->suid) ||
|
|
uid_eq(cred->euid, pcred->uid) ||
|
|
uid_eq(cred->uid, pcred->suid) ||
|
|
uid_eq(cred->uid, pcred->uid);
|
|
}
|
|
|
|
/*
|
|
* The usb asyncio usage of siginfo is wrong. The glibc support
|
|
* for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
|
|
* AKA after the generic fields:
|
|
* kernel_pid_t si_pid;
|
|
* kernel_uid32_t si_uid;
|
|
* sigval_t si_value;
|
|
*
|
|
* Unfortunately when usb generates SI_ASYNCIO it assumes the layout
|
|
* after the generic fields is:
|
|
* void __user *si_addr;
|
|
*
|
|
* This is a practical problem when there is a 64bit big endian kernel
|
|
* and a 32bit userspace. As the 32bit address will encoded in the low
|
|
* 32bits of the pointer. Those low 32bits will be stored at higher
|
|
* address than appear in a 32 bit pointer. So userspace will not
|
|
* see the address it was expecting for it's completions.
|
|
*
|
|
* There is nothing in the encoding that can allow
|
|
* copy_siginfo_to_user32 to detect this confusion of formats, so
|
|
* handle this by requiring the caller of kill_pid_usb_asyncio to
|
|
* notice when this situration takes place and to store the 32bit
|
|
* pointer in sival_int, instead of sival_addr of the sigval_t addr
|
|
* parameter.
|
|
*/
|
|
int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
|
|
struct pid *pid, const struct cred *cred)
|
|
{
|
|
struct kernel_siginfo info;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
int ret = -EINVAL;
|
|
|
|
if (!valid_signal(sig))
|
|
return ret;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = errno;
|
|
info.si_code = SI_ASYNCIO;
|
|
*((sigval_t *)&info.si_pid) = addr;
|
|
|
|
rcu_read_lock();
|
|
p = pid_task(pid, PIDTYPE_PID);
|
|
if (!p) {
|
|
ret = -ESRCH;
|
|
goto out_unlock;
|
|
}
|
|
if (!kill_as_cred_perm(cred, p)) {
|
|
ret = -EPERM;
|
|
goto out_unlock;
|
|
}
|
|
ret = security_task_kill(p, &info, sig, cred);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
if (sig) {
|
|
if (lock_task_sighand(p, &flags)) {
|
|
ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
|
|
unlock_task_sighand(p, &flags);
|
|
} else
|
|
ret = -ESRCH;
|
|
}
|
|
out_unlock:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
|
|
|
|
/*
|
|
* kill_something_info() interprets pid in interesting ways just like kill(2).
|
|
*
|
|
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
|
|
* is probably wrong. Should make it like BSD or SYSV.
|
|
*/
|
|
|
|
static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
|
|
{
|
|
int ret;
|
|
|
|
if (pid > 0)
|
|
return kill_proc_info(sig, info, pid);
|
|
|
|
/* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
|
|
if (pid == INT_MIN)
|
|
return -ESRCH;
|
|
|
|
read_lock(&tasklist_lock);
|
|
if (pid != -1) {
|
|
ret = __kill_pgrp_info(sig, info,
|
|
pid ? find_vpid(-pid) : task_pgrp(current));
|
|
} else {
|
|
int retval = 0, count = 0;
|
|
struct task_struct * p;
|
|
|
|
for_each_process(p) {
|
|
if (task_pid_vnr(p) > 1 &&
|
|
!same_thread_group(p, current)) {
|
|
int err = group_send_sig_info(sig, info, p,
|
|
PIDTYPE_MAX);
|
|
++count;
|
|
if (err != -EPERM)
|
|
retval = err;
|
|
}
|
|
}
|
|
ret = count ? retval : -ESRCH;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These are for backward compatibility with the rest of the kernel source.
|
|
*/
|
|
|
|
int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
|
|
{
|
|
/*
|
|
* Make sure legacy kernel users don't send in bad values
|
|
* (normal paths check this in check_kill_permission).
|
|
*/
|
|
if (!valid_signal(sig))
|
|
return -EINVAL;
|
|
|
|
return do_send_sig_info(sig, info, p, PIDTYPE_PID);
|
|
}
|
|
EXPORT_SYMBOL(send_sig_info);
|
|
|
|
#define __si_special(priv) \
|
|
((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
|
|
|
|
int
|
|
send_sig(int sig, struct task_struct *p, int priv)
|
|
{
|
|
return send_sig_info(sig, __si_special(priv), p);
|
|
}
|
|
EXPORT_SYMBOL(send_sig);
|
|
|
|
void force_sig(int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
force_sig_info(&info);
|
|
}
|
|
EXPORT_SYMBOL(force_sig);
|
|
|
|
void force_fatal_sig(int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
|
|
}
|
|
|
|
void force_exit_sig(int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
force_sig_info_to_task(&info, current, HANDLER_EXIT);
|
|
}
|
|
|
|
/*
|
|
* When things go south during signal handling, we
|
|
* will force a SIGSEGV. And if the signal that caused
|
|
* the problem was already a SIGSEGV, we'll want to
|
|
* make sure we don't even try to deliver the signal..
|
|
*/
|
|
void force_sigsegv(int sig)
|
|
{
|
|
if (sig == SIGSEGV)
|
|
force_fatal_sig(SIGSEGV);
|
|
else
|
|
force_sig(SIGSEGV);
|
|
}
|
|
|
|
int force_sig_fault_to_task(int sig, int code, void __user *addr
|
|
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
|
|
, struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
#ifdef __ia64__
|
|
info.si_imm = imm;
|
|
info.si_flags = flags;
|
|
info.si_isr = isr;
|
|
#endif
|
|
return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
|
|
}
|
|
|
|
int force_sig_fault(int sig, int code, void __user *addr
|
|
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
|
|
{
|
|
return force_sig_fault_to_task(sig, code, addr
|
|
___ARCH_SI_IA64(imm, flags, isr), current);
|
|
}
|
|
|
|
int send_sig_fault(int sig, int code, void __user *addr
|
|
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
|
|
, struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
#ifdef __ia64__
|
|
info.si_imm = imm;
|
|
info.si_flags = flags;
|
|
info.si_isr = isr;
|
|
#endif
|
|
return send_sig_info(info.si_signo, &info, t);
|
|
}
|
|
|
|
int force_sig_mceerr(int code, void __user *addr, short lsb)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_addr_lsb = lsb;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_addr_lsb = lsb;
|
|
return send_sig_info(info.si_signo, &info, t);
|
|
}
|
|
EXPORT_SYMBOL(send_sig_mceerr);
|
|
|
|
int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_BNDERR;
|
|
info.si_addr = addr;
|
|
info.si_lower = lower;
|
|
info.si_upper = upper;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
#ifdef SEGV_PKUERR
|
|
int force_sig_pkuerr(void __user *addr, u32 pkey)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = SEGV_PKUERR;
|
|
info.si_addr = addr;
|
|
info.si_pkey = pkey;
|
|
return force_sig_info(&info);
|
|
}
|
|
#endif
|
|
|
|
int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_PERF;
|
|
info.si_addr = addr;
|
|
info.si_perf_data = sig_data;
|
|
info.si_perf_type = type;
|
|
|
|
/*
|
|
* Signals generated by perf events should not terminate the whole
|
|
* process if SIGTRAP is blocked, however, delivering the signal
|
|
* asynchronously is better than not delivering at all. But tell user
|
|
* space if the signal was asynchronous, so it can clearly be
|
|
* distinguished from normal synchronous ones.
|
|
*/
|
|
info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
|
|
TRAP_PERF_FLAG_ASYNC :
|
|
0;
|
|
|
|
return send_sig_info(info.si_signo, &info, current);
|
|
}
|
|
|
|
/**
|
|
* force_sig_seccomp - signals the task to allow in-process syscall emulation
|
|
* @syscall: syscall number to send to userland
|
|
* @reason: filter-supplied reason code to send to userland (via si_errno)
|
|
* @force_coredump: true to trigger a coredump
|
|
*
|
|
* Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
|
|
*/
|
|
int force_sig_seccomp(int syscall, int reason, bool force_coredump)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSYS;
|
|
info.si_code = SYS_SECCOMP;
|
|
info.si_call_addr = (void __user *)KSTK_EIP(current);
|
|
info.si_errno = reason;
|
|
info.si_arch = syscall_get_arch(current);
|
|
info.si_syscall = syscall;
|
|
return force_sig_info_to_task(&info, current,
|
|
force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
|
|
}
|
|
|
|
/* For the crazy architectures that include trap information in
|
|
* the errno field, instead of an actual errno value.
|
|
*/
|
|
int force_sig_ptrace_errno_trap(int errno, void __user *addr)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = errno;
|
|
info.si_code = TRAP_HWBKPT;
|
|
info.si_addr = addr;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
/* For the rare architectures that include trap information using
|
|
* si_trapno.
|
|
*/
|
|
int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_trapno = trapno;
|
|
return force_sig_info(&info);
|
|
}
|
|
|
|
/* For the rare architectures that include trap information using
|
|
* si_trapno.
|
|
*/
|
|
int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
|
|
struct task_struct *t)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
info.si_trapno = trapno;
|
|
return send_sig_info(info.si_signo, &info, t);
|
|
}
|
|
|
|
int kill_pgrp(struct pid *pid, int sig, int priv)
|
|
{
|
|
int ret;
|
|
|
|
read_lock(&tasklist_lock);
|
|
ret = __kill_pgrp_info(sig, __si_special(priv), pid);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(kill_pgrp);
|
|
|
|
int kill_pid(struct pid *pid, int sig, int priv)
|
|
{
|
|
return kill_pid_info(sig, __si_special(priv), pid);
|
|
}
|
|
EXPORT_SYMBOL(kill_pid);
|
|
|
|
/*
|
|
* These functions support sending signals using preallocated sigqueue
|
|
* structures. This is needed "because realtime applications cannot
|
|
* afford to lose notifications of asynchronous events, like timer
|
|
* expirations or I/O completions". In the case of POSIX Timers
|
|
* we allocate the sigqueue structure from the timer_create. If this
|
|
* allocation fails we are able to report the failure to the application
|
|
* with an EAGAIN error.
|
|
*/
|
|
struct sigqueue *sigqueue_alloc(void)
|
|
{
|
|
return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
|
|
}
|
|
|
|
void sigqueue_free(struct sigqueue *q)
|
|
{
|
|
unsigned long flags;
|
|
spinlock_t *lock = ¤t->sighand->siglock;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
/*
|
|
* We must hold ->siglock while testing q->list
|
|
* to serialize with collect_signal() or with
|
|
* __exit_signal()->flush_sigqueue().
|
|
*/
|
|
spin_lock_irqsave(lock, flags);
|
|
q->flags &= ~SIGQUEUE_PREALLOC;
|
|
/*
|
|
* If it is queued it will be freed when dequeued,
|
|
* like the "regular" sigqueue.
|
|
*/
|
|
if (!list_empty(&q->list))
|
|
q = NULL;
|
|
spin_unlock_irqrestore(lock, flags);
|
|
|
|
if (q)
|
|
__sigqueue_free(q);
|
|
}
|
|
|
|
int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
|
|
{
|
|
int sig = q->info.si_signo;
|
|
struct sigpending *pending;
|
|
struct task_struct *t;
|
|
unsigned long flags;
|
|
int ret, result;
|
|
|
|
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
|
|
|
|
ret = -1;
|
|
rcu_read_lock();
|
|
t = pid_task(pid, type);
|
|
if (!t || !likely(lock_task_sighand(t, &flags)))
|
|
goto ret;
|
|
|
|
ret = 1; /* the signal is ignored */
|
|
result = TRACE_SIGNAL_IGNORED;
|
|
if (!prepare_signal(sig, t, false))
|
|
goto out;
|
|
|
|
ret = 0;
|
|
if (unlikely(!list_empty(&q->list))) {
|
|
/*
|
|
* If an SI_TIMER entry is already queue just increment
|
|
* the overrun count.
