linux-next/mm/page_isolation.c
Johannes Weiner fd919a85cd mm: page_isolation: prepare for hygienic freelists
Page isolation currently sets MIGRATE_ISOLATE on a block, then drops
zone->lock and scans the block for straddling buddies to split up. 
Because this happens non-atomically wrt the page allocator, it's possible
for allocations to get a buddy whose first block is a regular pcp
migratetype but whose tail is isolated.  This means that in certain cases
memory can still be allocated after isolation.  It will also trigger the
freelist type hygiene warnings in subsequent patches.

start_isolate_page_range()
  isolate_single_pageblock()
    set_migratetype_isolate(tail)
      lock zone->lock
      move_freepages_block(tail) // nop
      set_pageblock_migratetype(tail)
      unlock zone->lock
                                                     __rmqueue_smallest()
                                                       del_page_from_freelist(head)
                                                       expand(head, head_mt)
                                                         WARN(head_mt != tail_mt)
    start_pfn = ALIGN_DOWN(MAX_ORDER_NR_PAGES)
    for (pfn = start_pfn, pfn < end_pfn)
      if (PageBuddy())
        split_free_page(head)

Introduce a variant of move_freepages_block() provided by the allocator
specifically for page isolation; it moves free pages, converts the block,
and handles the splitting of straddling buddies while holding zone->lock.

The allocator knows that pageblocks and buddies are always naturally
aligned, which means that buddies can only straddle blocks if they're
actually >pageblock_order.  This means the search-and-split part can be
simplified compared to what page isolation used to do.

Also tighten up the page isolation code around the expectations of which
pages can be large, and how they are freed.

Based on extensive discussions with and invaluable input from Zi Yan.

[hannes@cmpxchg.org: work around older gcc warning]
  Link: https://lkml.kernel.org/r/20240321142426.GB777580@cmpxchg.org
Link: https://lkml.kernel.org/r/20240320180429.678181-10-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:04 -07:00

657 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/page_isolation.c
*/
#include <linux/mm.h>
#include <linux/page-isolation.h>
#include <linux/pageblock-flags.h>
#include <linux/memory.h>
#include <linux/hugetlb.h>
#include <linux/page_owner.h>
#include <linux/migrate.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/page_isolation.h>
/*
* This function checks whether the range [start_pfn, end_pfn) includes
* unmovable pages or not. The range must fall into a single pageblock and
* consequently belong to a single zone.
*
* PageLRU check without isolation or lru_lock could race so that
* MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
* check without lock_page also may miss some movable non-lru pages at
* race condition. So you can't expect this function should be exact.
*
* Returns a page without holding a reference. If the caller wants to
* dereference that page (e.g., dumping), it has to make sure that it
* cannot get removed (e.g., via memory unplug) concurrently.
*
*/
static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
int migratetype, int flags)
{
struct page *page = pfn_to_page(start_pfn);
struct zone *zone = page_zone(page);
unsigned long pfn;
VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
pageblock_start_pfn(end_pfn - 1));
if (is_migrate_cma_page(page)) {
/*
* CMA allocations (alloc_contig_range) really need to mark
* isolate CMA pageblocks even when they are not movable in fact
* so consider them movable here.
*/
if (is_migrate_cma(migratetype))
return NULL;
return page;
}
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
page = pfn_to_page(pfn);
/*
* Both, bootmem allocations and memory holes are marked
* PG_reserved and are unmovable. We can even have unmovable
* allocations inside ZONE_MOVABLE, for example when
* specifying "movablecore".
*/
if (PageReserved(page))
return page;
/*
* If the zone is movable and we have ruled out all reserved
* pages then it should be reasonably safe to assume the rest
* is movable.
*/
if (zone_idx(zone) == ZONE_MOVABLE)
continue;
/*
* Hugepages are not in LRU lists, but they're movable.
* THPs are on the LRU, but need to be counted as #small pages.
* We need not scan over tail pages because we don't
* handle each tail page individually in migration.
