mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-11 08:18:47 +00:00
4cb1315666
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2171 lines
53 KiB
C
2171 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
*
|
|
* Code for managing the extent btree and dynamically updating the writeback
|
|
* dirty sector count.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_gc.h"
|
|
#include "btree_update.h"
|
|
#include "btree_update_interior.h"
|
|
#include "buckets.h"
|
|
#include "checksum.h"
|
|
#include "debug.h"
|
|
#include "dirent.h"
|
|
#include "disk_groups.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "inode.h"
|
|
#include "journal.h"
|
|
#include "replicas.h"
|
|
#include "super.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
#include "util.h"
|
|
#include "xattr.h"
|
|
|
|
static void sort_key_next(struct btree_node_iter_large *iter,
|
|
struct btree *b,
|
|
struct btree_node_iter_set *i)
|
|
{
|
|
i->k += __btree_node_offset_to_key(b, i->k)->u64s;
|
|
|
|
if (i->k == i->end)
|
|
*i = iter->data[--iter->used];
|
|
}
|
|
|
|
/*
|
|
* Returns true if l > r - unless l == r, in which case returns true if l is
|
|
* older than r.
|
|
*
|
|
* Necessary for btree_sort_fixup() - if there are multiple keys that compare
|
|
* equal in different sets, we have to process them newest to oldest.
|
|
*/
|
|
#define key_sort_cmp(h, l, r) \
|
|
({ \
|
|
bkey_cmp_packed(b, \
|
|
__btree_node_offset_to_key(b, (l).k), \
|
|
__btree_node_offset_to_key(b, (r).k)) \
|
|
\
|
|
?: (l).k - (r).k; \
|
|
})
|
|
|
|
static inline bool should_drop_next_key(struct btree_node_iter_large *iter,
|
|
struct btree *b)
|
|
{
|
|
struct btree_node_iter_set *l = iter->data, *r = iter->data + 1;
|
|
struct bkey_packed *k = __btree_node_offset_to_key(b, l->k);
|
|
|
|
if (bkey_whiteout(k))
|
|
return true;
|
|
|
|
if (iter->used < 2)
|
|
return false;
|
|
|
|
if (iter->used > 2 &&
|
|
key_sort_cmp(iter, r[0], r[1]) >= 0)
|
|
r++;
|
|
|
|
/*
|
|
* key_sort_cmp() ensures that when keys compare equal the older key
|
|
* comes first; so if l->k compares equal to r->k then l->k is older and
|
|
* should be dropped.
|
|
*/
|
|
return !bkey_cmp_packed(b,
|
|
__btree_node_offset_to_key(b, l->k),
|
|
__btree_node_offset_to_key(b, r->k));
|
|
}
|
|
|
|
struct btree_nr_keys bch2_key_sort_fix_overlapping(struct bset *dst,
|
|
struct btree *b,
|
|
struct btree_node_iter_large *iter)
|
|
{
|
|
struct bkey_packed *out = dst->start;
|
|
struct btree_nr_keys nr;
|
|
|
|
memset(&nr, 0, sizeof(nr));
|
|
|
|
heap_resort(iter, key_sort_cmp);
|
|
|
|
while (!bch2_btree_node_iter_large_end(iter)) {
|
|
if (!should_drop_next_key(iter, b)) {
|
|
struct bkey_packed *k =
|
|
__btree_node_offset_to_key(b, iter->data->k);
|
|
|
|
bkey_copy(out, k);
|
|
btree_keys_account_key_add(&nr, 0, out);
|
|
out = bkey_next(out);
|
|
}
|
|
|
|
sort_key_next(iter, b, iter->data);
|
|
heap_sift_down(iter, 0, key_sort_cmp);
|
|
}
|
|
|
|
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
|
|
return nr;
|
|
}
|
|
|
|
/* Common among btree and extent ptrs */
|
|
|
|
const struct bch_extent_ptr *
|
|
bch2_extent_has_device(struct bkey_s_c_extent e, unsigned dev)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
|
|
extent_for_each_ptr(e, ptr)
|
|
if (ptr->dev == dev)
|
|
return ptr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool bch2_extent_drop_device(struct bkey_s_extent e, unsigned dev)
|
|
{
|
|
struct bch_extent_ptr *ptr;
|
|
bool dropped = false;
|
|
|
|
extent_for_each_ptr_backwards(e, ptr)
|
|
if (ptr->dev == dev) {
|
|
__bch2_extent_drop_ptr(e, ptr);
|
|
dropped = true;
|
|
}
|
|
|
|
if (dropped)
|
|
bch2_extent_drop_redundant_crcs(e);
|
|
return dropped;
|
|
}
|
|
|
|
const struct bch_extent_ptr *
|
|
bch2_extent_has_group(struct bch_fs *c, struct bkey_s_c_extent e, unsigned group)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (ca->mi.group &&
|
|
ca->mi.group - 1 == group)
|
|
return ptr;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const struct bch_extent_ptr *
|
|
bch2_extent_has_target(struct bch_fs *c, struct bkey_s_c_extent e, unsigned target)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
|
|
extent_for_each_ptr(e, ptr)
|
|
if (bch2_dev_in_target(c, ptr->dev, target) &&
|
|
(!ptr->cached ||
|
|
!ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)))
|
|
return ptr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
unsigned bch2_extent_nr_ptrs(struct bkey_s_c_extent e)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
unsigned nr_ptrs = 0;
|
|
|
|
extent_for_each_ptr(e, ptr)
|
|
nr_ptrs++;
|
|
|
|
return nr_ptrs;
|
|
}
|
|
|
|
unsigned bch2_extent_nr_dirty_ptrs(struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_extent e;
|
|
const struct bch_extent_ptr *ptr;
|
|
unsigned nr_ptrs = 0;
|
|
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED:
|
|
e = bkey_s_c_to_extent(k);
|
|
|
|
extent_for_each_ptr(e, ptr)
|
|
nr_ptrs += !ptr->cached;
|
|
break;
|
|
|
|
case BCH_RESERVATION:
|
|
nr_ptrs = bkey_s_c_to_reservation(k).v->nr_replicas;
|
|
break;
|
|
}
|
|
|
|
return nr_ptrs;
|
|
}
|
|
|
|
unsigned bch2_extent_ptr_durability(struct bch_fs *c,
|
|
const struct bch_extent_ptr *ptr)
|
|
{
|
|
struct bch_dev *ca;
|
|
|
|
if (ptr->cached)
|
|
return 0;
|
|
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (ca->mi.state == BCH_MEMBER_STATE_FAILED)
|
|
return 0;
|
|
|
|
return ca->mi.durability;
|
|
}
|
|
|
|
unsigned bch2_extent_durability(struct bch_fs *c, struct bkey_s_c_extent e)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
unsigned durability = 0;
|
|
|
|
extent_for_each_ptr(e, ptr)
|
|
durability += bch2_extent_ptr_durability(c, ptr);
|
|
|
|
return durability;
|
|
}
|
|
|
|
unsigned bch2_extent_is_compressed(struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_extent e;
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_extent_crc_unpacked crc;
|
|
unsigned ret = 0;
|
|
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED:
|
|
e = bkey_s_c_to_extent(k);
|
|
|
|
extent_for_each_ptr_crc(e, ptr, crc)
|
|
if (!ptr->cached &&
|
|
crc.compression_type != BCH_COMPRESSION_NONE &&
|
|
crc.compressed_size < crc.live_size)
|
|
ret = max_t(unsigned, ret, crc.compressed_size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool bch2_extent_matches_ptr(struct bch_fs *c, struct bkey_s_c_extent e,
|
|
struct bch_extent_ptr m, u64 offset)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_extent_crc_unpacked crc;
|
|
|
|
extent_for_each_ptr_crc(e, ptr, crc)
|
|
if (ptr->dev == m.dev &&
|
|
ptr->gen == m.gen &&
|
|
(s64) ptr->offset + crc.offset - bkey_start_offset(e.k) ==
|
|
(s64) m.offset - offset)
|
|
return ptr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Doesn't cleanup redundant crcs */
|
|
void __bch2_extent_drop_ptr(struct bkey_s_extent e, struct bch_extent_ptr *ptr)
|
|
{
|
|
EBUG_ON(ptr < &e.v->start->ptr ||
|
|
ptr >= &extent_entry_last(e)->ptr);
|
|
EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr);
|
|
memmove_u64s_down(ptr, ptr + 1,
|
|
(u64 *) extent_entry_last(e) - (u64 *) (ptr + 1));
|
|
e.k->u64s -= sizeof(*ptr) / sizeof(u64);
|
|
}
|
|
|
|
void bch2_extent_drop_ptr(struct bkey_s_extent e, struct bch_extent_ptr *ptr)
|
|
{
|
|
__bch2_extent_drop_ptr(e, ptr);
|
|
bch2_extent_drop_redundant_crcs(e);
|
|
}
|
|
|
|
static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u,
|
|
struct bch_extent_crc_unpacked n)
|
|
{
|
|
return !u.compression_type &&
|
|
u.csum_type &&
|
|
u.uncompressed_size > u.live_size &&
|
|
bch2_csum_type_is_encryption(u.csum_type) ==
|
|
bch2_csum_type_is_encryption(n.csum_type);
|
|
}
|
|
|
|
bool bch2_can_narrow_extent_crcs(struct bkey_s_c_extent e,
|
|
struct bch_extent_crc_unpacked n)
|
|
{
|
|
struct bch_extent_crc_unpacked crc;
|
|
const union bch_extent_entry *i;
|
|
|
|
if (!n.csum_type)
|
|
return false;
|
|
|
|
extent_for_each_crc(e, crc, i)
|
|
if (can_narrow_crc(crc, n))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We're writing another replica for this extent, so while we've got the data in
|
|
* memory we'll be computing a new checksum for the currently live data.