|
|
*/
|
|
BUG_ON(q->info.si_code != SI_TIMER);
|
|
q->info.si_overrun++;
|
|
result = TRACE_SIGNAL_ALREADY_PENDING;
|
|
goto out;
|
|
}
|
|
q->info.si_overrun = 0;
|
|
|
|
signalfd_notify(t, sig);
|
|
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
|
|
list_add_tail(&q->list, &pending->list);
|
|
sigaddset(&pending->signal, sig);
|
|
complete_signal(sig, t, type);
|
|
result = TRACE_SIGNAL_DELIVERED;
|
|
out:
|
|
trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
|
|
unlock_task_sighand(t, &flags);
|
|
ret:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static void do_notify_pidfd(struct task_struct *task)
|
|
{
|
|
struct pid *pid;
|
|
|
|
WARN_ON(task->exit_state == 0);
|
|
pid = task_pid(task);
|
|
wake_up_all(&pid->wait_pidfd);
|
|
}
|
|
|
|
/*
|
|
* Let a parent know about the death of a child.
|
|
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
|
|
*
|
|
* Returns true if our parent ignored us and so we've switched to
|
|
* self-reaping.
|
|
*/
|
|
bool do_notify_parent(struct task_struct *tsk, int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
unsigned long flags;
|
|
struct sighand_struct *psig;
|
|
bool autoreap = false;
|
|
u64 utime, stime;
|
|
|
|
WARN_ON_ONCE(sig == -1);
|
|
|
|
/* do_notify_parent_cldstop should have been called instead. */
|
|
WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
|
|
|
|
WARN_ON_ONCE(!tsk->ptrace &&
|
|
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
|
|
|
|
/* Wake up all pidfd waiters */
|
|
do_notify_pidfd(tsk);
|
|
|
|
if (sig != SIGCHLD) {
|
|
/*
|
|
* This is only possible if parent == real_parent.
|
|
* Check if it has changed security domain.
|
|
*/
|
|
if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
|
|
sig = SIGCHLD;
|
|
}
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
/*
|
|
* We are under tasklist_lock here so our parent is tied to
|
|
* us and cannot change.
|
|
*
|
|
* task_active_pid_ns will always return the same pid namespace
|
|
* until a task passes through release_task.
|
|
*
|
|
* write_lock() currently calls preempt_disable() which is the
|
|
* same as rcu_read_lock(), but according to Oleg, this is not
|
|
* correct to rely on this
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
|
|
info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
|
|
task_uid(tsk));
|
|
rcu_read_unlock();
|
|
|
|
task_cputime(tsk, &utime, &stime);
|
|
info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
|
|
info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
|
|
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
if (tsk->exit_code & 0x80)
|
|
info.si_code = CLD_DUMPED;
|
|
else if (tsk->exit_code & 0x7f)
|
|
info.si_code = CLD_KILLED;
|
|
else {
|
|
info.si_code = CLD_EXITED;
|
|
info.si_status = tsk->exit_code >> 8;
|
|
}
|
|
|
|
psig = tsk->parent->sighand;
|
|
spin_lock_irqsave(&psig->siglock, flags);
|
|
if (!tsk->ptrace && sig == SIGCHLD &&
|
|
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
|
|
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
|
|
/*
|
|
* We are exiting and our parent doesn't care. POSIX.1
|
|
* defines special semantics for setting SIGCHLD to SIG_IGN
|
|
* or setting the SA_NOCLDWAIT flag: we should be reaped
|
|
* automatically and not left for our parent's wait4 call.
|
|
* Rather than having the parent do it as a magic kind of
|
|
* signal handler, we just set this to tell do_exit that we
|
|
* can be cleaned up without becoming a zombie. Note that
|
|
* we still call __wake_up_parent in this case, because a
|
|
* blocked sys_wait4 might now return -ECHILD.
|
|
*
|
|
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
|
|
* is implementation-defined: we do (if you don't want
|
|
* it, just use SIG_IGN instead).
|
|
*/
|
|
autoreap = true;
|
|
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
|
|
sig = 0;
|
|
}
|
|
/*
|
|
* Send with __send_signal as si_pid and si_uid are in the
|
|
* parent's namespaces.
|
|
*/
|
|
if (valid_signal(sig) && sig)
|
|
__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
|
|
__wake_up_parent(tsk, tsk->parent);
|
|
spin_unlock_irqrestore(&psig->siglock, flags);
|
|
|
|
return autoreap;
|
|
}
|
|
|
|
/**
|
|
* do_notify_parent_cldstop - notify parent of stopped/continued state change
|
|
* @tsk: task reporting the state change
|
|
* @for_ptracer: the notification is for ptracer
|
|
* @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
|
|
*
|
|
* Notify @tsk's parent that the stopped/continued state has changed. If
|
|
* @for_ptracer is %false, @tsk's group leader notifies to its real parent.
|
|
* If %true, @tsk reports to @tsk->parent which should be the ptracer.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with tasklist_lock at least read locked.
|
|
*/
|
|
static void do_notify_parent_cldstop(struct task_struct *tsk,
|
|
bool for_ptracer, int why)
|
|
{
|
|
struct kernel_siginfo info;
|
|
unsigned long flags;
|
|
struct task_struct *parent;
|
|
struct sighand_struct *sighand;
|
|
u64 utime, stime;
|
|
|
|
if (for_ptracer) {
|
|
parent = tsk->parent;
|
|
} else {
|
|
tsk = tsk->group_leader;
|
|
parent = tsk->real_parent;
|
|
}
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGCHLD;
|
|
info.si_errno = 0;
|
|
/*
|
|
* see comment in do_notify_parent() about the following 4 lines
|
|
*/
|
|
rcu_read_lock();
|
|
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
|
|
info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
|
|
rcu_read_unlock();
|
|
|
|
task_cputime(tsk, &utime, &stime);
|
|
info.si_utime = nsec_to_clock_t(utime);
|
|
info.si_stime = nsec_to_clock_t(stime);
|
|
|
|
info.si_code = why;
|
|
switch (why) {
|
|
case CLD_CONTINUED:
|
|
info.si_status = SIGCONT;
|
|
break;
|
|
case CLD_STOPPED:
|
|
info.si_status = tsk->signal->group_exit_code & 0x7f;
|
|
break;
|
|
case CLD_TRAPPED:
|
|
info.si_status = tsk->exit_code & 0x7f;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
sighand = parent->sighand;
|
|
spin_lock_irqsave(&sighand->siglock, flags);
|
|
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
|
|
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
|
|
send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
|
|
/*
|
|
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
|
|
*/
|
|
__wake_up_parent(tsk, parent);
|
|
spin_unlock_irqrestore(&sighand->siglock, flags);
|
|
}
|
|
|
|
/*
|
|
* This must be called with current->sighand->siglock held.
|
|
*
|
|
* This should be the path for all ptrace stops.
|
|
* We always set current->last_siginfo while stopped here.
|
|
* That makes it a way to test a stopped process for
|
|
* being ptrace-stopped vs being job-control-stopped.
|
|
*
|
|
* Returns the signal the ptracer requested the code resume
|
|
* with. If the code did not stop because the tracer is gone,
|
|
* the stop signal remains unchanged unless clear_code.
|
|
*/
|
|
static int ptrace_stop(int exit_code, int why, unsigned long message,
|
|
kernel_siginfo_t *info)
|
|
__releases(¤t->sighand->siglock)
|
|
__acquires(¤t->sighand->siglock)
|
|
{
|
|
bool gstop_done = false;
|
|
|
|
if (arch_ptrace_stop_needed()) {
|
|
/*
|
|
* The arch code has something special to do before a
|
|
* ptrace stop. This is allowed to block, e.g. for faults
|
|
* on user stack pages. We can't keep the siglock while
|
|
* calling arch_ptrace_stop, so we must release it now.
|
|
* To preserve proper semantics, we must do this before
|
|
* any signal bookkeeping like checking group_stop_count.
|
|
*/
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
arch_ptrace_stop();
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* After this point ptrace_signal_wake_up or signal_wake_up
|
|
* will clear TASK_TRACED if ptrace_unlink happens or a fatal
|
|
* signal comes in. Handle previous ptrace_unlinks and fatal
|
|
* signals here to prevent ptrace_stop sleeping in schedule.
|
|
*/
|
|
if (!current->ptrace || __fatal_signal_pending(current))
|
|
return exit_code;
|
|
|
|
set_special_state(TASK_TRACED);
|
|
current->jobctl |= JOBCTL_TRACED;
|
|
|
|
/*
|
|
* We're committing to trapping. TRACED should be visible before
|
|
* TRAPPING is cleared; otherwise, the tracer might fail do_wait().
|
|
* Also, transition to TRACED and updates to ->jobctl should be
|
|
* atomic with respect to siglock and should be done after the arch
|
|
* hook as siglock is released and regrabbed across it.
|
|
*
|
|
* TRACER TRACEE
|
|
*
|
|
* ptrace_attach()
|
|
* [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
|
|
* do_wait()
|
|
* set_current_state() smp_wmb();
|
|
* ptrace_do_wait()
|
|
* wait_task_stopped()
|
|
* task_stopped_code()
|
|
* [L] task_is_traced() [S] task_clear_jobctl_trapping();
|
|
*/
|
|
smp_wmb();
|
|
|
|
current->ptrace_message = message;
|
|
current->last_siginfo = info;
|
|
current->exit_code = exit_code;
|
|
|
|
/*
|
|
* If @why is CLD_STOPPED, we're trapping to participate in a group
|
|
* stop. Do the bookkeeping. Note that if SIGCONT was delievered
|
|
* across siglock relocks since INTERRUPT was scheduled, PENDING
|
|
* could be clear now. We act as if SIGCONT is received after
|
|
* TASK_TRACED is entered - ignore it.
|
|
*/
|
|
if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
|
|
gstop_done = task_participate_group_stop(current);
|
|
|
|
/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
|
|
task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
|
|
if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
|
|
task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
|
|
|
|
/* entering a trap, clear TRAPPING */
|
|
task_clear_jobctl_trapping(current);
|
|
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
read_lock(&tasklist_lock);
|
|
/*
|
|
* Notify parents of the stop.
|
|
*
|
|
* While ptraced, there are two parents - the ptracer and
|
|
* the real_parent of the group_leader. The ptracer should
|
|
* know about every stop while the real parent is only
|
|
* interested in the completion of group stop. The states
|
|
* for the two don't interact with each other. Notify
|
|
* separately unless they're gonna be duplicates.
|
|
*/
|
|
if (current->ptrace)
|
|
do_notify_parent_cldstop(current, true, why);
|
|
if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
/*
|
|
* Don't want to allow preemption here, because
|
|
* sys_ptrace() needs this task to be inactive.
|
|
*
|
|
* XXX: implement read_unlock_no_resched().
|
|
*/
|
|
preempt_disable();
|
|
read_unlock(&tasklist_lock);
|
|
cgroup_enter_frozen();
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
cgroup_leave_frozen(true);
|
|
|
|
/*
|
|
* We are back. Now reacquire the siglock before touching
|
|
* last_siginfo, so that we are sure to have synchronized with
|
|
* any signal-sending on another CPU that wants to examine it.
