linux-next/mm/msync.c
Christoph Hellwig 4c728ef583 add a vfs_fsync helper
Fsync currently has a fdatawrite/fdatawait pair around the method call,
and a mutex_lock/unlock of the inode mutex.  All callers of fsync have
to duplicate this, but we have a few and most of them don't quite get
it right.  This patch adds a new vfs_fsync that takes care of this.
It's a little more complicated as usual as ->fsync might get a NULL file
pointer and just a dentry from nfsd, but otherwise gets afile and we
want to take the mapping and file operations from it when it is there.

Notes on the fsync callers:

 - ecryptfs wasn't calling filemap_fdatawrite / filemap_fdatawait on the
   	lower file
 - coda wasn't calling filemap_fdatawrite / filemap_fdatawait on the host
	file, and returning 0 when ->fsync was missing
 - shm wasn't calling either filemap_fdatawrite / filemap_fdatawait nor
   taking i_mutex.  Now given that shared memory doesn't have disk
   backing not doing anything in fsync seems fine and I left it out of
   the vfs_fsync conversion for now, but in that case we might just
   not pass it through to the lower file at all but just call the no-op
   simple_sync_file directly.

[and now actually export vfs_fsync]

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-01-05 11:54:28 -05:00

104 lines
2.4 KiB
C

/*
* linux/mm/msync.c
*
* Copyright (C) 1994-1999 Linus Torvalds
*/
/*
* The msync() system call.
*/
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/file.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
/*
* MS_SYNC syncs the entire file - including mappings.
*
* MS_ASYNC does not start I/O (it used to, up to 2.5.67).
* Nor does it marks the relevant pages dirty (it used to up to 2.6.17).
* Now it doesn't do anything, since dirty pages are properly tracked.
*
* The application may now run fsync() to
* write out the dirty pages and wait on the writeout and check the result.
* Or the application may run fadvise(FADV_DONTNEED) against the fd to start
* async writeout immediately.
* So by _not_ starting I/O in MS_ASYNC we provide complete flexibility to
* applications.
*/
asmlinkage long sys_msync(unsigned long start, size_t len, int flags)
{
unsigned long end;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
int unmapped_error = 0;
int error = -EINVAL;
if (flags & ~(MS_ASYNC | MS_INVALIDATE | MS_SYNC))
goto out;
if (start & ~PAGE_MASK)
goto out;
if ((flags & MS_ASYNC) && (flags & MS_SYNC))
goto out;
error = -ENOMEM;
len = (len + ~PAGE_MASK) & PAGE_MASK;
end = start + len;
if (end < start)
goto out;
error = 0;
if (end == start)
goto out;
/*
* If the interval [start,end) covers some unmapped address ranges,
* just ignore them, but return -ENOMEM at the end.
*/
down_read(&mm->mmap_sem);
vma = find_vma(mm, start);
for (;;) {
struct file *file;
/* Still start < end. */
error = -ENOMEM;
if (!vma)
goto out_unlock;
/* Here start < vma->vm_end. */
if (start < vma->vm_start) {
start = vma->vm_start;
if (start >= end)
goto out_unlock;
unmapped_error = -ENOMEM;
}
/* Here vma->vm_start <= start < vma->vm_end. */
if ((flags & MS_INVALIDATE) &&
(vma->vm_flags & VM_LOCKED)) {
error = -EBUSY;
goto out_unlock;
}
file = vma->vm_file;
start = vma->vm_end;
if ((flags & MS_SYNC) && file &&
(vma->vm_flags & VM_SHARED)) {
get_file(file);
up_read(&mm->mmap_sem);
error = vfs_fsync(file, file->f_path.dentry, 0);
fput(file);
if (error || start >= end)
goto out;
down_read(&mm->mmap_sem);
vma = find_vma(mm, start);
} else {
if (start >= end) {
error = 0;
goto out_unlock;
}
vma = vma->vm_next;
}
}
out_unlock:
up_read(&mm->mmap_sem);
out:
return error ? : unmapped_error;
}