|
|
*
|
|
* If there are other replicas we aren't moving, and they are checksummed but
|
|
* not compressed, we can modify them to point to only the data that is
|
|
* currently live (so that readers won't have to bounce) while we've got the
|
|
* checksum we need:
|
|
*/
|
|
bool bch2_extent_narrow_crcs(struct bkey_i_extent *e,
|
|
struct bch_extent_crc_unpacked n)
|
|
{
|
|
struct bch_extent_crc_unpacked u;
|
|
struct bch_extent_ptr *ptr;
|
|
union bch_extent_entry *i;
|
|
|
|
/* Find a checksum entry that covers only live data: */
|
|
if (!n.csum_type)
|
|
extent_for_each_crc(extent_i_to_s(e), u, i)
|
|
if (!u.compression_type &&
|
|
u.csum_type &&
|
|
u.live_size == u.uncompressed_size) {
|
|
n = u;
|
|
break;
|
|
}
|
|
|
|
if (!bch2_can_narrow_extent_crcs(extent_i_to_s_c(e), n))
|
|
return false;
|
|
|
|
BUG_ON(n.compression_type);
|
|
BUG_ON(n.offset);
|
|
BUG_ON(n.live_size != e->k.size);
|
|
|
|
bch2_extent_crc_append(e, n);
|
|
restart_narrow_pointers:
|
|
extent_for_each_ptr_crc(extent_i_to_s(e), ptr, u)
|
|
if (can_narrow_crc(u, n)) {
|
|
ptr->offset += u.offset;
|
|
extent_ptr_append(e, *ptr);
|
|
__bch2_extent_drop_ptr(extent_i_to_s(e), ptr);
|
|
goto restart_narrow_pointers;
|
|
}
|
|
|
|
bch2_extent_drop_redundant_crcs(extent_i_to_s(e));
|
|
return true;
|
|
}
|
|
|
|
/* returns true if not equal */
|
|
static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l,
|
|
struct bch_extent_crc_unpacked r)
|
|
{
|
|
return (l.csum_type != r.csum_type ||
|
|
l.compression_type != r.compression_type ||
|
|
l.compressed_size != r.compressed_size ||
|
|
l.uncompressed_size != r.uncompressed_size ||
|
|
l.offset != r.offset ||
|
|
l.live_size != r.live_size ||
|
|
l.nonce != r.nonce ||
|
|
bch2_crc_cmp(l.csum, r.csum));
|
|
}
|
|
|
|
void bch2_extent_drop_redundant_crcs(struct bkey_s_extent e)
|
|
{
|
|
union bch_extent_entry *entry = e.v->start;
|
|
union bch_extent_crc *crc, *prev = NULL;
|
|
struct bch_extent_crc_unpacked u, prev_u = { 0 };
|
|
|
|
while (entry != extent_entry_last(e)) {
|
|
union bch_extent_entry *next = extent_entry_next(entry);
|
|
size_t crc_u64s = extent_entry_u64s(entry);
|
|
|
|
if (!extent_entry_is_crc(entry))
|
|
goto next;
|
|
|
|
crc = entry_to_crc(entry);
|
|
u = bch2_extent_crc_unpack(e.k, crc);
|
|
|
|
if (next == extent_entry_last(e)) {
|
|
/* crc entry with no pointers after it: */
|
|
goto drop;
|
|
}
|
|
|
|
if (extent_entry_is_crc(next)) {
|
|
/* no pointers before next crc entry: */
|
|
goto drop;
|
|
}
|
|
|
|
if (prev && !bch2_crc_unpacked_cmp(u, prev_u)) {
|
|
/* identical to previous crc entry: */
|
|
goto drop;
|
|
}
|
|
|
|
if (!prev &&
|
|
!u.csum_type &&
|
|
!u.compression_type) {
|
|
/* null crc entry: */
|
|
union bch_extent_entry *e2;
|
|
|
|
extent_for_each_entry_from(e, e2, extent_entry_next(entry)) {
|
|
if (!extent_entry_is_ptr(e2))
|
|
break;
|
|
|
|
e2->ptr.offset += u.offset;
|
|
}
|
|
goto drop;
|
|
}
|
|
|
|
prev = crc;
|
|
prev_u = u;
|
|
next:
|
|
entry = next;
|
|
continue;
|
|
drop:
|
|
memmove_u64s_down(crc, next,
|
|
(u64 *) extent_entry_last(e) - (u64 *) next);
|
|
e.k->u64s -= crc_u64s;
|
|
}
|
|
|
|
EBUG_ON(bkey_val_u64s(e.k) && !bch2_extent_nr_ptrs(e.c));
|
|
}
|
|
|
|
static bool should_drop_ptr(const struct bch_fs *c,
|
|
struct bkey_s_c_extent e,
|
|
const struct bch_extent_ptr *ptr)
|
|
{
|
|
return ptr->cached && ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr);
|
|
}
|
|
|
|
static void bch2_extent_drop_stale(struct bch_fs *c, struct bkey_s_extent e)
|
|
{
|
|
struct bch_extent_ptr *ptr = &e.v->start->ptr;
|
|
bool dropped = false;
|
|
|
|
while ((ptr = extent_ptr_next(e, ptr)))
|
|
if (should_drop_ptr(c, e.c, ptr)) {
|
|
__bch2_extent_drop_ptr(e, ptr);
|
|
dropped = true;
|
|
} else
|
|
ptr++;
|
|
|
|
if (dropped)
|
|
bch2_extent_drop_redundant_crcs(e);
|
|
}
|
|
|
|
bool bch2_ptr_normalize(struct bch_fs *c, struct btree *b, struct bkey_s k)
|
|
{
|
|
return bch2_extent_normalize(c, k);
|
|
}
|
|
|
|
void bch2_ptr_swab(const struct bkey_format *f, struct bkey_packed *k)
|
|
{
|
|
switch (k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED: {
|
|
union bch_extent_entry *entry;
|
|
u64 *d = (u64 *) bkeyp_val(f, k);
|
|
unsigned i;
|
|
|
|
for (i = 0; i < bkeyp_val_u64s(f, k); i++)
|
|
d[i] = swab64(d[i]);
|
|
|
|
for (entry = (union bch_extent_entry *) d;
|
|
entry < (union bch_extent_entry *) (d + bkeyp_val_u64s(f, k));
|
|
entry = extent_entry_next(entry)) {
|
|
switch (extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
entry->crc32.csum = swab32(entry->crc32.csum);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
entry->crc64.csum_hi = swab16(entry->crc64.csum_hi);
|
|
entry->crc64.csum_lo = swab64(entry->crc64.csum_lo);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
entry->crc128.csum.hi = (__force __le64)
|
|
swab64((__force u64) entry->crc128.csum.hi);
|
|
entry->crc128.csum.lo = (__force __le64)
|
|
swab64((__force u64) entry->crc128.csum.lo);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char *extent_ptr_invalid(const struct bch_fs *c,
|
|
struct bkey_s_c_extent e,
|
|
const struct bch_extent_ptr *ptr,
|
|
unsigned size_ondisk,
|
|
bool metadata)
|
|
{
|
|
const struct bch_extent_ptr *ptr2;
|
|
struct bch_dev *ca;
|
|
|
|
if (ptr->dev >= c->sb.nr_devices ||
|
|
!c->devs[ptr->dev])
|
|
return "pointer to invalid device";
|
|
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
if (!ca)
|
|
return "pointer to invalid device";
|
|
|
|
extent_for_each_ptr(e, ptr2)
|
|
if (ptr != ptr2 && ptr->dev == ptr2->dev)
|
|
return "multiple pointers to same device";
|
|
|
|
if (ptr->offset + size_ondisk > bucket_to_sector(ca, ca->mi.nbuckets))
|
|
return "offset past end of device";
|
|
|
|
if (ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket))
|
|
return "offset before first bucket";
|
|
|
|
if (bucket_remainder(ca, ptr->offset) +
|
|
size_ondisk > ca->mi.bucket_size)
|
|
return "spans multiple buckets";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static size_t extent_print_ptrs(struct bch_fs *c, char *buf,
|
|
size_t size, struct bkey_s_c_extent e)
