linux-next/kernel/time/posix-stubs.c
Arnd Bergmann 8dabe7245b y2038: syscalls: rename y2038 compat syscalls
A lot of system calls that pass a time_t somewhere have an implementation
using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have
been reworked so that this implementation can now be used on 32-bit
architectures as well.

The missing step is to redefine them using the regular SYSCALL_DEFINEx()
to get them out of the compat namespace and make it possible to build them
on 32-bit architectures.

Any system call that ends in 'time' gets a '32' suffix on its name for
that version, while the others get a '_time32' suffix, to distinguish
them from the normal version, which takes a 64-bit time argument in the
future.

In this step, only 64-bit architectures are changed, doing this rename
first lets us avoid touching the 32-bit architectures twice.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-02-07 00:13:27 +01:00

238 lines
5.1 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Dummy stubs used when CONFIG_POSIX_TIMERS=n
*
* Created by: Nicolas Pitre, July 2016
* Copyright: (C) 2016 Linaro Limited
*/
#include <linux/linkage.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/ktime.h>
#include <linux/timekeeping.h>
#include <linux/posix-timers.h>
#include <linux/compat.h>
#ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER
/* Architectures may override SYS_NI and COMPAT_SYS_NI */
#include <asm/syscall_wrapper.h>
#endif
asmlinkage long sys_ni_posix_timers(void)
{
pr_err_once("process %d (%s) attempted a POSIX timer syscall "
"while CONFIG_POSIX_TIMERS is not set\n",
current->pid, current->comm);
return -ENOSYS;
}
#ifndef SYS_NI
#define SYS_NI(name) SYSCALL_ALIAS(sys_##name, sys_ni_posix_timers)
#endif
#ifndef COMPAT_SYS_NI
#define COMPAT_SYS_NI(name) SYSCALL_ALIAS(compat_sys_##name, sys_ni_posix_timers)
#endif
SYS_NI(timer_create);
SYS_NI(timer_gettime);
SYS_NI(timer_getoverrun);
SYS_NI(timer_settime);
SYS_NI(timer_delete);
SYS_NI(clock_adjtime);
SYS_NI(getitimer);
SYS_NI(setitimer);
SYS_NI(clock_adjtime32);
#ifdef __ARCH_WANT_SYS_ALARM
SYS_NI(alarm);
#endif
/*
* We preserve minimal support for CLOCK_REALTIME and CLOCK_MONOTONIC
* as it is easy to remain compatible with little code. CLOCK_BOOTTIME
* is also included for convenience as at least systemd uses it.
*/
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
const struct __kernel_timespec __user *, tp)
{
struct timespec64 new_tp;
if (which_clock != CLOCK_REALTIME)
return -EINVAL;
if (get_timespec64(&new_tp, tp))
return -EFAULT;
return do_sys_settimeofday64(&new_tp, NULL);
}
int do_clock_gettime(clockid_t which_clock, struct timespec64 *tp)
{
switch (which_clock) {
case CLOCK_REALTIME:
ktime_get_real_ts64(tp);
break;
case CLOCK_MONOTONIC:
ktime_get_ts64(tp);
break;
case CLOCK_BOOTTIME:
ktime_get_boottime_ts64(tp);
break;
default:
return -EINVAL;
}
return 0;
}
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
struct __kernel_timespec __user *, tp)
{
int ret;
struct timespec64 kernel_tp;
ret = do_clock_gettime(which_clock, &kernel_tp);
if (ret)
return ret;
if (put_timespec64(&kernel_tp, tp))
return -EFAULT;
return 0;
}
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, struct __kernel_timespec __user *, tp)
{
struct timespec64 rtn_tp = {
.tv_sec = 0,
.tv_nsec = hrtimer_resolution,
};
switch (which_clock) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_BOOTTIME:
if (put_timespec64(&rtn_tp, tp))
return -EFAULT;
return 0;
default:
return -EINVAL;
}
}
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
const struct __kernel_timespec __user *, rqtp,
struct __kernel_timespec __user *, rmtp)
{
struct timespec64 t;
switch (which_clock) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_BOOTTIME:
break;
default:
return -EINVAL;
}
if (get_timespec64(&t, rqtp))
return -EFAULT;
if (!timespec64_valid(&t))
return -EINVAL;
if (flags & TIMER_ABSTIME)
rmtp = NULL;
current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
current->restart_block.nanosleep.rmtp = rmtp;
return hrtimer_nanosleep(&t, flags & TIMER_ABSTIME ?
HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
which_clock);
}
#ifdef CONFIG_COMPAT
COMPAT_SYS_NI(timer_create);
COMPAT_SYS_NI(getitimer);
COMPAT_SYS_NI(setitimer);
#endif
#ifdef CONFIG_COMPAT_32BIT_TIME
SYS_NI(timer_settime32);
SYS_NI(timer_gettime32);
SYSCALL_DEFINE2(clock_settime32, const clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
struct timespec64 new_tp;
if (which_clock != CLOCK_REALTIME)
return -EINVAL;
if (get_old_timespec32(&new_tp, tp))
return -EFAULT;
return do_sys_settimeofday64(&new_tp, NULL);
}
SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
int ret;
struct timespec64 kernel_tp;
ret = do_clock_gettime(which_clock, &kernel_tp);
if (ret)
return ret;
if (put_old_timespec32(&kernel_tp, tp))
return -EFAULT;
return 0;
}
SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
struct timespec64 rtn_tp = {
.tv_sec = 0,
.tv_nsec = hrtimer_resolution,
};
switch (which_clock) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_BOOTTIME:
if (put_old_timespec32(&rtn_tp, tp))
return -EFAULT;
return 0;
default:
return -EINVAL;
}
}
SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
struct old_timespec32 __user *, rqtp,
struct old_timespec32 __user *, rmtp)
{
struct timespec64 t;
switch (which_clock) {
case CLOCK_REALTIME:
case CLOCK_MONOTONIC:
case CLOCK_BOOTTIME:
break;
default:
return -EINVAL;
}
if (get_old_timespec32(&t, rqtp))
return -EFAULT;
if (!timespec64_valid(&t))
return -EINVAL;
if (flags & TIMER_ABSTIME)
rmtp = NULL;
current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
current->restart_block.nanosleep.compat_rmtp = rmtp;
return hrtimer_nanosleep(&t, flags & TIMER_ABSTIME ?
HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
which_clock);
}
#endif