*/
if (PageHuge(page) || PageTransCompound(page)) {
struct folio *folio = page_folio(page);
unsigned int skip_pages;
if (PageHuge(page)) {
if (!hugepage_migration_supported(folio_hstate(folio)))
return page;
} else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
return page;
}
skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
pfn += skip_pages - 1;
continue;
}
/*
* We can't use page_count without pin a page
* because another CPU can free compound page.
* This check already skips compound tails of THP
* because their page->_refcount is zero at all time.
*/
if (!page_ref_count(page)) {
if (PageBuddy(page))
pfn += (1 << buddy_order(page)) - 1;
continue;
}
/*
* The HWPoisoned page may be not in buddy system, and
* page_count() is not 0.
*/
if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
continue;
/*
* We treat all PageOffline() pages as movable when offlining
* to give drivers a chance to decrement their reference count
* in MEM_GOING_OFFLINE in order to indicate that these pages
* can be offlined as there are no direct references anymore.
* For actually unmovable PageOffline() where the driver does
* not support this, we will fail later when trying to actually
* move these pages that still have a reference count > 0.
* (false negatives in this function only)
*/
if ((flags & MEMORY_OFFLINE) && PageOffline(page))
continue;
if (__PageMovable(page) || PageLRU(page))
continue;
/*
* If there are RECLAIMABLE pages, we need to check
* it. But now, memory offline itself doesn't call
* shrink_node_slabs() and it still to be fixed.
*/
return page;
}
return NULL;
}
/*
* This function set pageblock migratetype to isolate if no unmovable page is
* present in [start_pfn, end_pfn). The pageblock must intersect with
* [start_pfn, end_pfn).
*/
static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
unsigned long start_pfn, unsigned long end_pfn)
{
struct zone *zone = page_zone(page);
struct page *unmovable;
unsigned long flags;
unsigned long check_unmovable_start, check_unmovable_end;
spin_lock_irqsave(&zone->lock, flags);
/*
* We assume the caller intended to SET migrate type to isolate.
* If it is already set, then someone else must have raced and
* set it before us.
*/
if (is_migrate_isolate_page(page)) {
spin_unlock_irqrestore(&zone->lock, flags);
return -EBUSY;
}
/*
* FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
* We just check MOVABLE pages.
*
* Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
* to avoid redundant checks.
*/
check_unmovable_start = max(page_to_pfn(page), start_pfn);
check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
end_pfn);
unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
migratetype, isol_flags);
if (!unmovable) {
if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
spin_unlock_irqrestore(&zone->lock, flags);
return -EBUSY;
}
zone->nr_isolate_pageblock++;
spin_unlock_irqrestore(&zone->lock, flags);
return 0;
}
spin_unlock_irqrestore(&zone->lock, flags);
if (isol_flags & REPORT_FAILURE) {
/*
* printk() with zone->lock held will likely trigger a
* lockdep splat, so defer it here.
*/
dump_page(unmovable, "unmovable page");
}
return -EBUSY;
}
static void unset_migratetype_isolate(struct page *page, int migratetype)
{
struct zone *zone;
unsigned long flags;
bool isolated_page = false;
unsigned int order;
struct page *buddy;
zone = page_zone(page);
spin_lock_irqsave(&zone->lock, flags);
if (!is_migrate_isolate_page(page))
goto out;
/*
* Because freepage with more than pageblock_order on isolated
* pageblock is restricted to merge due to freepage counting problem,
* it is possible that there is free buddy page.
* move_freepages_block() doesn't care of merge so we need other
* approach in order to merge them. Isolation and free will make
* these pages to be merged.
*/
if (PageBuddy(page)) {
order = buddy_order(page);
if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
buddy = find_buddy_page_pfn(page, page_to_pfn(page),
order, NULL);
if (buddy && !is_migrate_isolate_page(buddy)) {
isolated_page = !!__isolate_free_page(page, order);
/*
* Isolating a free page in an isolated pageblock
* is expected to always work as watermarks don't
* apply here.