|
|
{
|
|
char *out = buf, *end = buf + size;
|
|
const union bch_extent_entry *entry;
|
|
struct bch_extent_crc_unpacked crc;
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_dev *ca;
|
|
bool first = true;
|
|
|
|
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
|
|
|
|
extent_for_each_entry(e, entry) {
|
|
if (!first)
|
|
p(" ");
|
|
|
|
switch (__extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
crc = bch2_extent_crc_unpack(e.k, entry_to_crc(entry));
|
|
|
|
p("crc: c_size %u size %u offset %u nonce %u csum %u compress %u",
|
|
crc.compressed_size,
|
|
crc.uncompressed_size,
|
|
crc.offset, crc.nonce,
|
|
crc.csum_type,
|
|
crc.compression_type);
|
|
break;
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
ptr = entry_to_ptr(entry);
|
|
ca = ptr->dev < c->sb.nr_devices && c->devs[ptr->dev]
|
|
? bch_dev_bkey_exists(c, ptr->dev)
|
|
: NULL;
|
|
|
|
p("ptr: %u:%llu gen %u%s%s", ptr->dev,
|
|
(u64) ptr->offset, ptr->gen,
|
|
ptr->cached ? " cached" : "",
|
|
ca && ptr_stale(ca, ptr)
|
|
? " stale" : "");
|
|
break;
|
|
default:
|
|
p("(invalid extent entry %.16llx)", *((u64 *) entry));
|
|
goto out;
|
|
}
|
|
|
|
first = false;
|
|
}
|
|
out:
|
|
if (bkey_extent_is_cached(e.k))
|
|
p(" cached");
|
|
#undef p
|
|
return out - buf;
|
|
}
|
|
|
|
static inline bool dev_latency_better(struct bch_fs *c,
|
|
const struct bch_extent_ptr *ptr1,
|
|
const struct bch_extent_ptr *ptr2)
|
|
{
|
|
struct bch_dev *dev1 = bch_dev_bkey_exists(c, ptr1->dev);
|
|
struct bch_dev *dev2 = bch_dev_bkey_exists(c, ptr2->dev);
|
|
u64 l1 = atomic64_read(&dev1->cur_latency[READ]);
|
|
u64 l2 = atomic64_read(&dev2->cur_latency[READ]);
|
|
|
|
/* Pick at random, biased in favor of the faster device: */
|
|
|
|
return bch2_rand_range(l1 + l2) > l1;
|
|
}
|
|
|
|
static int extent_pick_read_device(struct bch_fs *c,
|
|
struct bkey_s_c_extent e,
|
|
struct bch_devs_mask *avoid,
|
|
struct extent_ptr_decoded *pick)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_extent_crc_unpacked crc;
|
|
struct bch_dev *ca;
|
|
int ret = 0;
|
|
|
|
extent_for_each_ptr_crc(e, ptr, crc) {
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
|
|
if (ptr->cached && ptr_stale(ca, ptr))
|
|
continue;
|
|
|
|
if (avoid && test_bit(ptr->dev, avoid->d))
|
|
continue;
|
|
|
|
if (ret && !dev_latency_better(c, ptr, &pick->ptr))
|
|
continue;
|
|
|
|
*pick = (struct extent_ptr_decoded) {
|
|
.ptr = *ptr,
|
|
.crc = crc,
|
|
};
|
|
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Btree ptrs */
|
|
|
|
const char *bch2_btree_ptr_invalid(const struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
if (bkey_extent_is_cached(k.k))
|
|
return "cached";
|
|
|
|
if (k.k->size)
|
|
return "nonzero key size";
|
|
|
|
if (bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX)
|
|
return "value too big";
|
|
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT: {
|
|
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
|
|
const union bch_extent_entry *entry;
|
|
const struct bch_extent_ptr *ptr;
|
|
const char *reason;
|
|
|
|
extent_for_each_entry(e, entry) {
|
|
if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
|
|
return "invalid extent entry type";
|
|
|
|
if (extent_entry_is_crc(entry))
|
|
return "has crc field";
|
|
}
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
reason = extent_ptr_invalid(c, e, ptr,
|
|
c->opts.btree_node_size,
|
|
true);
|
|
if (reason)
|
|
return reason;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
default:
|
|
return "invalid value type";
|
|
}
|
|
}
|
|
|
|
void bch2_btree_ptr_debugcheck(struct bch_fs *c, struct btree *b,
|
|
struct bkey_s_c k)
|
|
{
|
|
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
|
|
const struct bch_extent_ptr *ptr;
|
|
unsigned seq;
|
|
const char *err;
|
|
char buf[160];
|
|
struct bucket_mark mark;
|
|
struct bch_dev *ca;
|
|
unsigned replicas = 0;
|
|
bool bad;
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
replicas++;
|
|
|
|
if (!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags))
|
|
continue;
|
|
|
|
err = "stale";
|
|
if (ptr_stale(ca, ptr))
|
|
goto err;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&c->gc_pos_lock);
|
|
mark = ptr_bucket_mark(ca, ptr);
|
|
|
|
bad = gc_pos_cmp(c->gc_pos, gc_pos_btree_node(b)) > 0 &&
|
|
(mark.data_type != BCH_DATA_BTREE ||
|
|
mark.dirty_sectors < c->opts.btree_node_size);
|
|
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
|
|
|
|
err = "inconsistent";
|
|
if (bad)
|
|
goto err;
|
|
}
|
|
|
|
if (!bch2_bkey_replicas_marked(c, BCH_DATA_BTREE, e.s_c)) {
|
|
bch2_bkey_val_to_text(c, btree_node_type(b),
|
|
buf, sizeof(buf), k);
|
|
bch2_fs_bug(c,
|
|
"btree key bad (replicas not marked in superblock):\n%s",
|
|
buf);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
err:
|
|
bch2_bkey_val_to_text(c, btree_node_type(b), buf, sizeof(buf), k);
|
|
bch2_fs_bug(c, "%s btree pointer %s: bucket %zi "
|
|
"gen %i mark %08x",
|
|
err, buf, PTR_BUCKET_NR(ca, ptr),
|
|
mark.gen, (unsigned) mark.v.counter);
|
|
}
|
|
|
|
int bch2_btree_ptr_to_text(struct bch_fs *c, char *buf,
|
|
size_t size, struct bkey_s_c k)
|
|
{
|
|
char *out = buf, *end = buf + size;
|
|
const char *invalid;
|
|
|
|
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
|
|
|
|
if (bkey_extent_is_data(k.k))
|
|
out += extent_print_ptrs(c, buf, size, bkey_s_c_to_extent(k));
|
|
|
|
invalid = bch2_btree_ptr_invalid(c, k);
|
|
if (invalid)
|
|
p(" invalid: %s", invalid);
|
|
#undef p
|
|
return out - buf;
|
|
}
|
|
|
|
int bch2_btree_pick_ptr(struct bch_fs *c, const struct btree *b,
|
|
struct bch_devs_mask *avoid,
|
|
struct extent_ptr_decoded *pick)
|
|
{
|
|
return extent_pick_read_device(c, bkey_i_to_s_c_extent(&b->key),
|
|
avoid, pick);
|
|
}
|
|
|
|
/* Extents */
|
|
|
|
static bool __bch2_cut_front(struct bpos where, struct bkey_s k)
|
|
{
|
|
u64 len = 0;
|
|
|
|
if (bkey_cmp(where, bkey_start_pos(k.k)) <= 0)
|
|
return false;
|
|
|
|
EBUG_ON(bkey_cmp(where, k.k->p) > 0);
|
|
|
|
len = k.k->p.offset - where.offset;
|
|
|
|
BUG_ON(len > k.k->size);
|
|
|
|
/*
|
|