|
|
*/
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
exit_code = current->exit_code;
|
|
current->last_siginfo = NULL;
|
|
current->ptrace_message = 0;
|
|
current->exit_code = 0;
|
|
|
|
/* LISTENING can be set only during STOP traps, clear it */
|
|
current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
|
|
|
|
/*
|
|
* Queued signals ignored us while we were stopped for tracing.
|
|
* So check for any that we should take before resuming user mode.
|
|
* This sets TIF_SIGPENDING, but never clears it.
|
|
*/
|
|
recalc_sigpending_tsk(current);
|
|
return exit_code;
|
|
}
|
|
|
|
static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
|
|
{
|
|
kernel_siginfo_t info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = signr;
|
|
info.si_code = exit_code;
|
|
info.si_pid = task_pid_vnr(current);
|
|
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
|
|
|
|
/* Let the debugger run. */
|
|
return ptrace_stop(exit_code, why, message, &info);
|
|
}
|
|
|
|
int ptrace_notify(int exit_code, unsigned long message)
|
|
{
|
|
int signr;
|
|
|
|
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
|
|
if (unlikely(task_work_pending(current)))
|
|
task_work_run();
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return signr;
|
|
}
|
|
|
|
/**
|
|
* do_signal_stop - handle group stop for SIGSTOP and other stop signals
|
|
* @signr: signr causing group stop if initiating
|
|
*
|
|
* If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
|
|
* and participate in it. If already set, participate in the existing
|
|
* group stop. If participated in a group stop (and thus slept), %true is
|
|
* returned with siglock released.
|
|
*
|
|
* If ptraced, this function doesn't handle stop itself. Instead,
|
|
* %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
|
|
* untouched. The caller must ensure that INTERRUPT trap handling takes
|
|
* places afterwards.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held, which is released
|
|
* on %true return.
|
|
*
|
|
* RETURNS:
|
|
* %false if group stop is already cancelled or ptrace trap is scheduled.
|
|
* %true if participated in group stop.
|
|
*/
|
|
static bool do_signal_stop(int signr)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
|
|
unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
|
|
struct task_struct *t;
|
|
|
|
/* signr will be recorded in task->jobctl for retries */
|
|
WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
|
|
|
|
if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
|
|
unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
|
|
unlikely(sig->group_exec_task))
|
|
return false;
|
|
/*
|
|
* There is no group stop already in progress. We must
|
|
* initiate one now.
|
|
*
|
|
* While ptraced, a task may be resumed while group stop is
|
|
* still in effect and then receive a stop signal and
|
|
* initiate another group stop. This deviates from the
|
|
* usual behavior as two consecutive stop signals can't
|
|
* cause two group stops when !ptraced. That is why we
|
|
* also check !task_is_stopped(t) below.
|
|
*
|
|
* The condition can be distinguished by testing whether
|
|
* SIGNAL_STOP_STOPPED is already set. Don't generate
|
|
* group_exit_code in such case.
|
|
*
|
|
* This is not necessary for SIGNAL_STOP_CONTINUED because
|
|
* an intervening stop signal is required to cause two
|
|
* continued events regardless of ptrace.
|
|
*/
|
|
if (!(sig->flags & SIGNAL_STOP_STOPPED))
|
|
sig->group_exit_code = signr;
|
|
|
|
sig->group_stop_count = 0;
|
|
|
|
if (task_set_jobctl_pending(current, signr | gstop))
|
|
sig->group_stop_count++;
|
|
|
|
t = current;
|
|
while_each_thread(current, t) {
|
|
/*
|
|
* Setting state to TASK_STOPPED for a group
|
|
* stop is always done with the siglock held,
|
|
* so this check has no races.
|
|
*/
|
|
if (!task_is_stopped(t) &&
|
|
task_set_jobctl_pending(t, signr | gstop)) {
|
|
sig->group_stop_count++;
|
|
if (likely(!(t->ptrace & PT_SEIZED)))
|
|
signal_wake_up(t, 0);
|
|
else
|
|
ptrace_trap_notify(t);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (likely(!current->ptrace)) {
|
|
int notify = 0;
|
|
|
|
/*
|
|
* If there are no other threads in the group, or if there
|
|
* is a group stop in progress and we are the last to stop,
|
|
* report to the parent.
|
|
*/
|
|
if (task_participate_group_stop(current))
|
|
notify = CLD_STOPPED;
|
|
|
|
current->jobctl |= JOBCTL_STOPPED;
|
|
set_special_state(TASK_STOPPED);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/*
|
|
* Notify the parent of the group stop completion. Because
|
|
* we're not holding either the siglock or tasklist_lock
|
|
* here, ptracer may attach inbetween; however, this is for
|
|
* group stop and should always be delivered to the real
|
|
* parent of the group leader. The new ptracer will get
|
|
* its notification when this task transitions into
|
|
* TASK_TRACED.
|
|
*/
|
|
if (notify) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, false, notify);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
|
|
/* Now we don't run again until woken by SIGCONT or SIGKILL */
|
|
cgroup_enter_frozen();
|
|
schedule();
|
|
return true;
|
|
} else {
|
|
/*
|
|
* While ptraced, group stop is handled by STOP trap.
|
|
* Schedule it and let the caller deal with it.
|
|
*/
|
|
task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* do_jobctl_trap - take care of ptrace jobctl traps
|
|
*
|
|
* When PT_SEIZED, it's used for both group stop and explicit
|
|
* SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
|
|
* accompanying siginfo. If stopped, lower eight bits of exit_code contain
|
|
* the stop signal; otherwise, %SIGTRAP.
|
|
*
|
|
* When !PT_SEIZED, it's used only for group stop trap with stop signal
|
|
* number as exit_code and no siginfo.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held, which may be
|
|
* released and re-acquired before returning with intervening sleep.
|
|
*/
|
|
static void do_jobctl_trap(void)
|
|
{
|
|
struct signal_struct *signal = current->signal;
|
|
int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
|
|
|
|
if (current->ptrace & PT_SEIZED) {
|
|
if (!signal->group_stop_count &&
|
|
!(signal->flags & SIGNAL_STOP_STOPPED))
|
|
signr = SIGTRAP;
|
|
WARN_ON_ONCE(!signr);
|
|
ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
|
|
CLD_STOPPED, 0);
|
|
} else {
|
|
WARN_ON_ONCE(!signr);
|
|
ptrace_stop(signr, CLD_STOPPED, 0, NULL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* do_freezer_trap - handle the freezer jobctl trap
|
|
*
|
|
* Puts the task into frozen state, if only the task is not about to quit.
|
|
* In this case it drops JOBCTL_TRAP_FREEZE.
|
|
*
|
|
* CONTEXT:
|
|
* Must be called with @current->sighand->siglock held,
|
|
* which is always released before returning.
|
|
*/
|
|
static void do_freezer_trap(void)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
/*
|
|
* If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
|
|
* let's make another loop to give it a chance to be handled.
|
|
* In any case, we'll return back.
|
|
*/
|
|
if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
|
|
JOBCTL_TRAP_FREEZE) {
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now we're sure that there is no pending fatal signal and no
|
|
* pending traps. Clear TIF_SIGPENDING to not get out of schedule()
|
|
* immediately (if there is a non-fatal signal pending), and
|
|
* put the task into sleep.
|
|
*/
|
|
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
cgroup_enter_frozen();
|
|
schedule();
|
|
}
|
|
|
|
static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
|
|
{
|
|
/*
|
|
* We do not check sig_kernel_stop(signr) but set this marker
|
|
* unconditionally because we do not know whether debugger will
|
|
* change signr. This flag has no meaning unless we are going
|
|
* to stop after return from ptrace_stop(). In this case it will
|
|
* be checked in do_signal_stop(), we should only stop if it was
|
|
* not cleared by SIGCONT while we were sleeping. See also the
|
|
* comment in dequeue_signal().
|
|
*/
|
|
current->jobctl |= JOBCTL_STOP_DEQUEUED;
|
|
signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
|
|
|
|
/* We're back. Did the debugger cancel the sig? */
|
|
if (signr == 0)
|
|
return signr;
|
|
|
|
/*
|
|
* Update the siginfo structure if the signal has
|
|
* changed. If the debugger wanted something
|
|
* specific in the siginfo structure then it should
|
|
* have updated *info via PTRACE_SETSIGINFO.
|
|
*/
|
|
if (signr != info->si_signo) {
|
|
clear_siginfo(info);
|
|
info->si_signo = signr;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
rcu_read_lock();
|
|
info->si_pid = task_pid_vnr(current->parent);
|
|
info->si_uid = from_kuid_munged(current_user_ns(),
|
|
task_uid(current->parent));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* If the (new) signal is now blocked, requeue it. */
|
|
if (sigismember(¤t->blocked, signr) ||
|
|
fatal_signal_pending(current)) {
|
|
send_signal_locked(signr, info, current, type);
|
|
signr = 0;
|
|
}
|
|
|
|
return signr;
|
|
}
|
|
|
|
static void hide_si_addr_tag_bits(struct ksignal *ksig)
|
|
{
|
|
switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
|
|
case SIL_FAULT:
|
|
case SIL_FAULT_TRAPNO:
|
|
case SIL_FAULT_MCEERR:
|
|
case SIL_FAULT_BNDERR:
|
|
case SIL_FAULT_PKUERR:
|
|
case SIL_FAULT_PERF_EVENT:
|
|
ksig->info.si_addr = arch_untagged_si_addr(
|
|
ksig->info.si_addr, ksig->sig, ksig->info.si_code);
|
|
break;
|
|
case SIL_KILL:
|
|
case SIL_TIMER:
|
|
case SIL_POLL:
|
|
case SIL_CHLD:
|
|
case SIL_RT:
|
|
case SIL_SYS:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool get_signal(struct ksignal *ksig)
|
|
{
|
|
struct sighand_struct *sighand = current->sighand;
|
|
struct signal_struct *signal = current->signal;
|
|
int signr;
|
|
|
|
clear_notify_signal();
|
|
if (unlikely(task_work_pending(current)))
|
|
task_work_run();
|
|
|
|
if (!task_sigpending(current))
|
|
return false;
|
|
|
|
if (unlikely(uprobe_deny_signal()))
|
|
return false;
|
|
|
|
/*
|
|
* Do this once, we can't return to user-mode if freezing() == T.
|
|
* do_signal_stop() and ptrace_stop() do freezable_schedule() and
|
|
* thus do not need another check after return.
|
|
*/
|
|
try_to_freeze();
|
|
|
|
relock:
|
|
spin_lock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Every stopped thread goes here after wakeup. Check to see if
|
|
* we should notify the parent, prepare_signal(SIGCONT) encodes
|
|
* the CLD_ si_code into SIGNAL_CLD_MASK bits.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
|
|
int why;
|
|
|
|
if (signal->flags & SIGNAL_CLD_CONTINUED)
|
|
why = CLD_CONTINUED;
|
|
else
|
|
why = CLD_STOPPED;
|
|
|
|
signal->flags &= ~SIGNAL_CLD_MASK;
|
|
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/*
|
|
* Notify the parent that we're continuing. This event is
|
|
* always per-process and doesn't make whole lot of sense
|
|
* for ptracers, who shouldn't consume the state via
|
|
* wait(2) either, but, for backward compatibility, notify
|
|
* the ptracer of the group leader too unless it's gonna be
|
|
* a duplicate.