*/
VM_WARN_ON(!isolated_page);
}
}
}
/*
* If we isolate freepage with more than pageblock_order, there
* should be no freepage in the range, so we could avoid costly
* pageblock scanning for freepage moving.
*
* We didn't actually touch any of the isolated pages, so place them
* to the tail of the freelist. This is an optimization for memory
* onlining - just onlined memory won't immediately be considered for
* allocation.
*/
if (!isolated_page) {
/*
* Isolating this block already succeeded, so this
* should not fail on zone boundaries.
*/
WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
} else {
set_pageblock_migratetype(page, migratetype);
__putback_isolated_page(page, order, migratetype);
}
zone->nr_isolate_pageblock--;
out:
spin_unlock_irqrestore(&zone->lock, flags);
}
static inline struct page *
__first_valid_page(unsigned long pfn, unsigned long nr_pages)
{
int i;
for (i = 0; i < nr_pages; i++) {
struct page *page;
page = pfn_to_online_page(pfn + i);
if (!page)
continue;
return page;
}
return NULL;
}
/**
* isolate_single_pageblock() -- tries to isolate a pageblock that might be
* within a free or in-use page.
* @boundary_pfn: pageblock-aligned pfn that a page might cross
* @flags: isolation flags
* @gfp_flags: GFP flags used for migrating pages
* @isolate_before: isolate the pageblock before the boundary_pfn
* @skip_isolation: the flag to skip the pageblock isolation in second
* isolate_single_pageblock()
* @migratetype: migrate type to set in error recovery.
*
* Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
* pageblock. When not all pageblocks within a page are isolated at the same
* time, free page accounting can go wrong. For example, in the case of
* MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
* pagelbocks.
* [ MAX_PAGE_ORDER ]
* [ pageblock0 | pageblock1 ]
* When either pageblock is isolated, if it is a free page, the page is not
* split into separate migratetype lists, which is supposed to; if it is an
* in-use page and freed later, __free_one_page() does not split the free page
* either. The function handles this by splitting the free page or migrating
* the in-use page then splitting the free page.
*/
static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
int migratetype)
{
unsigned long start_pfn;
unsigned long isolate_pageblock;
unsigned long pfn;
struct zone *zone;
int ret;
VM_BUG_ON(!pageblock_aligned(boundary_pfn));
if (isolate_before)
isolate_pageblock = boundary_pfn - pageblock_nr_pages;
else
isolate_pageblock = boundary_pfn;
/*
* scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
* only isolating a subset of pageblocks from a bigger than pageblock
* free or in-use page. Also make sure all to-be-isolated pageblocks
* are within the same zone.
*/
zone = page_zone(pfn_to_page(isolate_pageblock));
start_pfn = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
zone->zone_start_pfn);
if (skip_isolation) {
int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
VM_BUG_ON(!is_migrate_isolate(mt));
} else {
ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
if (ret)
return ret;
}
/*
* Bail out early when the to-be-isolated pageblock does not form
* a free or in-use page across boundary_pfn:
*
* 1. isolate before boundary_pfn: the page after is not online
* 2. isolate after boundary_pfn: the page before is not online
*
* This also ensures correctness. Without it, when isolate after
* boundary_pfn and [start_pfn, boundary_pfn) are not online,
* __first_valid_page() will return unexpected NULL in the for loop
* below.
*/
if (isolate_before) {
if (!pfn_to_online_page(boundary_pfn))
return 0;
} else {
if (!pfn_to_online_page(boundary_pfn - 1))
return 0;
}
for (pfn = start_pfn; pfn < boundary_pfn;) {
struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
VM_BUG_ON(!page);
pfn = page_to_pfn(page);
if (PageBuddy(page)) {
int order = buddy_order(page);
/* move_freepages_block_isolate() handled this */
VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
pfn += 1UL << order;
continue;
}
/*
* If a compound page is straddling our block, attempt
* to migrate it out of the way.