* Don't readjust offset if the key size is now 0, because that could
|
|
* cause offset to point to the next bucket:
|
|
*/
|
|
if (!len)
|
|
k.k->type = KEY_TYPE_DELETED;
|
|
else if (bkey_extent_is_data(k.k)) {
|
|
struct bkey_s_extent e = bkey_s_to_extent(k);
|
|
union bch_extent_entry *entry;
|
|
bool seen_crc = false;
|
|
|
|
extent_for_each_entry(e, entry) {
|
|
switch (extent_entry_type(entry)) {
|
|
case BCH_EXTENT_ENTRY_ptr:
|
|
if (!seen_crc)
|
|
entry->ptr.offset += e.k->size - len;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc32:
|
|
entry->crc32.offset += e.k->size - len;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc64:
|
|
entry->crc64.offset += e.k->size - len;
|
|
break;
|
|
case BCH_EXTENT_ENTRY_crc128:
|
|
entry->crc128.offset += e.k->size - len;
|
|
break;
|
|
}
|
|
|
|
if (extent_entry_is_crc(entry))
|
|
seen_crc = true;
|
|
}
|
|
}
|
|
|
|
k.k->size = len;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool bch2_cut_front(struct bpos where, struct bkey_i *k)
|
|
{
|
|
return __bch2_cut_front(where, bkey_i_to_s(k));
|
|
}
|
|
|
|
bool bch2_cut_back(struct bpos where, struct bkey *k)
|
|
{
|
|
u64 len = 0;
|
|
|
|
if (bkey_cmp(where, k->p) >= 0)
|
|
return false;
|
|
|
|
EBUG_ON(bkey_cmp(where, bkey_start_pos(k)) < 0);
|
|
|
|
len = where.offset - bkey_start_offset(k);
|
|
|
|
BUG_ON(len > k->size);
|
|
|
|
k->p = where;
|
|
k->size = len;
|
|
|
|
if (!len)
|
|
k->type = KEY_TYPE_DELETED;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* bch_key_resize - adjust size of @k
|
|
*
|
|
* bkey_start_offset(k) will be preserved, modifies where the extent ends
|
|
*/
|
|
void bch2_key_resize(struct bkey *k,
|
|
unsigned new_size)
|
|
{
|
|
k->p.offset -= k->size;
|
|
k->p.offset += new_size;
|
|
k->size = new_size;
|
|
}
|
|
|
|
/*
|
|
* In extent_sort_fix_overlapping(), insert_fixup_extent(),
|
|
* extent_merge_inline() - we're modifying keys in place that are packed. To do
|
|
* that we have to unpack the key, modify the unpacked key - then this
|
|
* copies/repacks the unpacked to the original as necessary.
|
|
*/
|
|
static void extent_save(struct btree *b, struct bkey_packed *dst,
|
|
struct bkey *src)
|
|
{
|
|
struct bkey_format *f = &b->format;
|
|
struct bkey_i *dst_unpacked;
|
|
|
|
if ((dst_unpacked = packed_to_bkey(dst)))
|
|
dst_unpacked->k = *src;
|
|
else
|
|
BUG_ON(!bch2_bkey_pack_key(dst, src, f));
|
|
}
|
|
|
|
static bool extent_i_save(struct btree *b, struct bkey_packed *dst,
|
|
struct bkey_i *src)
|
|
{
|
|
struct bkey_format *f = &b->format;
|
|
struct bkey_i *dst_unpacked;
|
|
struct bkey_packed tmp;
|
|
|
|
if ((dst_unpacked = packed_to_bkey(dst)))
|
|
dst_unpacked->k = src->k;
|
|
else if (bch2_bkey_pack_key(&tmp, &src->k, f))
|
|
memcpy_u64s(dst, &tmp, f->key_u64s);
|
|
else
|
|
return false;
|
|
|
|
memcpy_u64s(bkeyp_val(f, dst), &src->v, bkey_val_u64s(&src->k));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If keys compare equal, compare by pointer order:
|
|
*
|
|
* Necessary for sort_fix_overlapping() - if there are multiple keys that
|
|
* compare equal in different sets, we have to process them newest to oldest.
|
|
*/
|
|
#define extent_sort_cmp(h, l, r) \
|
|
({ \
|
|
struct bkey _ul = bkey_unpack_key(b, \
|
|
__btree_node_offset_to_key(b, (l).k)); \
|
|
struct bkey _ur = bkey_unpack_key(b, \
|
|
__btree_node_offset_to_key(b, (r).k)); \
|
|
\
|
|
bkey_cmp(bkey_start_pos(&_ul), \
|
|
bkey_start_pos(&_ur)) ?: (r).k - (l).k; \
|
|
})
|
|
|
|
static inline void extent_sort_sift(struct btree_node_iter_large *iter,
|
|
struct btree *b, size_t i)
|
|
{
|
|
heap_sift_down(iter, i, extent_sort_cmp);
|
|
}
|
|
|
|
static inline void extent_sort_next(struct btree_node_iter_large *iter,
|
|
struct btree *b,
|
|
struct btree_node_iter_set *i)
|
|
{
|
|
sort_key_next(iter, b, i);
|
|
heap_sift_down(iter, i - iter->data, extent_sort_cmp);
|
|
}
|
|
|
|
static void extent_sort_append(struct bch_fs *c,
|
|
struct btree *b,
|
|
struct btree_nr_keys *nr,
|
|
struct bkey_packed *start,
|
|
struct bkey_packed **prev,
|
|
struct bkey_packed *k)
|
|
{
|
|
struct bkey_format *f = &b->format;
|
|
BKEY_PADDED(k) tmp;
|
|
|
|
if (bkey_whiteout(k))
|
|
return;
|
|
|
|
bch2_bkey_unpack(b, &tmp.k, k);
|
|
|
|
if (*prev &&
|
|
bch2_extent_merge(c, b, (void *) *prev, &tmp.k))
|
|
return;
|
|
|
|
if (*prev) {
|
|
bch2_bkey_pack(*prev, (void *) *prev, f);
|
|
|
|
btree_keys_account_key_add(nr, 0, *prev);
|
|
*prev = bkey_next(*prev);
|
|
} else {
|
|
*prev = start;
|
|
}
|
|
|
|
bkey_copy(*prev, &tmp.k);
|
|
}
|
|
|
|
struct btree_nr_keys bch2_extent_sort_fix_overlapping(struct bch_fs *c,
|
|
struct bset *dst,
|
|
struct btree *b,
|
|
struct btree_node_iter_large *iter)
|
|
{
|
|
struct bkey_format *f = &b->format;
|
|
struct btree_node_iter_set *_l = iter->data, *_r;
|
|
struct bkey_packed *prev = NULL, *out, *lk, *rk;
|
|
struct bkey l_unpacked, r_unpacked;
|
|
struct bkey_s l, r;
|
|
struct btree_nr_keys nr;
|
|
|
|
memset(&nr, 0, sizeof(nr));
|
|
|
|
heap_resort(iter, extent_sort_cmp);
|
|
|
|
while (!bch2_btree_node_iter_large_end(iter)) {
|
|
lk = __btree_node_offset_to_key(b, _l->k);
|
|
|
|
if (iter->used == 1) {
|
|
extent_sort_append(c, b, &nr, dst->start, &prev, lk);
|
|
extent_sort_next(iter, b, _l);
|
|
continue;
|
|
}
|
|
|
|
_r = iter->data + 1;
|
|
if (iter->used > 2 &&
|
|
extent_sort_cmp(iter, _r[0], _r[1]) >= 0)
|
|
_r++;
|
|
|
|
rk = __btree_node_offset_to_key(b, _r->k);
|
|
|
|
l = __bkey_disassemble(b, lk, &l_unpacked);
|
|
r = __bkey_disassemble(b, rk, &r_unpacked);
|
|
|
|
/* If current key and next key don't overlap, just append */
|
|
if (bkey_cmp(l.k->p, bkey_start_pos(r.k)) <= 0) {
|
|
extent_sort_append(c, b, &nr, dst->start, &prev, lk);
|
|
extent_sort_next(iter, b, _l);
|
|
continue;
|
|
}
|
|
|
|
/* Skip 0 size keys */
|
|
if (!r.k->size) {
|
|
extent_sort_next(iter, b, _r);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* overlap: keep the newer key and trim the older key so they
|
|
* don't overlap. comparing pointers tells us which one is
|
|
* newer, since the bsets are appended one after the other.