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(current, false, why);
|
|
|
|
if (ptrace_reparented(current->group_leader))
|
|
do_notify_parent_cldstop(current->group_leader,
|
|
true, why);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
goto relock;
|
|
}
|
|
|
|
for (;;) {
|
|
struct k_sigaction *ka;
|
|
enum pid_type type;
|
|
|
|
/* Has this task already been marked for death? */
|
|
if ((signal->flags & SIGNAL_GROUP_EXIT) ||
|
|
signal->group_exec_task) {
|
|
clear_siginfo(&ksig->info);
|
|
ksig->info.si_signo = signr = SIGKILL;
|
|
sigdelset(¤t->pending.signal, SIGKILL);
|
|
trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
|
|
&sighand->action[SIGKILL - 1]);
|
|
recalc_sigpending();
|
|
goto fatal;
|
|
}
|
|
|
|
if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
|
|
do_signal_stop(0))
|
|
goto relock;
|
|
|
|
if (unlikely(current->jobctl &
|
|
(JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
|
|
if (current->jobctl & JOBCTL_TRAP_MASK) {
|
|
do_jobctl_trap();
|
|
spin_unlock_irq(&sighand->siglock);
|
|
} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
|
|
do_freezer_trap();
|
|
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* If the task is leaving the frozen state, let's update
|
|
* cgroup counters and reset the frozen bit.
|
|
*/
|
|
if (unlikely(cgroup_task_frozen(current))) {
|
|
spin_unlock_irq(&sighand->siglock);
|
|
cgroup_leave_frozen(false);
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* Signals generated by the execution of an instruction
|
|
* need to be delivered before any other pending signals
|
|
* so that the instruction pointer in the signal stack
|
|
* frame points to the faulting instruction.
|
|
*/
|
|
type = PIDTYPE_PID;
|
|
signr = dequeue_synchronous_signal(&ksig->info);
|
|
if (!signr)
|
|
signr = dequeue_signal(current, ¤t->blocked,
|
|
&ksig->info, &type);
|
|
|
|
if (!signr)
|
|
break; /* will return 0 */
|
|
|
|
if (unlikely(current->ptrace) && (signr != SIGKILL) &&
|
|
!(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
|
|
signr = ptrace_signal(signr, &ksig->info, type);
|
|
if (!signr)
|
|
continue;
|
|
}
|
|
|
|
ka = &sighand->action[signr-1];
|
|
|
|
/* Trace actually delivered signals. */
|
|
trace_signal_deliver(signr, &ksig->info, ka);
|
|
|
|
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
|
|
continue;
|
|
if (ka->sa.sa_handler != SIG_DFL) {
|
|
/* Run the handler. */
|
|
ksig->ka = *ka;
|
|
|
|
if (ka->sa.sa_flags & SA_ONESHOT)
|
|
ka->sa.sa_handler = SIG_DFL;
|
|
|
|
break; /* will return non-zero "signr" value */
|
|
}
|
|
|
|
/*
|
|
* Now we are doing the default action for this signal.
|
|
*/
|
|
if (sig_kernel_ignore(signr)) /* Default is nothing. */
|
|
continue;
|
|
|
|
/*
|
|
* Global init gets no signals it doesn't want.
|
|
* Container-init gets no signals it doesn't want from same
|
|
* container.
|
|
*
|
|
* Note that if global/container-init sees a sig_kernel_only()
|
|
* signal here, the signal must have been generated internally
|
|
* or must have come from an ancestor namespace. In either
|
|
* case, the signal cannot be dropped.
|
|
*/
|
|
if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
|
|
!sig_kernel_only(signr))
|
|
continue;
|
|
|
|
if (sig_kernel_stop(signr)) {
|
|
/*
|
|
* The default action is to stop all threads in
|
|
* the thread group. The job control signals
|
|
* do nothing in an orphaned pgrp, but SIGSTOP
|
|
* always works. Note that siglock needs to be
|
|
* dropped during the call to is_orphaned_pgrp()
|
|
* because of lock ordering with tasklist_lock.
|
|
* This allows an intervening SIGCONT to be posted.
|
|
* We need to check for that and bail out if necessary.
|
|
*/
|
|
if (signr != SIGSTOP) {
|
|
spin_unlock_irq(&sighand->siglock);
|
|
|
|
/* signals can be posted during this window */
|
|
|
|
if (is_current_pgrp_orphaned())
|
|
goto relock;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
}
|
|
|
|
if (likely(do_signal_stop(ksig->info.si_signo))) {
|
|
/* It released the siglock. */
|
|
goto relock;
|
|
}
|
|
|
|
/*
|
|
* We didn't actually stop, due to a race
|
|
* with SIGCONT or something like that.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
fatal:
|
|
spin_unlock_irq(&sighand->siglock);
|
|
if (unlikely(cgroup_task_frozen(current)))
|
|
cgroup_leave_frozen(true);
|
|
|
|
/*
|
|
* Anything else is fatal, maybe with a core dump.
|
|
*/
|
|
current->flags |= PF_SIGNALED;
|
|
|
|
if (sig_kernel_coredump(signr)) {
|
|
if (print_fatal_signals)
|
|
print_fatal_signal(ksig->info.si_signo);
|
|
proc_coredump_connector(current);
|
|
/*
|
|
* If it was able to dump core, this kills all
|
|
* other threads in the group and synchronizes with
|
|
* their demise. If we lost the race with another
|
|
* thread getting here, it set group_exit_code
|
|
* first and our do_group_exit call below will use
|
|
* that value and ignore the one we pass it.
|
|
*/
|
|
do_coredump(&ksig->info);
|
|
}
|
|
|
|
/*
|
|
* PF_IO_WORKER threads will catch and exit on fatal signals
|
|
* themselves. They have cleanup that must be performed, so
|
|
* we cannot call do_exit() on their behalf.
|
|
*/
|
|
if (current->flags & PF_IO_WORKER)
|
|
goto out;
|
|
|
|
/*
|
|
* Death signals, no core dump.
|
|
*/
|
|
do_group_exit(ksig->info.si_signo);
|
|
/* NOTREACHED */
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
out:
|
|
ksig->sig = signr;
|
|
|
|
if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
|
|
hide_si_addr_tag_bits(ksig);
|
|
|
|
return ksig->sig > 0;
|
|
}
|
|
|
|
/**
|
|
* signal_delivered - called after signal delivery to update blocked signals
|
|
* @ksig: kernel signal struct
|
|
* @stepping: nonzero if debugger single-step or block-step in use
|
|
*
|
|
* This function should be called when a signal has successfully been
|
|
* delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
|
|
* is always blocked), and the signal itself is blocked unless %SA_NODEFER
|
|
* is set in @ksig->ka.sa.sa_flags. Tracing is notified.
|
|
*/
|
|
static void signal_delivered(struct ksignal *ksig, int stepping)
|
|
{
|
|
sigset_t blocked;
|
|
|
|
/* A signal was successfully delivered, and the
|
|
saved sigmask was stored on the signal frame,
|
|
and will be restored by sigreturn. So we can
|
|
simply clear the restore sigmask flag. */
|
|
clear_restore_sigmask();
|
|
|
|
sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
|
|
if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
|
|
sigaddset(&blocked, ksig->sig);
|
|
set_current_blocked(&blocked);
|
|
if (current->sas_ss_flags & SS_AUTODISARM)
|
|
sas_ss_reset(current);
|
|
if (stepping)
|
|
ptrace_notify(SIGTRAP, 0);
|
|
}
|
|
|
|
void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
|
|
{
|
|
if (failed)
|
|
force_sigsegv(ksig->sig);
|
|
else
|
|
signal_delivered(ksig, stepping);
|
|
}
|
|
|
|
/*
|
|
* It could be that complete_signal() picked us to notify about the
|
|
* group-wide signal. Other threads should be notified now to take
|
|
* the shared signals in @which since we will not.
|
|
*/
|
|
static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
|
|
{
|
|
sigset_t retarget;
|
|
struct task_struct *t;
|
|
|
|
sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
|
|
if (sigisemptyset(&retarget))
|
|
return;
|
|
|
|
t = tsk;
|
|
while_each_thread(tsk, t) {
|
|
if (t->flags & PF_EXITING)
|
|
continue;
|
|
|
|
if (!has_pending_signals(&retarget, &t->blocked))
|
|
continue;
|
|
/* Remove the signals this thread can handle. */
|
|
sigandsets(&retarget, &retarget, &t->blocked);
|
|
|
|
if (!task_sigpending(t))
|
|
signal_wake_up(t, 0);
|
|
|
|
if (sigisemptyset(&retarget))
|
|
break;
|
|
}
|
|
}
|
|
|
|
void exit_signals(struct task_struct *tsk)
|
|
{
|
|
int group_stop = 0;
|
|
sigset_t unblocked;
|
|
|
|
/*
|
|
* @tsk is about to have PF_EXITING set - lock out users which
|
|
* expect stable threadgroup.
|
|
*/
|
|
cgroup_threadgroup_change_begin(tsk);
|
|
|
|
if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
|
|
sched_mm_cid_exit_signals(tsk);
|
|
tsk->flags |= PF_EXITING;
|
|
cgroup_threadgroup_change_end(tsk);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
/*
|
|
* From now this task is not visible for group-wide signals,
|
|
* see wants_signal(), do_signal_stop().
|
|
*/
|
|
sched_mm_cid_exit_signals(tsk);
|
|
tsk->flags |= PF_EXITING;
|
|
|
|
cgroup_threadgroup_change_end(tsk);
|
|
|
|
if (!task_sigpending(tsk))
|
|
goto out;
|
|
|
|
unblocked = tsk->blocked;
|
|
signotset(&unblocked);
|
|
retarget_shared_pending(tsk, &unblocked);
|
|
|
|
if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
|
|
task_participate_group_stop(tsk))
|
|
group_stop = CLD_STOPPED;
|
|
out:
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
/*
|
|
* If group stop has completed, deliver the notification. This
|
|
* should always go to the real parent of the group leader.
|
|
*/
|
|
if (unlikely(group_stop)) {
|
|
read_lock(&tasklist_lock);
|
|
do_notify_parent_cldstop(tsk, false, group_stop);
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* System call entry points.
|
|
*/
|
|
|
|
/**
|
|
* sys_restart_syscall - restart a system call
|
|
*/
|
|
SYSCALL_DEFINE0(restart_syscall)
|
|
{
|
|
struct restart_block *restart = ¤t->restart_block;
|
|
return restart->fn(restart);
|
|
}
|
|
|
|
long do_no_restart_syscall(struct restart_block *param)
|
|
{
|
|
return -EINTR;
|
|
}
|
|
|
|
static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
|
|
{
|
|
if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
|
|
sigset_t newblocked;
|
|
/* A set of now blocked but previously unblocked signals. */
|
|
sigandnsets(&newblocked, newset, ¤t->blocked);
|
|
retarget_shared_pending(tsk, &newblocked);
|
|
}
|
|
tsk->blocked = *newset;
|
|
recalc_sigpending();
|
|
}
|
|
|
|
/**
|
|
* set_current_blocked - change current->blocked mask
|
|
* @newset: new mask
|
|
*
|
|
* It is wrong to change ->blocked directly, this helper should be used
|
|
* to ensure the process can't miss a shared signal we are going to block.
|
|
*/
|
|
void set_current_blocked(sigset_t *newset)
|
|
{
|
|
sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
__set_current_blocked(newset);
|
|
}
|
|
|
|
void __set_current_blocked(const sigset_t *newset)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
/*
|
|
* In case the signal mask hasn't changed, there is nothing we need
|
|
* to do. The current->blocked shouldn't be modified by other task.