*
* We don't have to worry about this creating a large
* free page that straddles into our block: gigantic
* pages are freed as order-0 chunks, and LRU pages
* (currently) do not exceed pageblock_order.
*
* The block of interest has already been marked
* MIGRATE_ISOLATE above, so when migration is done it
* will free its pages onto the correct freelists.
*/
if (PageCompound(page)) {
struct page *head = compound_head(page);
unsigned long head_pfn = page_to_pfn(head);
unsigned long nr_pages = compound_nr(head);
if (head_pfn + nr_pages <= boundary_pfn) {
pfn = head_pfn + nr_pages;
continue;
}
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
if (PageHuge(page)) {
int page_mt = get_pageblock_migratetype(page);
struct compact_control cc = {
.nr_migratepages = 0,
.order = -1,
.zone = page_zone(pfn_to_page(head_pfn)),
.mode = MIGRATE_SYNC,
.ignore_skip_hint = true,
.no_set_skip_hint = true,
.gfp_mask = gfp_flags,
.alloc_contig = true,
};
INIT_LIST_HEAD(&cc.migratepages);
ret = __alloc_contig_migrate_range(&cc, head_pfn,
head_pfn + nr_pages, page_mt);
if (ret)
goto failed;
pfn = head_pfn + nr_pages;
continue;
}
/*
* These pages are movable too, but they're
* not expected to exceed pageblock_order.
*
* Let us know when they do, so we can add
* proper free and split handling for them.
*/
VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
#endif
goto failed;
}
pfn++;
}
return 0;
failed:
/* restore the original migratetype */
if (!skip_isolation)
unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
return -EBUSY;
}
/**
* start_isolate_page_range() - mark page range MIGRATE_ISOLATE
* @start_pfn: The first PFN of the range to be isolated.
* @end_pfn: The last PFN of the range to be isolated.
* @migratetype: Migrate type to set in error recovery.
* @flags: The following flags are allowed (they can be combined in
* a bit mask)
* MEMORY_OFFLINE - isolate to offline (!allocate) memory
* e.g., skip over PageHWPoison() pages
* and PageOffline() pages.
* REPORT_FAILURE - report details about the failure to
* isolate the range
* @gfp_flags: GFP flags used for migrating pages that sit across the
* range boundaries.
*
* Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
* the range will never be allocated. Any free pages and pages freed in the
* future will not be allocated again. If specified range includes migrate types
* other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
* pages in the range finally, the caller have to free all pages in the range.
* test_page_isolated() can be used for test it.
*
* The function first tries to isolate the pageblocks at the beginning and end
* of the range, since there might be pages across the range boundaries.
* Afterwards, it isolates the rest of the range.
*
* There is no high level synchronization mechanism that prevents two threads
* from trying to isolate overlapping ranges. If this happens, one thread
* will notice pageblocks in the overlapping range already set to isolate.
* This happens in set_migratetype_isolate, and set_migratetype_isolate
* returns an error. We then clean up by restoring the migration type on
* pageblocks we may have modified and return -EBUSY to caller. This
* prevents two threads from simultaneously working on overlapping ranges.
*
* Please note that there is no strong synchronization with the page allocator
* either. Pages might be freed while their page blocks are marked ISOLATED.
* A call to drain_all_pages() after isolation can flush most of them. However
* in some cases pages might still end up on pcp lists and that would allow
* for their allocation even when they are in fact isolated already. Depending
* on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
* might be used to flush and disable pcplist before isolation and enable after
* unisolation.
*
* Return: 0 on success and -EBUSY if any part of range cannot be isolated.