|
|
*/
|
|
|
|
/* can't happen because of comparison func */
|
|
BUG_ON(_l->k < _r->k &&
|
|
!bkey_cmp(bkey_start_pos(l.k), bkey_start_pos(r.k)));
|
|
|
|
if (_l->k > _r->k) {
|
|
/* l wins, trim r */
|
|
if (bkey_cmp(l.k->p, r.k->p) >= 0) {
|
|
sort_key_next(iter, b, _r);
|
|
} else {
|
|
__bch2_cut_front(l.k->p, r);
|
|
extent_save(b, rk, r.k);
|
|
}
|
|
|
|
extent_sort_sift(iter, b, _r - iter->data);
|
|
} else if (bkey_cmp(l.k->p, r.k->p) > 0) {
|
|
BKEY_PADDED(k) tmp;
|
|
|
|
/*
|
|
* r wins, but it overlaps in the middle of l - split l:
|
|
*/
|
|
bkey_reassemble(&tmp.k, l.s_c);
|
|
bch2_cut_back(bkey_start_pos(r.k), &tmp.k.k);
|
|
|
|
__bch2_cut_front(r.k->p, l);
|
|
extent_save(b, lk, l.k);
|
|
|
|
extent_sort_sift(iter, b, 0);
|
|
|
|
extent_sort_append(c, b, &nr, dst->start, &prev,
|
|
bkey_to_packed(&tmp.k));
|
|
} else {
|
|
bch2_cut_back(bkey_start_pos(r.k), l.k);
|
|
extent_save(b, lk, l.k);
|
|
}
|
|
}
|
|
|
|
if (prev) {
|
|
bch2_bkey_pack(prev, (void *) prev, f);
|
|
btree_keys_account_key_add(&nr, 0, prev);
|
|
out = bkey_next(prev);
|
|
} else {
|
|
out = dst->start;
|
|
}
|
|
|
|
dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
|
|
return nr;
|
|
}
|
|
|
|
struct extent_insert_state {
|
|
struct btree_insert *trans;
|
|
struct btree_insert_entry *insert;
|
|
struct bpos committed;
|
|
struct bch_fs_usage stats;
|
|
|
|
/* for deleting: */
|
|
struct bkey_i whiteout;
|
|
bool update_journal;
|
|
bool update_btree;
|
|
bool deleting;
|
|
};
|
|
|
|
static void bch2_add_sectors(struct extent_insert_state *s,
|
|
struct bkey_s_c k, u64 offset, s64 sectors)
|
|
{
|
|
struct bch_fs *c = s->trans->c;
|
|
struct btree *b = s->insert->iter->l[0].b;
|
|
|
|
EBUG_ON(bkey_cmp(bkey_start_pos(k.k), b->data->min_key) < 0);
|
|
|
|
if (!sectors)
|
|
return;
|
|
|
|
bch2_mark_key(c, k, sectors, BCH_DATA_USER, gc_pos_btree_node(b),
|
|
&s->stats, s->trans->journal_res.seq, 0);
|
|
}
|
|
|
|
static void bch2_subtract_sectors(struct extent_insert_state *s,
|
|
struct bkey_s_c k, u64 offset, s64 sectors)
|
|
{
|
|
bch2_add_sectors(s, k, offset, -sectors);
|
|
}
|
|
|
|
/* These wrappers subtract exactly the sectors that we're removing from @k */
|
|
static void bch2_cut_subtract_back(struct extent_insert_state *s,
|
|
struct bpos where, struct bkey_s k)
|
|
{
|
|
bch2_subtract_sectors(s, k.s_c, where.offset,
|
|
k.k->p.offset - where.offset);
|
|
bch2_cut_back(where, k.k);
|
|
}
|
|
|
|
static void bch2_cut_subtract_front(struct extent_insert_state *s,
|
|
struct bpos where, struct bkey_s k)
|
|
{
|
|
bch2_subtract_sectors(s, k.s_c, bkey_start_offset(k.k),
|
|
where.offset - bkey_start_offset(k.k));
|
|
__bch2_cut_front(where, k);
|
|
}
|
|
|
|
static void bch2_drop_subtract(struct extent_insert_state *s, struct bkey_s k)
|
|
{
|
|
if (k.k->size)
|
|
bch2_subtract_sectors(s, k.s_c,
|
|
bkey_start_offset(k.k), k.k->size);
|
|
k.k->size = 0;
|
|
k.k->type = KEY_TYPE_DELETED;
|
|
}
|
|
|
|
static bool bch2_extent_merge_inline(struct bch_fs *,
|
|
struct btree_iter *,
|
|
struct bkey_packed *,
|
|
struct bkey_packed *,
|
|
bool);
|
|
|
|
static void verify_extent_nonoverlapping(struct btree *b,
|
|
struct btree_node_iter *_iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
struct btree_node_iter iter;
|
|
struct bkey_packed *k;
|
|
struct bkey uk;
|
|
|
|
iter = *_iter;
|
|
k = bch2_btree_node_iter_prev_filter(&iter, b, KEY_TYPE_DISCARD);
|
|
BUG_ON(k &&
|
|
(uk = bkey_unpack_key(b, k),
|
|
bkey_cmp(uk.p, bkey_start_pos(&insert->k)) > 0));
|
|
|
|
iter = *_iter;
|
|
k = bch2_btree_node_iter_peek_filter(&iter, b, KEY_TYPE_DISCARD);
|
|
#if 0
|
|
BUG_ON(k &&
|
|
(uk = bkey_unpack_key(b, k),
|
|
bkey_cmp(insert->k.p, bkey_start_pos(&uk))) > 0);
|
|
#else
|
|
if (k &&
|
|
(uk = bkey_unpack_key(b, k),
|
|
bkey_cmp(insert->k.p, bkey_start_pos(&uk))) > 0) {
|
|
char buf1[100];
|
|
char buf2[100];
|
|
|
|
bch2_bkey_to_text(buf1, sizeof(buf1), &insert->k);
|
|
bch2_bkey_to_text(buf2, sizeof(buf2), &uk);
|
|
|
|
bch2_dump_btree_node(b);
|
|
panic("insert > next :\n"
|
|
"insert %s\n"
|
|
"next %s\n",
|
|
buf1, buf2);
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
static void verify_modified_extent(struct btree_iter *iter,
|
|
struct bkey_packed *k)
|
|
{
|
|
bch2_btree_iter_verify(iter, iter->l[0].b);
|
|
bch2_verify_insert_pos(iter->l[0].b, k, k, k->u64s);
|
|
}
|
|
|
|
static void extent_bset_insert(struct bch_fs *c, struct btree_iter *iter,
|
|
struct bkey_i *insert)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_packed *k;
|
|
|
|
BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, l->b));
|
|
|
|
EBUG_ON(bkey_deleted(&insert->k) || !insert->k.size);
|
|
verify_extent_nonoverlapping(l->b, &l->iter, insert);
|
|
|
|
node_iter = l->iter;
|
|
k = bch2_btree_node_iter_prev_filter(&node_iter, l->b, KEY_TYPE_DISCARD);
|
|
if (k && !bkey_written(l->b, k) &&
|
|
bch2_extent_merge_inline(c, iter, k, bkey_to_packed(insert), true))
|
|
return;
|
|
|
|
node_iter = l->iter;
|
|
k = bch2_btree_node_iter_peek_filter(&node_iter, l->b, KEY_TYPE_DISCARD);
|
|
if (k && !bkey_written(l->b, k) &&
|
|
bch2_extent_merge_inline(c, iter, bkey_to_packed(insert), k, false))
|
|
return;
|
|
|
|
k = bch2_btree_node_iter_bset_pos(&l->iter, l->b, bset_tree_last(l->b));
|
|
|
|
bch2_bset_insert(l->b, &l->iter, k, insert, 0);
|
|
bch2_btree_node_iter_fix(iter, l->b, &l->iter, k, 0, k->u64s);
|
|
bch2_btree_iter_verify(iter, l->b);
|
|
}
|
|
|
|
static void extent_insert_committed(struct extent_insert_state *s)
|
|
{
|
|
struct bch_fs *c = s->trans->c;
|
|
struct btree_iter *iter = s->insert->iter;