|
|
*/
|
|
if (sigequalsets(&tsk->blocked, newset))
|
|
return;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
__set_task_blocked(tsk, newset);
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
}
|
|
|
|
/*
|
|
* This is also useful for kernel threads that want to temporarily
|
|
* (or permanently) block certain signals.
|
|
*
|
|
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
|
|
* interface happily blocks "unblockable" signals like SIGKILL
|
|
* and friends.
|
|
*/
|
|
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
sigset_t newset;
|
|
|
|
/* Lockless, only current can change ->blocked, never from irq */
|
|
if (oldset)
|
|
*oldset = tsk->blocked;
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigorsets(&newset, &tsk->blocked, set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigandnsets(&newset, &tsk->blocked, set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
newset = *set;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
__set_current_blocked(&newset);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sigprocmask);
|
|
|
|
/*
|
|
* The api helps set app-provided sigmasks.
|
|
*
|
|
* This is useful for syscalls such as ppoll, pselect, io_pgetevents and
|
|
* epoll_pwait where a new sigmask is passed from userland for the syscalls.
|
|
*
|
|
* Note that it does set_restore_sigmask() in advance, so it must be always
|
|
* paired with restore_saved_sigmask_unless() before return from syscall.
|
|
*/
|
|
int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
|
|
{
|
|
sigset_t kmask;
|
|
|
|
if (!umask)
|
|
return 0;
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
|
|
set_restore_sigmask();
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(&kmask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int set_compat_user_sigmask(const compat_sigset_t __user *umask,
|
|
size_t sigsetsize)
|
|
{
|
|
sigset_t kmask;
|
|
|
|
if (!umask)
|
|
return 0;
|
|
if (sigsetsize != sizeof(compat_sigset_t))
|
|
return -EINVAL;
|
|
if (get_compat_sigset(&kmask, umask))
|
|
return -EFAULT;
|
|
|
|
set_restore_sigmask();
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(&kmask);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* sys_rt_sigprocmask - change the list of currently blocked signals
|
|
* @how: whether to add, remove, or set signals
|
|
* @nset: stores pending signals
|
|
* @oset: previous value of signal mask if non-null
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
|
|
sigset_t __user *, oset, size_t, sigsetsize)
|
|
{
|
|
sigset_t old_set, new_set;
|
|
int error;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
old_set = current->blocked;
|
|
|
|
if (nset) {
|
|
if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, NULL);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (oset) {
|
|
if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
|
|
compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t old_set = current->blocked;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (nset) {
|
|
sigset_t new_set;
|
|
int error;
|
|
if (get_compat_sigset(&new_set, nset))
|
|
return -EFAULT;
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
error = sigprocmask(how, &new_set, NULL);
|
|
if (error)
|
|
return error;
|
|
}
|
|
return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
|
|
}
|
|
#endif
|
|
|
|
static void do_sigpending(sigset_t *set)
|
|
{
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
sigorsets(set, ¤t->pending.signal,
|
|
¤t->signal->shared_pending.signal);
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
/* Outside the lock because only this thread touches it. */
|
|
sigandsets(set, ¤t->blocked, set);
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigpending - examine a pending signal that has been raised
|
|
* while blocked
|
|
* @uset: stores pending signals
|
|
* @sigsetsize: size of sigset_t type or larger
|
|
*/
|
|
SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
|
|
{
|
|
sigset_t set;
|
|
|
|
if (sigsetsize > sizeof(*uset))
|
|
return -EINVAL;
|
|
|
|
do_sigpending(&set);
|
|
|
|
if (copy_to_user(uset, &set, sigsetsize))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
|
|
compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t set;
|
|
|
|
if (sigsetsize > sizeof(*uset))
|
|
return -EINVAL;
|
|
|
|
do_sigpending(&set);
|
|
|
|
return put_compat_sigset(uset, &set, sigsetsize);
|
|
}
|
|
#endif
|
|
|
|
static const struct {
|
|
unsigned char limit, layout;
|
|
} sig_sicodes[] = {
|
|
[SIGILL] = { NSIGILL, SIL_FAULT },
|
|
[SIGFPE] = { NSIGFPE, SIL_FAULT },
|
|
[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
|
|
[SIGBUS] = { NSIGBUS, SIL_FAULT },
|
|
[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
|
|
#if defined(SIGEMT)
|
|
[SIGEMT] = { NSIGEMT, SIL_FAULT },
|
|
#endif
|
|
[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
|
|
[SIGPOLL] = { NSIGPOLL, SIL_POLL },
|
|
[SIGSYS] = { NSIGSYS, SIL_SYS },
|
|
};
|
|
|
|
static bool known_siginfo_layout(unsigned sig, int si_code)
|
|
{
|
|
if (si_code == SI_KERNEL)
|
|
return true;
|
|
else if ((si_code > SI_USER)) {
|
|
if (sig_specific_sicodes(sig)) {
|
|
if (si_code <= sig_sicodes[sig].limit)
|
|
return true;
|
|
}
|
|
else if (si_code <= NSIGPOLL)
|
|
return true;
|
|
}
|
|
else if (si_code >= SI_DETHREAD)
|
|
return true;
|
|
else if (si_code == SI_ASYNCNL)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
|
|
{
|
|
enum siginfo_layout layout = SIL_KILL;
|
|
if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
|
|
if ((sig < ARRAY_SIZE(sig_sicodes)) &&
|
|
(si_code <= sig_sicodes[sig].limit)) {
|
|
layout = sig_sicodes[sig].layout;
|
|
/* Handle the exceptions */
|
|
if ((sig == SIGBUS) &&
|
|
(si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
|
|
layout = SIL_FAULT_MCEERR;
|
|
else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
|
|
layout = SIL_FAULT_BNDERR;
|
|
#ifdef SEGV_PKUERR
|
|
else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
|
|
layout = SIL_FAULT_PKUERR;
|
|
#endif
|
|
else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
|
|
layout = SIL_FAULT_PERF_EVENT;
|
|
else if (IS_ENABLED(CONFIG_SPARC) &&
|
|
(sig == SIGILL) && (si_code == ILL_ILLTRP))
|
|
layout = SIL_FAULT_TRAPNO;
|
|
else if (IS_ENABLED(CONFIG_ALPHA) &&
|
|
((sig == SIGFPE) ||
|
|
((sig == SIGTRAP) && (si_code == TRAP_UNK))))
|
|
layout = SIL_FAULT_TRAPNO;
|
|
}
|
|
else if (si_code <= NSIGPOLL)
|
|
layout = SIL_POLL;
|
|
} else {
|
|
if (si_code == SI_TIMER)
|
|
layout = SIL_TIMER;
|
|
else if (si_code == SI_SIGIO)
|
|
layout = SIL_POLL;
|
|
else if (si_code < 0)
|
|
layout = SIL_RT;
|
|
}
|
|
return layout;
|
|
}
|
|
|
|
static inline char __user *si_expansion(const siginfo_t __user *info)
|
|
{
|
|
return ((char __user *)info) + sizeof(struct kernel_siginfo);
|
|
}
|
|
|
|
int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
|
|
{
|
|
char __user *expansion = si_expansion(to);
|
|
if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
|
|
return -EFAULT;
|
|
if (clear_user(expansion, SI_EXPANSION_SIZE))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
|
|
const siginfo_t __user *from)
|
|
{
|
|
if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
|
|
char __user *expansion = si_expansion(from);
|
|
char buf[SI_EXPANSION_SIZE];
|
|
int i;
|
|
/*
|
|
* An unknown si_code might need more than
|
|
* sizeof(struct kernel_siginfo) bytes. Verify all of the
|
|
* extra bytes are 0. This guarantees copy_siginfo_to_user
|
|
* will return this data to userspace exactly.
|
|
*/
|
|
if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
|
|
return -EFAULT;
|
|
for (i = 0; i < SI_EXPANSION_SIZE; i++) {
|
|
if (buf[i] != 0)
|
|
return -E2BIG;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
|
|
const siginfo_t __user *from)
|
|
{
|
|
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
|
|
return -EFAULT;
|
|
to->si_signo = signo;
|
|
return post_copy_siginfo_from_user(to, from);
|
|
}
|
|
|
|
int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
|
|
{
|
|
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
|
|
return -EFAULT;
|
|
return post_copy_siginfo_from_user(to, from);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
/**
|
|
* copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
|
|
* @to: compat siginfo destination
|
|
* @from: kernel siginfo source
|
|
*
|
|
* Note: This function does not work properly for the SIGCHLD on x32, but
|
|
* fortunately it doesn't have to. The only valid callers for this function are
|
|
* copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
|
|
* The latter does not care because SIGCHLD will never cause a coredump.