*/
int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
int migratetype, int flags, gfp_t gfp_flags)
{
unsigned long pfn;
struct page *page;
/* isolation is done at page block granularity */
unsigned long isolate_start = pageblock_start_pfn(start_pfn);
unsigned long isolate_end = pageblock_align(end_pfn);
int ret;
bool skip_isolation = false;
/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
skip_isolation, migratetype);
if (ret)
return ret;
if (isolate_start == isolate_end - pageblock_nr_pages)
skip_isolation = true;
/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
skip_isolation, migratetype);
if (ret) {
unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
return ret;
}
/* skip isolated pageblocks at the beginning and end */
for (pfn = isolate_start + pageblock_nr_pages;
pfn < isolate_end - pageblock_nr_pages;
pfn += pageblock_nr_pages) {
page = __first_valid_page(pfn, pageblock_nr_pages);
if (page && set_migratetype_isolate(page, migratetype, flags,
start_pfn, end_pfn)) {
undo_isolate_page_range(isolate_start, pfn, migratetype);
unset_migratetype_isolate(
pfn_to_page(isolate_end - pageblock_nr_pages),
migratetype);
return -EBUSY;
}
}
return 0;
}
/**
* undo_isolate_page_range - undo effects of start_isolate_page_range()
* @start_pfn: The first PFN of the isolated range
* @end_pfn: The last PFN of the isolated range
* @migratetype: New migrate type to set on the range
*
* This finds every MIGRATE_ISOLATE page block in the given range
* and switches it to @migratetype.
*/
void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
int migratetype)
{
unsigned long pfn;
struct page *page;
unsigned long isolate_start = pageblock_start_pfn(start_pfn);
unsigned long isolate_end = pageblock_align(end_pfn);
for (pfn = isolate_start;
pfn < isolate_end;
pfn += pageblock_nr_pages) {
page = __first_valid_page(pfn, pageblock_nr_pages);
if (!page || !is_migrate_isolate_page(page))
continue;
unset_migratetype_isolate(page, migratetype);
}
}
/*
* Test all pages in the range is free(means isolated) or not.
* all pages in [start_pfn...end_pfn) must be in the same zone.
* zone->lock must be held before call this.
*
* Returns the last tested pfn.
*/
static unsigned long
__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
int flags)
{
struct page *page;
while (pfn < end_pfn) {
page = pfn_to_page(pfn);
if (PageBuddy(page))
/*
* If the page is on a free list, it has to be on
* the correct MIGRATE_ISOLATE freelist. There is no
* simple way to verify that as VM_BUG_ON(), though.
*/
pfn += 1 << buddy_order(page);
else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
/* A HWPoisoned page cannot be also PageBuddy */
pfn++;
else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
!page_count(page))
/*
* The responsible driver agreed to skip PageOffline()
* pages when offlining memory by dropping its
* reference in MEM_GOING_OFFLINE.
*/
pfn++;
else
break;
}
return pfn;
}
/**
* test_pages_isolated - check if pageblocks in range are isolated
* @start_pfn: The first PFN of the isolated range
* @end_pfn: The first PFN *after* the isolated range
* @isol_flags: Testing mode flags
*
* This tests if all in the specified range are free.
*
* If %MEMORY_OFFLINE is specified in @flags, it will consider
* poisoned and offlined pages free as well.
*
* Caller must ensure the requested range doesn't span zones.
*
* Returns 0 if true, -EBUSY if one or more pages are in use.
*/
int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
int isol_flags)
{
unsigned long pfn, flags;
struct page *page;
struct zone *zone;
int ret;
/*
* Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
* pages are not aligned to pageblock_nr_pages.
* Then we just check migratetype first.
*/
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
page = __first_valid_page(pfn, pageblock_nr_pages);
if (page && !is_migrate_isolate_page(page))
break;
}
page = __first_valid_page(start_pfn, end_pfn - start_pfn);
if ((pfn < end_pfn) || !page) {
ret = -EBUSY;
goto out;
}
/* Check all pages are free or marked as ISOLATED */
zone = page_zone(page);
spin_lock_irqsave(&zone->lock, flags);
pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
spin_unlock_irqrestore(&zone->lock, flags);
ret = pfn < end_pfn ? -EBUSY : 0;
out:
trace_test_pages_isolated(start_pfn, end_pfn, pfn);
return ret;
}