|
|
struct bkey_i *insert = s->insert->k;
|
|
BKEY_PADDED(k) split;
|
|
|
|
EBUG_ON(bkey_cmp(insert->k.p, s->committed) < 0);
|
|
EBUG_ON(bkey_cmp(s->committed, bkey_start_pos(&insert->k)) < 0);
|
|
|
|
bkey_copy(&split.k, insert);
|
|
if (s->deleting)
|
|
split.k.k.type = KEY_TYPE_DISCARD;
|
|
|
|
if (!(s->trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
|
|
bch2_cut_subtract_back(s, s->committed,
|
|
bkey_i_to_s(&split.k));
|
|
else
|
|
bch2_cut_back(s->committed, &split.k.k);
|
|
|
|
if (!bkey_cmp(s->committed, iter->pos))
|
|
return;
|
|
|
|
bch2_btree_iter_set_pos_same_leaf(iter, s->committed);
|
|
|
|
if (s->update_btree) {
|
|
if (debug_check_bkeys(c))
|
|
bch2_bkey_debugcheck(c, iter->l[0].b,
|
|
bkey_i_to_s_c(&split.k));
|
|
|
|
EBUG_ON(bkey_deleted(&split.k.k) || !split.k.k.size);
|
|
|
|
extent_bset_insert(c, iter, &split.k);
|
|
}
|
|
|
|
if (s->update_journal) {
|
|
bkey_copy(&split.k, !s->deleting ? insert : &s->whiteout);
|
|
if (s->deleting)
|
|
split.k.k.type = KEY_TYPE_DISCARD;
|
|
|
|
bch2_cut_back(s->committed, &split.k.k);
|
|
|
|
EBUG_ON(bkey_deleted(&split.k.k) || !split.k.k.size);
|
|
|
|
bch2_btree_journal_key(s->trans, iter, &split.k);
|
|
}
|
|
|
|
bch2_cut_front(s->committed, insert);
|
|
|
|
insert->k.needs_whiteout = false;
|
|
s->trans->did_work = true;
|
|
}
|
|
|
|
void bch2_extent_trim_atomic(struct bkey_i *k, struct btree_iter *iter)
|
|
{
|
|
struct btree *b = iter->l[0].b;
|
|
|
|
BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK);
|
|
|
|
bch2_cut_back(b->key.k.p, &k->k);
|
|
|
|
BUG_ON(bkey_cmp(bkey_start_pos(&k->k), b->data->min_key) < 0);
|
|
}
|
|
|
|
enum btree_insert_ret
|
|
bch2_extent_can_insert(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert,
|
|
unsigned *u64s)
|
|
{
|
|
struct btree_iter_level *l = &insert->iter->l[0];
|
|
struct btree_node_iter node_iter = l->iter;
|
|
enum bch_extent_overlap overlap;
|
|
struct bkey_packed *_k;
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
int sectors;
|
|
|
|
BUG_ON(trans->flags & BTREE_INSERT_ATOMIC &&
|
|
!bch2_extent_is_atomic(&insert->k->k, insert->iter));
|
|
|
|
/*
|
|
* We avoid creating whiteouts whenever possible when deleting, but
|
|
* those optimizations mean we may potentially insert two whiteouts
|
|
* instead of one (when we overlap with the front of one extent and the
|
|
* back of another):
|
|
*/
|
|
if (bkey_whiteout(&insert->k->k))
|
|
*u64s += BKEY_U64s;
|
|
|
|
_k = bch2_btree_node_iter_peek_filter(&node_iter, l->b,
|
|
KEY_TYPE_DISCARD);
|
|
if (!_k)
|
|
return BTREE_INSERT_OK;
|
|
|
|
k = bkey_disassemble(l->b, _k, &unpacked);
|
|
|
|
overlap = bch2_extent_overlap(&insert->k->k, k.k);
|
|
|
|
/* account for having to split existing extent: */
|
|
if (overlap == BCH_EXTENT_OVERLAP_MIDDLE)
|
|
*u64s += _k->u64s;
|
|
|
|
if (overlap == BCH_EXTENT_OVERLAP_MIDDLE &&
|
|
(sectors = bch2_extent_is_compressed(k))) {
|
|
int flags = BCH_DISK_RESERVATION_BTREE_LOCKS_HELD;
|
|
|
|
if (trans->flags & BTREE_INSERT_NOFAIL)
|
|
flags |= BCH_DISK_RESERVATION_NOFAIL;
|
|
|
|
switch (bch2_disk_reservation_add(trans->c,
|
|
trans->disk_res,
|
|
sectors * bch2_extent_nr_dirty_ptrs(k),
|
|
flags)) {
|
|
case 0:
|
|
break;
|
|
case -ENOSPC:
|
|
return BTREE_INSERT_ENOSPC;
|
|
case -EINTR:
|
|
return BTREE_INSERT_NEED_GC_LOCK;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
return BTREE_INSERT_OK;
|
|
}
|
|
|
|
static void
|
|
extent_squash(struct extent_insert_state *s, struct bkey_i *insert,
|
|
struct bkey_packed *_k, struct bkey_s k,
|
|
enum bch_extent_overlap overlap)
|
|
{
|
|
struct bch_fs *c = s->trans->c;
|
|
struct btree_iter *iter = s->insert->iter;
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
|
|
switch (overlap) {
|
|
case BCH_EXTENT_OVERLAP_FRONT:
|
|
/* insert overlaps with start of k: */
|
|
bch2_cut_subtract_front(s, insert->k.p, k);
|
|
BUG_ON(bkey_deleted(k.k));
|
|
extent_save(l->b, _k, k.k);
|
|
verify_modified_extent(iter, _k);
|
|
break;
|
|
|
|
case BCH_EXTENT_OVERLAP_BACK:
|
|
/* insert overlaps with end of k: */
|
|
bch2_cut_subtract_back(s, bkey_start_pos(&insert->k), k);
|
|
BUG_ON(bkey_deleted(k.k));
|
|
extent_save(l->b, _k, k.k);
|
|
|
|
/*
|
|
* As the auxiliary tree is indexed by the end of the
|
|
* key and we've just changed the end, update the
|
|
* auxiliary tree.
|
|
*/
|
|
bch2_bset_fix_invalidated_key(l->b, _k);
|
|
bch2_btree_node_iter_fix(iter, l->b, &l->iter,
|
|
_k, _k->u64s, _k->u64s);
|
|
verify_modified_extent(iter, _k);
|
|
break;
|
|
|
|
case BCH_EXTENT_OVERLAP_ALL: {
|
|
/* The insert key completely covers k, invalidate k */
|
|
if (!bkey_whiteout(k.k))
|
|
btree_account_key_drop(l->b, _k);
|
|
|
|
bch2_drop_subtract(s, k);
|
|
|
|
if (_k >= btree_bset_last(l->b)->start) {
|
|
unsigned u64s = _k->u64s;
|
|
|
|
bch2_bset_delete(l->b, _k, _k->u64s);
|
|
bch2_btree_node_iter_fix(iter, l->b, &l->iter,
|
|
_k, u64s, 0);
|
|
bch2_btree_iter_verify(iter, l->b);
|
|
} else {
|
|
extent_save(l->b, _k, k.k);
|
|
bch2_btree_node_iter_fix(iter, l->b, &l->iter,
|
|
_k, _k->u64s, _k->u64s);
|
|
verify_modified_extent(iter, _k);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case BCH_EXTENT_OVERLAP_MIDDLE: {
|
|
BKEY_PADDED(k) split;
|
|
/*
|
|
* The insert key falls 'in the middle' of k
|
|
* The insert key splits k in 3:
|
|
* - start only in k, preserve
|
|
* - middle common section, invalidate in k
|
|
* - end only in k, preserve
|
|
*
|
|
* We update the old key to preserve the start,
|
|
* insert will be the new common section,
|
|
* we manually insert the end that we are preserving.