|
|
*/
|
|
void copy_siginfo_to_external32(struct compat_siginfo *to,
|
|
const struct kernel_siginfo *from)
|
|
{
|
|
memset(to, 0, sizeof(*to));
|
|
|
|
to->si_signo = from->si_signo;
|
|
to->si_errno = from->si_errno;
|
|
to->si_code = from->si_code;
|
|
switch(siginfo_layout(from->si_signo, from->si_code)) {
|
|
case SIL_KILL:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
break;
|
|
case SIL_TIMER:
|
|
to->si_tid = from->si_tid;
|
|
to->si_overrun = from->si_overrun;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_POLL:
|
|
to->si_band = from->si_band;
|
|
to->si_fd = from->si_fd;
|
|
break;
|
|
case SIL_FAULT:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
break;
|
|
case SIL_FAULT_TRAPNO:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_trapno = from->si_trapno;
|
|
break;
|
|
case SIL_FAULT_MCEERR:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_addr_lsb = from->si_addr_lsb;
|
|
break;
|
|
case SIL_FAULT_BNDERR:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_lower = ptr_to_compat(from->si_lower);
|
|
to->si_upper = ptr_to_compat(from->si_upper);
|
|
break;
|
|
case SIL_FAULT_PKUERR:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_pkey = from->si_pkey;
|
|
break;
|
|
case SIL_FAULT_PERF_EVENT:
|
|
to->si_addr = ptr_to_compat(from->si_addr);
|
|
to->si_perf_data = from->si_perf_data;
|
|
to->si_perf_type = from->si_perf_type;
|
|
to->si_perf_flags = from->si_perf_flags;
|
|
break;
|
|
case SIL_CHLD:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_status = from->si_status;
|
|
to->si_utime = from->si_utime;
|
|
to->si_stime = from->si_stime;
|
|
break;
|
|
case SIL_RT:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_SYS:
|
|
to->si_call_addr = ptr_to_compat(from->si_call_addr);
|
|
to->si_syscall = from->si_syscall;
|
|
to->si_arch = from->si_arch;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
|
|
const struct kernel_siginfo *from)
|
|
{
|
|
struct compat_siginfo new;
|
|
|
|
copy_siginfo_to_external32(&new, from);
|
|
if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
|
|
const struct compat_siginfo *from)
|
|
{
|
|
clear_siginfo(to);
|
|
to->si_signo = from->si_signo;
|
|
to->si_errno = from->si_errno;
|
|
to->si_code = from->si_code;
|
|
switch(siginfo_layout(from->si_signo, from->si_code)) {
|
|
case SIL_KILL:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
break;
|
|
case SIL_TIMER:
|
|
to->si_tid = from->si_tid;
|
|
to->si_overrun = from->si_overrun;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_POLL:
|
|
to->si_band = from->si_band;
|
|
to->si_fd = from->si_fd;
|
|
break;
|
|
case SIL_FAULT:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
break;
|
|
case SIL_FAULT_TRAPNO:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_trapno = from->si_trapno;
|
|
break;
|
|
case SIL_FAULT_MCEERR:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_addr_lsb = from->si_addr_lsb;
|
|
break;
|
|
case SIL_FAULT_BNDERR:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_lower = compat_ptr(from->si_lower);
|
|
to->si_upper = compat_ptr(from->si_upper);
|
|
break;
|
|
case SIL_FAULT_PKUERR:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_pkey = from->si_pkey;
|
|
break;
|
|
case SIL_FAULT_PERF_EVENT:
|
|
to->si_addr = compat_ptr(from->si_addr);
|
|
to->si_perf_data = from->si_perf_data;
|
|
to->si_perf_type = from->si_perf_type;
|
|
to->si_perf_flags = from->si_perf_flags;
|
|
break;
|
|
case SIL_CHLD:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_status = from->si_status;
|
|
#ifdef CONFIG_X86_X32_ABI
|
|
if (in_x32_syscall()) {
|
|
to->si_utime = from->_sifields._sigchld_x32._utime;
|
|
to->si_stime = from->_sifields._sigchld_x32._stime;
|
|
} else
|
|
#endif
|
|
{
|
|
to->si_utime = from->si_utime;
|
|
to->si_stime = from->si_stime;
|
|
}
|
|
break;
|
|
case SIL_RT:
|
|
to->si_pid = from->si_pid;
|
|
to->si_uid = from->si_uid;
|
|
to->si_int = from->si_int;
|
|
break;
|
|
case SIL_SYS:
|
|
to->si_call_addr = compat_ptr(from->si_call_addr);
|
|
to->si_syscall = from->si_syscall;
|
|
to->si_arch = from->si_arch;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
|
|
const struct compat_siginfo __user *ufrom)
|
|
{
|
|
struct compat_siginfo from;
|
|
|
|
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
|
|
return -EFAULT;
|
|
|
|
from.si_signo = signo;
|
|
return post_copy_siginfo_from_user32(to, &from);
|
|
}
|
|
|
|
int copy_siginfo_from_user32(struct kernel_siginfo *to,
|
|
const struct compat_siginfo __user *ufrom)
|
|
{
|
|
struct compat_siginfo from;
|
|
|
|
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
|
|
return -EFAULT;
|
|
|
|
return post_copy_siginfo_from_user32(to, &from);
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
/**
|
|
* do_sigtimedwait - wait for queued signals specified in @which
|
|
* @which: queued signals to wait for
|
|
* @info: if non-null, the signal's siginfo is returned here
|
|
* @ts: upper bound on process time suspension
|
|
*/
|
|
static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
|
|
const struct timespec64 *ts)
|
|
{
|
|
ktime_t *to = NULL, timeout = KTIME_MAX;
|
|
struct task_struct *tsk = current;
|
|
sigset_t mask = *which;
|
|
enum pid_type type;
|
|
int sig, ret = 0;
|
|
|
|
if (ts) {
|
|
if (!timespec64_valid(ts))
|
|
return -EINVAL;
|
|
timeout = timespec64_to_ktime(*ts);
|
|
to = &timeout;
|
|
}
|
|
|
|
/*
|
|
* Invert the set of allowed signals to get those we want to block.
|
|
*/
|
|
sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
signotset(&mask);
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
sig = dequeue_signal(tsk, &mask, info, &type);
|
|
if (!sig && timeout) {
|
|
/*
|
|
* None ready, temporarily unblock those we're interested
|
|
* while we are sleeping in so that we'll be awakened when
|
|
* they arrive. Unblocking is always fine, we can avoid
|
|
* set_current_blocked().
|
|
*/
|
|
tsk->real_blocked = tsk->blocked;
|
|
sigandsets(&tsk->blocked, &tsk->blocked, &mask);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
|
|
HRTIMER_MODE_REL);
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
__set_task_blocked(tsk, &tsk->real_blocked);
|
|
sigemptyset(&tsk->real_blocked);
|
|
sig = dequeue_signal(tsk, &mask, info, &type);
|
|
}
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
|
|
if (sig)
|
|
return sig;
|
|
return ret ? -EINTR : -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigtimedwait - synchronously wait for queued signals specified
|
|
* in @uthese
|
|
* @uthese: queued signals to wait for
|
|
* @uinfo: if non-null, the signal's siginfo is returned here
|
|
* @uts: upper bound on process time suspension
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
|
|
siginfo_t __user *, uinfo,
|
|
const struct __kernel_timespec __user *, uts,
|
|
size_t, sigsetsize)
|
|
{
|
|
sigset_t these;
|
|
struct timespec64 ts;
|
|
kernel_siginfo_t info;
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_timespec64(&ts, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
|
|
siginfo_t __user *, uinfo,
|
|
const struct old_timespec32 __user *, uts,
|
|
size_t, sigsetsize)
|
|
{
|
|
sigset_t these;
|
|
struct timespec64 ts;
|
|
kernel_siginfo_t info;
|
|
int ret;
|
|
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&these, uthese, sizeof(these)))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_old_timespec32(&ts, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
|
|
struct compat_siginfo __user *, uinfo,
|
|
struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t s;
|
|
struct timespec64 t;
|
|
kernel_siginfo_t info;
|
|
long ret;
|
|
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (get_compat_sigset(&s, uthese))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_timespec64(&t, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user32(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
|
|
struct compat_siginfo __user *, uinfo,
|
|
struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t s;
|
|
struct timespec64 t;
|
|
kernel_siginfo_t info;
|
|
long ret;
|
|
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (get_compat_sigset(&s, uthese))
|
|
return -EFAULT;
|
|
|
|
if (uts) {
|
|
if (get_old_timespec32(&t, uts))
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
|
|
|
|
if (ret > 0 && uinfo) {
|
|
if (copy_siginfo_to_user32(uinfo, &info))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
|
|
{
|
|
clear_siginfo(info);
|
|
info->si_signo = sig;
|
|
info->si_errno = 0;
|
|
info->si_code = SI_USER;
|
|
info->si_pid = task_tgid_vnr(current);
|
|
info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
|
|
}
|
|
|
|
/**
|
|
* sys_kill - send a signal to a process
|
|
* @pid: the PID of the process
|
|
* @sig: signal to be sent
|
|
*/
|
|
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
prepare_kill_siginfo(sig, &info);
|
|
|
|
return kill_something_info(sig, &info, pid);
|
|
}
|
|
|
|
/*
|
|
* Verify that the signaler and signalee either are in the same pid namespace
|
|
* or that the signaler's pid namespace is an ancestor of the signalee's pid
|
|
* namespace.
|
|
*/
|
|
static bool access_pidfd_pidns(struct pid *pid)
|
|
{
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
struct pid_namespace *p = ns_of_pid(pid);
|
|
|
|
for (;;) {
|
|
if (!p)
|
|
return false;
|
|
if (p == active)
|
|
break;
|
|
p = p->parent;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
|
|
siginfo_t __user *info)
|
|
{
|
|
#ifdef CONFIG_COMPAT
|
|
/*
|
|
* Avoid hooking up compat syscalls and instead handle necessary
|
|
* conversions here. Note, this is a stop-gap measure and should not be
|
|
* considered a generic solution.
|
|
*/
|
|
if (in_compat_syscall())
|
|
return copy_siginfo_from_user32(
|
|
kinfo, (struct compat_siginfo __user *)info);
|
|
#endif
|
|
return copy_siginfo_from_user(kinfo, info);
|
|
}
|
|
|
|
static struct pid *pidfd_to_pid(const struct file *file)
|
|
{
|
|
struct pid *pid;
|
|
|
|
pid = pidfd_pid(file);
|
|
if (!IS_ERR(pid))
|
|
return pid;
|
|
|
|
return tgid_pidfd_to_pid(file);
|
|
}
|
|
|
|
/**
|
|
* sys_pidfd_send_signal - Signal a process through a pidfd
|
|
* @pidfd: file descriptor of the process
|
|
* @sig: signal to send
|
|
* @info: signal info
|
|
* @flags: future flags
|
|
*
|
|
* The syscall currently only signals via PIDTYPE_PID which covers
|
|
* kill(<positive-pid>, <signal>. It does not signal threads or process
|
|
* groups.
|
|
* In order to extend the syscall to threads and process groups the @flags
|
|
* argument should be used. In essence, the @flags argument will determine
|
|
* what is signaled and not the file descriptor itself. Put in other words,
|
|
* grouping is a property of the flags argument not a property of the file
|
|
* descriptor.
|
|
*
|
|
* Return: 0 on success, negative errno on failure
|
|
*/
|
|
SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
|
|
siginfo_t __user *, info, unsigned int, flags)
|
|
{
|
|
int ret;
|
|
struct fd f;
|
|
struct pid *pid;
|
|
kernel_siginfo_t kinfo;
|
|
|
|
/* Enforce flags be set to 0 until we add an extension. */
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
f = fdget(pidfd);
|
|
if (!f.file)
|
|
return -EBADF;
|
|
|
|
/* Is this a pidfd? */
|
|
pid = pidfd_to_pid(f.file);
|
|
if (IS_ERR(pid)) {
|
|
ret = PTR_ERR(pid);
|
|
goto err;
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
if (!access_pidfd_pidns(pid))
|
|
goto err;
|
|
|
|
if (info) {
|
|
ret = copy_siginfo_from_user_any(&kinfo, info);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
ret = -EINVAL;
|
|
if (unlikely(sig != kinfo.si_signo))
|
|
goto err;
|
|
|
|
/* Only allow sending arbitrary signals to yourself. */
|
|
ret = -EPERM;
|
|
if ((task_pid(current) != pid) &&
|
|
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
|
|
goto err;
|
|
} else {
|
|
prepare_kill_siginfo(sig, &kinfo);
|
|
}
|
|
|
|
ret = kill_pid_info(sig, &kinfo, pid);
|
|
|
|
err:
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
|
|
{
|
|
struct task_struct *p;
|
|
int error = -ESRCH;
|
|
|
|
rcu_read_lock();
|
|
p = find_task_by_vpid(pid);
|
|
if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
|
|
error = check_kill_permission(sig, info, p);
|
|
/*
|
|
* The null signal is a permissions and process existence
|
|
* probe. No signal is actually delivered.
|
|
*/
|
|
if (!error && sig) {
|
|
error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
|
|
/*
|
|
* If lock_task_sighand() failed we pretend the task
|
|
* dies after receiving the signal. The window is tiny,
|
|
* and the signal is private anyway.
|
|
*/
|
|
if (unlikely(error == -ESRCH))
|
|
error = 0;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
static int do_tkill(pid_t tgid, pid_t pid, int sig)
|
|
{
|
|
struct kernel_siginfo info;
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_TKILL;
|
|
info.si_pid = task_tgid_vnr(current);
|
|
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
|
|
|
|
return do_send_specific(tgid, pid, sig, &info);
|
|
}
|
|
|
|
/**
|
|
* sys_tgkill - send signal to one specific thread
|
|
* @tgid: the thread group ID of the thread
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
*
|
|
* This syscall also checks the @tgid and returns -ESRCH even if the PID
|
|
* exists but it's not belonging to the target process anymore. This
|
|
* method solves the problem of threads exiting and PIDs getting reused.