|
|
*
|
|
* modify k _before_ doing the insert (which will move
|
|
* what k points to)
|
|
*/
|
|
bkey_reassemble(&split.k, k.s_c);
|
|
split.k.k.needs_whiteout |= bkey_written(l->b, _k);
|
|
|
|
bch2_cut_back(bkey_start_pos(&insert->k), &split.k.k);
|
|
BUG_ON(bkey_deleted(&split.k.k));
|
|
|
|
bch2_cut_subtract_front(s, insert->k.p, k);
|
|
BUG_ON(bkey_deleted(k.k));
|
|
extent_save(l->b, _k, k.k);
|
|
verify_modified_extent(iter, _k);
|
|
|
|
bch2_add_sectors(s, bkey_i_to_s_c(&split.k),
|
|
bkey_start_offset(&split.k.k),
|
|
split.k.k.size);
|
|
extent_bset_insert(c, iter, &split.k);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __bch2_insert_fixup_extent(struct extent_insert_state *s)
|
|
{
|
|
struct btree_iter *iter = s->insert->iter;
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct bkey_packed *_k;
|
|
struct bkey unpacked;
|
|
struct bkey_i *insert = s->insert->k;
|
|
|
|
while (bkey_cmp(s->committed, insert->k.p) < 0 &&
|
|
(_k = bch2_btree_node_iter_peek_filter(&l->iter, l->b,
|
|
KEY_TYPE_DISCARD))) {
|
|
struct bkey_s k = __bkey_disassemble(l->b, _k, &unpacked);
|
|
enum bch_extent_overlap overlap = bch2_extent_overlap(&insert->k, k.k);
|
|
|
|
EBUG_ON(bkey_cmp(iter->pos, k.k->p) >= 0);
|
|
|
|
if (bkey_cmp(bkey_start_pos(k.k), insert->k.p) >= 0)
|
|
break;
|
|
|
|
s->committed = bpos_min(s->insert->k->k.p, k.k->p);
|
|
|
|
if (!bkey_whiteout(k.k))
|
|
s->update_journal = true;
|
|
|
|
if (!s->update_journal) {
|
|
bch2_cut_front(s->committed, insert);
|
|
bch2_cut_front(s->committed, &s->whiteout);
|
|
bch2_btree_iter_set_pos_same_leaf(iter, s->committed);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* When deleting, if possible just do it by switching the type
|
|
* of the key we're deleting, instead of creating and inserting
|
|
* a new whiteout:
|
|
*/
|
|
if (s->deleting &&
|
|
!s->update_btree &&
|
|
!bkey_cmp(insert->k.p, k.k->p) &&
|
|
!bkey_cmp(bkey_start_pos(&insert->k), bkey_start_pos(k.k))) {
|
|
if (!bkey_whiteout(k.k)) {
|
|
btree_account_key_drop(l->b, _k);
|
|
bch2_subtract_sectors(s, k.s_c,
|
|
bkey_start_offset(k.k), k.k->size);
|
|
_k->type = KEY_TYPE_DISCARD;
|
|
reserve_whiteout(l->b, _k);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (k.k->needs_whiteout || bkey_written(l->b, _k)) {
|
|
insert->k.needs_whiteout = true;
|
|
s->update_btree = true;
|
|
}
|
|
|
|
if (s->update_btree &&
|
|
overlap == BCH_EXTENT_OVERLAP_ALL &&
|
|
bkey_whiteout(k.k) &&
|
|
k.k->needs_whiteout) {
|
|
unreserve_whiteout(l->b, _k);
|
|
_k->needs_whiteout = false;
|
|
}
|
|
|
|
extent_squash(s, insert, _k, k, overlap);
|
|
|
|
if (!s->update_btree)
|
|
bch2_cut_front(s->committed, insert);
|
|
next:
|
|
if (overlap == BCH_EXTENT_OVERLAP_FRONT ||
|
|
overlap == BCH_EXTENT_OVERLAP_MIDDLE)
|
|
break;
|
|
}
|
|
|
|
if (bkey_cmp(s->committed, insert->k.p) < 0)
|
|
s->committed = bpos_min(s->insert->k->k.p, l->b->key.k.p);
|
|
|
|
/*
|
|
* may have skipped past some deleted extents greater than the insert
|
|
* key, before we got to a non deleted extent and knew we could bail out
|
|
* rewind the iterator a bit if necessary:
|
|
*/
|
|
{
|
|
struct btree_node_iter node_iter = l->iter;
|
|
|
|
while ((_k = bch2_btree_node_iter_prev_all(&node_iter, l->b)) &&
|
|
bkey_cmp_left_packed(l->b, _k, &s->committed) > 0)
|
|
l->iter = node_iter;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bch_extent_insert_fixup - insert a new extent and deal with overlaps
|
|
*
|
|
* this may result in not actually doing the insert, or inserting some subset
|
|
* of the insert key. For cmpxchg operations this is where that logic lives.
|
|
*
|
|
* All subsets of @insert that need to be inserted are inserted using
|
|
* bch2_btree_insert_and_journal(). If @b or @res fills up, this function
|
|
* returns false, setting @iter->pos for the prefix of @insert that actually got
|
|
* inserted.
|
|
*
|
|
* BSET INVARIANTS: this function is responsible for maintaining all the
|
|
* invariants for bsets of extents in memory. things get really hairy with 0
|
|
* size extents
|
|
*
|
|
* within one bset:
|
|
*
|
|
* bkey_start_pos(bkey_next(k)) >= k
|
|
* or bkey_start_offset(bkey_next(k)) >= k->offset
|
|
*
|
|
* i.e. strict ordering, no overlapping extents.
|
|
*
|
|
* multiple bsets (i.e. full btree node):
|
|
*
|
|
* ∀ k, j
|
|
* k.size != 0 ∧ j.size != 0 →
|
|
* ¬ (k > bkey_start_pos(j) ∧ k < j)
|
|
*
|
|
* i.e. no two overlapping keys _of nonzero size_
|
|
*
|
|
* We can't realistically maintain this invariant for zero size keys because of
|
|
* the key merging done in bch2_btree_insert_key() - for two mergeable keys k, j
|
|
* there may be another 0 size key between them in another bset, and it will
|
|
* thus overlap with the merged key.
|
|
*
|
|
* In addition, the end of iter->pos indicates how much has been processed.
|
|
* If the end of iter->pos is not the same as the end of insert, then
|
|
* key insertion needs to continue/be retried.