|
|
*/
|
|
SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(tgid, pid, sig);
|
|
}
|
|
|
|
/**
|
|
* sys_tkill - send signal to one specific task
|
|
* @pid: the PID of the task
|
|
* @sig: signal to be sent
|
|
*
|
|
* Send a signal to only one task, even if it's a CLONE_THREAD task.
|
|
*/
|
|
SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
return do_tkill(0, pid, sig);
|
|
}
|
|
|
|
static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
|
|
{
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
* Nor can they impersonate a kill()/tgkill(), which adds source info.
|
|
*/
|
|
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
|
|
(task_pid_vnr(current) != pid))
|
|
return -EPERM;
|
|
|
|
/* POSIX.1b doesn't mention process groups. */
|
|
return kill_proc_info(sig, info, pid);
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigqueueinfo - send signal information to a signal
|
|
* @pid: the PID of the thread
|
|
* @sig: signal to be sent
|
|
* @uinfo: signal info to be sent
|
|
*/
|
|
SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_sigqueueinfo(pid, sig, &info);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
|
|
compat_pid_t, pid,
|
|
int, sig,
|
|
struct compat_siginfo __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_sigqueueinfo(pid, sig, &info);
|
|
}
|
|
#endif
|
|
|
|
static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
|
|
{
|
|
/* This is only valid for single tasks */
|
|
if (pid <= 0 || tgid <= 0)
|
|
return -EINVAL;
|
|
|
|
/* Not even root can pretend to send signals from the kernel.
|
|
* Nor can they impersonate a kill()/tgkill(), which adds source info.
|
|
*/
|
|
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
|
|
(task_pid_vnr(current) != pid))
|
|
return -EPERM;
|
|
|
|
return do_send_specific(tgid, pid, sig, info);
|
|
}
|
|
|
|
SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
|
|
siginfo_t __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
|
|
compat_pid_t, tgid,
|
|
compat_pid_t, pid,
|
|
int, sig,
|
|
struct compat_siginfo __user *, uinfo)
|
|
{
|
|
kernel_siginfo_t info;
|
|
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* For kthreads only, must not be used if cloned with CLONE_SIGHAND
|
|
*/
|
|
void kernel_sigaction(int sig, __sighandler_t action)
|
|
{
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
current->sighand->action[sig - 1].sa.sa_handler = action;
|
|
if (action == SIG_IGN) {
|
|
sigset_t mask;
|
|
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, sig);
|
|
|
|
flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
|
|
flush_sigqueue_mask(&mask, ¤t->pending);
|
|
recalc_sigpending();
|
|
}
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
EXPORT_SYMBOL(kernel_sigaction);
|
|
|
|
void __weak sigaction_compat_abi(struct k_sigaction *act,
|
|
struct k_sigaction *oact)
|
|
{
|
|
}
|
|
|
|
int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
|
|
{
|
|
struct task_struct *p = current, *t;
|
|
struct k_sigaction *k;
|
|
sigset_t mask;
|
|
|
|
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
|
|
return -EINVAL;
|
|
|
|
k = &p->sighand->action[sig-1];
|
|
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
if (k->sa.sa_flags & SA_IMMUTABLE) {
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return -EINVAL;
|
|
}
|
|
if (oact)
|
|
*oact = *k;
|
|
|
|
/*
|
|
* Make sure that we never accidentally claim to support SA_UNSUPPORTED,
|
|
* e.g. by having an architecture use the bit in their uapi.
|
|
*/
|
|
BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
|
|
|
|
/*
|
|
* Clear unknown flag bits in order to allow userspace to detect missing
|
|
* support for flag bits and to allow the kernel to use non-uapi bits
|
|
* internally.
|
|
*/
|
|
if (act)
|
|
act->sa.sa_flags &= UAPI_SA_FLAGS;
|
|
if (oact)
|
|
oact->sa.sa_flags &= UAPI_SA_FLAGS;
|
|
|
|
sigaction_compat_abi(act, oact);
|
|
|
|
if (act) {
|
|
sigdelsetmask(&act->sa.sa_mask,
|
|
sigmask(SIGKILL) | sigmask(SIGSTOP));
|
|
*k = *act;
|
|
/*
|
|
* POSIX 3.3.1.3:
|
|
* "Setting a signal action to SIG_IGN for a signal that is
|
|
* pending shall cause the pending signal to be discarded,
|
|
* whether or not it is blocked."
|
|
*
|
|
* "Setting a signal action to SIG_DFL for a signal that is
|
|
* pending and whose default action is to ignore the signal
|
|
* (for example, SIGCHLD), shall cause the pending signal to
|
|
* be discarded, whether or not it is blocked"
|
|
*/
|
|
if (sig_handler_ignored(sig_handler(p, sig), sig)) {
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, sig);
|
|
flush_sigqueue_mask(&mask, &p->signal->shared_pending);
|
|
for_each_thread(p, t)
|
|
flush_sigqueue_mask(&mask, &t->pending);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DYNAMIC_SIGFRAME
|
|
static inline void sigaltstack_lock(void)
|
|
__acquires(¤t->sighand->siglock)
|
|
{
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
}
|
|
|
|
static inline void sigaltstack_unlock(void)
|
|
__releases(¤t->sighand->siglock)
|
|
{
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
}
|
|
#else
|
|
static inline void sigaltstack_lock(void) { }
|
|
static inline void sigaltstack_unlock(void) { }
|
|
#endif
|
|
|
|
static int
|
|
do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
|
|
size_t min_ss_size)
|
|
{
|
|
struct task_struct *t = current;
|
|
int ret = 0;
|
|
|
|
if (oss) {
|
|
memset(oss, 0, sizeof(stack_t));
|
|
oss->ss_sp = (void __user *) t->sas_ss_sp;
|
|
oss->ss_size = t->sas_ss_size;
|
|
oss->ss_flags = sas_ss_flags(sp) |
|
|
(current->sas_ss_flags & SS_FLAG_BITS);
|
|
}
|
|
|
|
if (ss) {
|
|
void __user *ss_sp = ss->ss_sp;
|
|
size_t ss_size = ss->ss_size;
|
|
unsigned ss_flags = ss->ss_flags;
|
|
int ss_mode;
|
|
|
|
if (unlikely(on_sig_stack(sp)))
|
|
return -EPERM;
|
|
|
|
ss_mode = ss_flags & ~SS_FLAG_BITS;
|
|
if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
|
|
ss_mode != 0))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Return before taking any locks if no actual
|
|
* sigaltstack changes were requested.
|
|
*/
|
|
if (t->sas_ss_sp == (unsigned long)ss_sp &&
|
|
t->sas_ss_size == ss_size &&
|
|
t->sas_ss_flags == ss_flags)
|
|
return 0;
|
|
|
|
sigaltstack_lock();
|
|
if (ss_mode == SS_DISABLE) {
|
|
ss_size = 0;
|
|
ss_sp = NULL;
|
|
} else {
|
|
if (unlikely(ss_size < min_ss_size))
|
|
ret = -ENOMEM;
|
|
if (!sigaltstack_size_valid(ss_size))
|
|
ret = -ENOMEM;
|
|
}
|
|
if (!ret) {
|
|
t->sas_ss_sp = (unsigned long) ss_sp;
|
|
t->sas_ss_size = ss_size;
|
|
t->sas_ss_flags = ss_flags;
|
|
}
|
|
sigaltstack_unlock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
|
|
{
|
|
stack_t new, old;
|
|
int err;
|
|
if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
|
|
return -EFAULT;
|
|
err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
|
|
current_user_stack_pointer(),
|
|
MINSIGSTKSZ);
|
|
if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
|
|
err = -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
int restore_altstack(const stack_t __user *uss)
|
|
{
|
|
stack_t new;
|
|
if (copy_from_user(&new, uss, sizeof(stack_t)))
|
|
return -EFAULT;
|
|
(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
|
|
MINSIGSTKSZ);
|
|
/* squash all but EFAULT for now */
|
|
return 0;
|
|
}
|
|
|
|
int __save_altstack(stack_t __user *uss, unsigned long sp)
|
|
{
|
|
struct task_struct *t = current;
|
|
int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
|
|
__put_user(t->sas_ss_flags, &uss->ss_flags) |
|
|
__put_user(t->sas_ss_size, &uss->ss_size);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
|
|
compat_stack_t __user *uoss_ptr)
|
|
{
|
|
stack_t uss, uoss;
|
|
int ret;
|
|
|
|
if (uss_ptr) {
|
|
compat_stack_t uss32;
|
|
if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
|
|
return -EFAULT;
|
|
uss.ss_sp = compat_ptr(uss32.ss_sp);
|
|
uss.ss_flags = uss32.ss_flags;
|
|
uss.ss_size = uss32.ss_size;
|
|
}
|
|
ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
|
|
compat_user_stack_pointer(),
|
|
COMPAT_MINSIGSTKSZ);
|
|
if (ret >= 0 && uoss_ptr) {
|
|
compat_stack_t old;
|
|
memset(&old, 0, sizeof(old));
|
|
old.ss_sp = ptr_to_compat(uoss.ss_sp);
|
|
old.ss_flags = uoss.ss_flags;
|
|
old.ss_size = uoss.ss_size;
|
|
if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
|
|
ret = -EFAULT;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE2(sigaltstack,
|
|
const compat_stack_t __user *, uss_ptr,
|
|
compat_stack_t __user *, uoss_ptr)
|
|
{
|
|
return do_compat_sigaltstack(uss_ptr, uoss_ptr);
|
|
}
|
|
|
|
int compat_restore_altstack(const compat_stack_t __user *uss)
|
|
{
|
|
int err = do_compat_sigaltstack(uss, NULL);
|
|
/* squash all but -EFAULT for now */
|
|
return err == -EFAULT ? err : 0;
|
|
}
|
|
|
|
int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
|
|
{
|
|
int err;
|
|
struct task_struct *t = current;
|
|
err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
|
|
&uss->ss_sp) |
|
|
__put_user(t->sas_ss_flags, &uss->ss_flags) |
|
|
__put_user(t->sas_ss_size, &uss->ss_size);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPENDING
|
|
|
|
/**
|
|
* sys_sigpending - examine pending signals
|
|
* @uset: where mask of pending signal is returned
|
|
*/
|
|
SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
|
|
{
|
|
sigset_t set;
|
|
|
|
if (sizeof(old_sigset_t) > sizeof(*uset))
|
|
return -EINVAL;
|
|
|
|
do_sigpending(&set);
|
|
|
|
if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
|
|
{
|
|
sigset_t set;
|
|
|
|
do_sigpending(&set);
|
|
|
|
return put_user(set.sig[0], set32);
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
|
|
/**
|
|
* sys_sigprocmask - examine and change blocked signals
|
|
* @how: whether to add, remove, or set signals
|
|
* @nset: signals to add or remove (if non-null)
|
|
* @oset: previous value of signal mask if non-null
|
|
*
|
|
* Some platforms have their own version with special arguments;
|
|
* others support only sys_rt_sigprocmask.
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
|
|
old_sigset_t __user *, oset)
|
|
{
|
|
old_sigset_t old_set, new_set;
|
|
sigset_t new_blocked;
|
|
|
|
old_set = current->blocked.sig[0];
|
|
|
|
if (nset) {
|
|
if (copy_from_user(&new_set, nset, sizeof(*nset)))
|
|
return -EFAULT;
|
|
|
|
new_blocked = current->blocked;
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigaddsetmask(&new_blocked, new_set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigdelsetmask(&new_blocked, new_set);
|
|
break;
|
|
case SIG_SETMASK:
|
|
new_blocked.sig[0] = new_set;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_current_blocked(&new_blocked);
|
|
}
|
|
|
|
if (oset) {
|
|
if (copy_to_user(oset, &old_set, sizeof(*oset)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
|
|
|
|
#ifndef CONFIG_ODD_RT_SIGACTION
|
|
/**
|
|
* sys_rt_sigaction - alter an action taken by a process
|
|
* @sig: signal to be sent
|
|
* @act: new sigaction
|
|
* @oact: used to save the previous sigaction
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE4(rt_sigaction, int, sig,
|
|
const struct sigaction __user *, act,
|
|
struct sigaction __user *, oact,
|
|
size_t, sigsetsize)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
|
|
return -EFAULT;
|
|
|
|
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
|
|
const struct compat_sigaction __user *, act,
|
|
struct compat_sigaction __user *, oact,
|
|
compat_size_t, sigsetsize)
|
|
{
|
|
struct k_sigaction new_ka, old_ka;
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
compat_uptr_t restorer;
|
|
#endif
|
|
int ret;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(compat_sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (act) {
|
|
compat_uptr_t handler;
|
|
ret = get_user(handler, &act->sa_handler);
|
|
new_ka.sa.sa_handler = compat_ptr(handler);
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
ret |= get_user(restorer, &act->sa_restorer);
|
|
new_ka.sa.sa_restorer = compat_ptr(restorer);
|
|
#endif
|
|
ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
|
|
ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
|
|
if (ret)
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
|
|
if (!ret && oact) {
|
|
ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
|
|
&oact->sa_handler);
|
|
ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
|
|
sizeof(oact->sa_mask));
|
|
ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
|
|
#ifdef __ARCH_HAS_SA_RESTORER
|
|
ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
|
|
&oact->sa_restorer);
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
#endif /* !CONFIG_ODD_RT_SIGACTION */
|
|
|
|
#ifdef CONFIG_OLD_SIGACTION
|
|
SYSCALL_DEFINE3(sigaction, int, sig,
|
|
const struct old_sigaction __user *, act,
|
|
struct old_sigaction __user *, oact)
|
|
{
|
|
struct k_sigaction new_ka, old_ka;
|
|
int ret;
|
|
|
|
if (act) {
|
|
old_sigset_t mask;
|
|
if (!access_ok(act, sizeof(*act)) ||
|
|
__get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
|
|
__get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
|
|
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
|
|
__get_user(mask, &act->sa_mask))
|
|
return -EFAULT;
|
|
#ifdef __ARCH_HAS_KA_RESTORER
|
|
new_ka.ka_restorer = NULL;
|
|
#endif
|
|
siginitset(&new_ka.sa.sa_mask, mask);
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (!access_ok(oact, sizeof(*oact)) ||
|
|
__put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
|
|
__put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
|
|
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
|
|
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_COMPAT_OLD_SIGACTION
|
|
COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
|
|
const struct compat_old_sigaction __user *, act,
|
|
struct compat_old_sigaction __user *, oact)
|
|
{
|
|
struct k_sigaction new_ka, old_ka;
|
|
int ret;
|
|
compat_old_sigset_t mask;
|
|
compat_uptr_t handler, restorer;
|
|
|
|
if (act) {
|
|
if (!access_ok(act, sizeof(*act)) ||
|
|
__get_user(handler, &act->sa_handler) ||
|
|
__get_user(restorer, &act->sa_restorer) ||
|
|
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
|
|
__get_user(mask, &act->sa_mask))
|
|
return -EFAULT;
|
|
|
|
#ifdef __ARCH_HAS_KA_RESTORER
|
|
new_ka.ka_restorer = NULL;
|
|
#endif
|
|
new_ka.sa.sa_handler = compat_ptr(handler);
|
|
new_ka.sa.sa_restorer = compat_ptr(restorer);
|
|
siginitset(&new_ka.sa.sa_mask, mask);
|
|
}
|
|
|
|
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
|
|
|
|
if (!ret && oact) {
|
|
if (!access_ok(oact, sizeof(*oact)) ||
|
|
__put_user(ptr_to_compat(old_ka.sa.sa_handler),
|
|
&oact->sa_handler) ||
|
|
__put_user(ptr_to_compat(old_ka.sa.sa_restorer),
|
|
&oact->sa_restorer) ||
|
|
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
|
|
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
|
|
return -EFAULT;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SGETMASK_SYSCALL
|
|
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigprocmask.
|
|
*/
|
|
SYSCALL_DEFINE0(sgetmask)
|
|
{
|
|
/* SMP safe */
|
|
return current->blocked.sig[0];
|
|
}
|
|
|
|
SYSCALL_DEFINE1(ssetmask, int, newmask)
|
|
{
|
|
int old = current->blocked.sig[0];
|
|
sigset_t newset;
|
|
|
|
siginitset(&newset, newmask);
|
|
set_current_blocked(&newset);
|
|
|
|
return old;
|
|
}
|
|
#endif /* CONFIG_SGETMASK_SYSCALL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_SIGNAL
|
|
/*
|
|
* For backwards compatibility. Functionality superseded by sigaction.
|
|
*/
|
|
SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
|
|
{
|
|
struct k_sigaction new_sa, old_sa;
|
|
int ret;
|
|
|
|
new_sa.sa.sa_handler = handler;
|
|
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
|
|
sigemptyset(&new_sa.sa.sa_mask);
|
|
|
|
ret = do_sigaction(sig, &new_sa, &old_sa);
|
|
|
|
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
|
|
}
|
|
#endif /* __ARCH_WANT_SYS_SIGNAL */
|
|
|
|
#ifdef __ARCH_WANT_SYS_PAUSE
|
|
|
|
SYSCALL_DEFINE0(pause)
|
|
{
|
|
while (!signal_pending(current)) {
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int sigsuspend(sigset_t *set)
|
|
{
|
|
current->saved_sigmask = current->blocked;
|
|
set_current_blocked(set);
|
|
|
|
while (!signal_pending(current)) {
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
set_restore_sigmask();
|
|
return -ERESTARTNOHAND;
|
|
}
|
|
|
|
/**
|
|
* sys_rt_sigsuspend - replace the signal mask for a value with the
|
|
* @unewset value until a signal is received
|
|
* @unewset: new signal mask value
|
|
* @sigsetsize: size of sigset_t type
|
|
*/
|
|
SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
|
|
{
|
|
sigset_t newset;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&newset, unewset, sizeof(newset)))
|
|
return -EFAULT;
|
|
return sigsuspend(&newset);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
|
|
{
|
|
sigset_t newset;
|
|
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
|
|
if (get_compat_sigset(&newset, unewset))
|
|
return -EFAULT;
|
|
return sigsuspend(&newset);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_OLD_SIGSUSPEND
|
|
SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
|
|
{
|
|
sigset_t blocked;
|
|
siginitset(&blocked, mask);
|
|
return sigsuspend(&blocked);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_OLD_SIGSUSPEND3
|
|
SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
|
|
{
|
|
sigset_t blocked;
|
|
siginitset(&blocked, mask);
|
|
return sigsuspend(&blocked);
|
|
}
|
|
#endif
|
|
|
|
__weak const char *arch_vma_name(struct vm_area_struct *vma)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void siginfo_buildtime_checks(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
|
|
|
|
/* Verify the offsets in the two siginfos match */
|
|
#define CHECK_OFFSET(field) \
|
|
BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
|
|
|
|
/* kill */
|
|
CHECK_OFFSET(si_pid);
|
|
CHECK_OFFSET(si_uid);
|
|
|
|
/* timer */
|
|
CHECK_OFFSET(si_tid);
|
|
CHECK_OFFSET(si_overrun);
|
|
CHECK_OFFSET(si_value);
|
|
|
|
/* rt */
|
|
CHECK_OFFSET(si_pid);
|
|
CHECK_OFFSET(si_uid);
|
|
CHECK_OFFSET(si_value);
|
|
|
|
/* sigchld */
|
|
CHECK_OFFSET(si_pid);
|
|
CHECK_OFFSET(si_uid);
|
|
CHECK_OFFSET(si_status);
|
|
CHECK_OFFSET(si_utime);
|
|
CHECK_OFFSET(si_stime);
|
|
|
|
/* sigfault */
|
|
CHECK_OFFSET(si_addr);
|
|
CHECK_OFFSET(si_trapno);
|
|
CHECK_OFFSET(si_addr_lsb);
|
|
CHECK_OFFSET(si_lower);
|
|
CHECK_OFFSET(si_upper);
|
|
CHECK_OFFSET(si_pkey);
|
|
CHECK_OFFSET(si_perf_data);
|
|
CHECK_OFFSET(si_perf_type);
|
|
CHECK_OFFSET(si_perf_flags);
|
|
|
|
/* sigpoll */
|
|
CHECK_OFFSET(si_band);
|
|
CHECK_OFFSET(si_fd);
|
|
|
|
/* sigsys */
|
|
CHECK_OFFSET(si_call_addr);
|
|
CHECK_OFFSET(si_syscall);
|
|
CHECK_OFFSET(si_arch);
|
|
#undef CHECK_OFFSET
|
|
|
|
/* usb asyncio */
|
|
BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
|
|
offsetof(struct siginfo, si_addr));
|
|
if (sizeof(int) == sizeof(void __user *)) {
|
|
BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
|
|
sizeof(void __user *));
|
|
} else {
|
|
BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
|
|
sizeof_field(struct siginfo, si_uid)) !=
|
|
sizeof(void __user *));
|
|
BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
|
|
offsetof(struct siginfo, si_uid));
|
|
}
|
|
#ifdef CONFIG_COMPAT
|
|
BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
|
|
offsetof(struct compat_siginfo, si_addr));
|
|
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
|
|
sizeof(compat_uptr_t));
|
|
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
|
|
sizeof_field(struct siginfo, si_pid));
|
|
#endif
|
|
}
|
|
|
|
void __init signals_init(void)
|
|
{
|
|
siginfo_buildtime_checks();
|
|
|
|
sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB_KDB
|
|
#include <linux/kdb.h>
|
|
/*
|
|
* kdb_send_sig - Allows kdb to send signals without exposing
|
|
* signal internals. This function checks if the required locks are
|
|
* available before calling the main signal code, to avoid kdb
|
|
* deadlocks.
|
|
*/
|
|
void kdb_send_sig(struct task_struct *t, int sig)
|
|
{
|
|
static struct task_struct *kdb_prev_t;
|
|
int new_t, ret;
|
|
if (!spin_trylock(&t->sighand->siglock)) {
|
|
kdb_printf("Can't do kill command now.\n"
|
|
"The sigmask lock is held somewhere else in "
|
|
"kernel, try again later\n");
|
|
return;
|
|
}
|
|
new_t = kdb_prev_t != t;
|
|
kdb_prev_t = t;
|
|
if (!task_is_running(t) && new_t) {
|
|
spin_unlock(&t->sighand->siglock);
|
|
kdb_printf("Process is not RUNNING, sending a signal from "
|
|
"kdb risks deadlock\n"
|
|
"on the run queue locks. "
|
|
"The signal has _not_ been sent.\n"
|
|
"Reissue the kill command if you want to risk "
|
|
"the deadlock.\n");
|
|
return;
|
|
}
|
|
ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
|
|
spin_unlock(&t->sighand->siglock);
|
|
if (ret)
|
|
kdb_printf("Fail to deliver Signal %d to process %d.\n",
|
|
sig, t->pid);
|
|
else
|
|
kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
|
|
}
|
|
#endif /* CONFIG_KGDB_KDB */
|