|
|
*/
|
|
enum btree_insert_ret
|
|
bch2_insert_fixup_extent(struct btree_insert *trans,
|
|
struct btree_insert_entry *insert)
|
|
{
|
|
struct bch_fs *c = trans->c;
|
|
struct btree_iter *iter = insert->iter;
|
|
struct btree *b = iter->l[0].b;
|
|
struct extent_insert_state s = {
|
|
.trans = trans,
|
|
.insert = insert,
|
|
.committed = iter->pos,
|
|
|
|
.whiteout = *insert->k,
|
|
.update_journal = !bkey_whiteout(&insert->k->k),
|
|
.update_btree = !bkey_whiteout(&insert->k->k),
|
|
.deleting = bkey_whiteout(&insert->k->k),
|
|
};
|
|
|
|
EBUG_ON(iter->level);
|
|
EBUG_ON(!insert->k->k.size);
|
|
|
|
/*
|
|
* As we process overlapping extents, we advance @iter->pos both to
|
|
* signal to our caller (btree_insert_key()) how much of @insert->k has
|
|
* been inserted, and also to keep @iter->pos consistent with
|
|
* @insert->k and the node iterator that we're advancing:
|
|
*/
|
|
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
|
|
|
|
if (!s.deleting &&
|
|
!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))
|
|
bch2_add_sectors(&s, bkey_i_to_s_c(insert->k),
|
|
bkey_start_offset(&insert->k->k),
|
|
insert->k->k.size);
|
|
|
|
__bch2_insert_fixup_extent(&s);
|
|
|
|
extent_insert_committed(&s);
|
|
|
|
bch2_fs_usage_apply(c, &s.stats, trans->disk_res,
|
|
gc_pos_btree_node(b));
|
|
|
|
EBUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&insert->k->k)));
|
|
EBUG_ON(bkey_cmp(iter->pos, s.committed));
|
|
|
|
if (insert->k->k.size) {
|
|
/* got to the end of this leaf node */
|
|
BUG_ON(bkey_cmp(iter->pos, b->key.k.p));
|
|
return BTREE_INSERT_NEED_TRAVERSE;
|
|
}
|
|
|
|
return BTREE_INSERT_OK;
|
|
}
|
|
|
|
const char *bch2_extent_invalid(const struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
if (bkey_val_u64s(k.k) > BKEY_EXTENT_VAL_U64s_MAX)
|
|
return "value too big";
|
|
|
|
if (!k.k->size)
|
|
return "zero key size";
|
|
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED: {
|
|
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
|
|
const union bch_extent_entry *entry;
|
|
struct bch_extent_crc_unpacked crc;
|
|
const struct bch_extent_ptr *ptr;
|
|
unsigned size_ondisk = e.k->size;
|
|
const char *reason;
|
|
unsigned nonce = UINT_MAX;
|
|
|
|
extent_for_each_entry(e, entry) {
|
|
if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX)
|
|
return "invalid extent entry type";
|
|
|
|
if (extent_entry_is_crc(entry)) {
|
|
crc = bch2_extent_crc_unpack(e.k, entry_to_crc(entry));
|
|
|
|
if (crc.offset + e.k->size >
|
|
crc.uncompressed_size)
|
|
return "checksum offset + key size > uncompressed size";
|
|
|
|
size_ondisk = crc.compressed_size;
|
|
|
|
if (!bch2_checksum_type_valid(c, crc.csum_type))
|
|
return "invalid checksum type";
|
|
|
|
if (crc.compression_type >= BCH_COMPRESSION_NR)
|
|
return "invalid compression type";
|
|
|
|
if (bch2_csum_type_is_encryption(crc.csum_type)) {
|
|
if (nonce == UINT_MAX)
|
|
nonce = crc.offset + crc.nonce;
|
|
else if (nonce != crc.offset + crc.nonce)
|
|
return "incorrect nonce";
|
|
}
|
|
} else {
|
|
ptr = entry_to_ptr(entry);
|
|
|
|
reason = extent_ptr_invalid(c, e, &entry->ptr,
|
|
size_ondisk, false);
|
|
if (reason)
|
|
return reason;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
case BCH_RESERVATION: {
|
|
struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k);
|
|
|
|
if (bkey_val_bytes(k.k) != sizeof(struct bch_reservation))
|
|
return "incorrect value size";
|
|
|
|
if (!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX)
|
|
return "invalid nr_replicas";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
default:
|
|
return "invalid value type";
|
|
}
|
|
}
|
|
|
|
static void bch2_extent_debugcheck_extent(struct bch_fs *c, struct btree *b,
|
|
struct bkey_s_c_extent e)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
struct bch_dev *ca;
|
|
struct bucket_mark mark;
|
|
unsigned seq, stale;
|
|
char buf[160];
|
|
bool bad;
|
|
unsigned replicas = 0;
|
|
|
|
/*
|
|
* XXX: we should be doing most/all of these checks at startup time,
|
|
* where we check bch2_bkey_invalid() in btree_node_read_done()
|
|
*
|
|
* But note that we can't check for stale pointers or incorrect gc marks
|
|
* until after journal replay is done (it might be an extent that's
|
|
* going to get overwritten during replay)
|
|
*/
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
replicas++;
|
|
|
|
/*
|
|
* If journal replay hasn't finished, we might be seeing keys
|
|
* that will be overwritten by the time journal replay is done:
|
|
*/
|
|
if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
|
|
continue;
|
|
|
|
stale = 0;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&c->gc_pos_lock);
|
|
mark = ptr_bucket_mark(ca, ptr);
|
|
|
|
/* between mark and bucket gen */
|
|
smp_rmb();
|
|
|
|
stale = ptr_stale(ca, ptr);
|
|
|
|
bch2_fs_bug_on(stale && !ptr->cached, c,
|
|
"stale dirty pointer");
|
|
|
|
bch2_fs_bug_on(stale > 96, c,
|
|
"key too stale: %i",
|
|
stale);
|
|
|
|
if (stale)
|
|
break;
|
|
|
|
bad = gc_pos_cmp(c->gc_pos, gc_pos_btree_node(b)) > 0 &&
|
|
(mark.data_type != BCH_DATA_USER ||
|
|
!(ptr->cached
|
|
? mark.cached_sectors
|
|
: mark.dirty_sectors));
|
|
} while (read_seqcount_retry(&c->gc_pos_lock, seq));
|
|
|
|
if (bad)
|
|
goto bad_ptr;
|
|
}
|
|
|
|
if (replicas > BCH_REPLICAS_MAX) {
|
|
bch2_bkey_val_to_text(c, btree_node_type(b), buf,
|
|
sizeof(buf), e.s_c);
|
|
bch2_fs_bug(c,
|
|
"extent key bad (too many replicas: %u): %s",
|
|
replicas, buf);
|
|
return;
|
|
}
|
|
|
|
if (!bkey_extent_is_cached(e.k) &&
|
|
!bch2_bkey_replicas_marked(c, BCH_DATA_USER, e.s_c)) {
|
|
bch2_bkey_val_to_text(c, btree_node_type(b),
|
|
buf, sizeof(buf), e.s_c);
|
|
bch2_fs_bug(c,
|
|
"extent key bad (replicas not marked in superblock):\n%s",
|
|
buf);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
|
|
bad_ptr:
|
|
bch2_bkey_val_to_text(c, btree_node_type(b), buf,
|
|
sizeof(buf), e.s_c);
|
|
bch2_fs_bug(c, "extent pointer bad gc mark: %s:\nbucket %zu "
|
|
"gen %i type %u", buf,
|
|
PTR_BUCKET_NR(ca, ptr), mark.gen, mark.data_type);
|
|
return;
|
|
}
|
|
|
|
void bch2_extent_debugcheck(struct bch_fs *c, struct btree *b, struct bkey_s_c k)
|
|
{
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED:
|
|
bch2_extent_debugcheck_extent(c, b, bkey_s_c_to_extent(k));
|
|
break;
|
|
case BCH_RESERVATION:
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
int bch2_extent_to_text(struct bch_fs *c, char *buf,
|
|
size_t size, struct bkey_s_c k)
|
|
{
|
|
char *out = buf, *end = buf + size;
|
|
const char *invalid;
|
|
|
|
#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
|
|
|
|
if (bkey_extent_is_data(k.k))
|
|
out += extent_print_ptrs(c, buf, size, bkey_s_c_to_extent(k));
|
|
|
|
invalid = bch2_extent_invalid(c, k);
|
|
if (invalid)
|
|
p(" invalid: %s", invalid);
|
|
#undef p
|
|
return out - buf;
|
|
}
|
|
|
|
static void bch2_extent_crc_init(union bch_extent_crc *crc,
|
|
struct bch_extent_crc_unpacked new)
|
|
{
|
|
#define common_fields(_crc) \
|
|
.csum_type = _crc.csum_type, \
|
|
.compression_type = _crc.compression_type, \
|
|
._compressed_size = _crc.compressed_size - 1, \
|
|
._uncompressed_size = _crc.uncompressed_size - 1, \
|
|
.offset = _crc.offset
|
|
|
|
if (bch_crc_bytes[new.csum_type] <= 4 &&
|
|
new.uncompressed_size <= CRC32_SIZE_MAX &&
|
|
new.nonce <= CRC32_NONCE_MAX) {
|
|
crc->crc32 = (struct bch_extent_crc32) {
|
|
.type = 1 << BCH_EXTENT_ENTRY_crc32,
|
|
common_fields(new),
|
|
.csum = *((__le32 *) &new.csum.lo),
|
|
};
|
|
return;
|
|
}
|
|
|
|
if (bch_crc_bytes[new.csum_type] <= 10 &&
|
|
new.uncompressed_size <= CRC64_SIZE_MAX &&
|
|
new.nonce <= CRC64_NONCE_MAX) {
|
|
crc->crc64 = (struct bch_extent_crc64) {
|
|
.type = 1 << BCH_EXTENT_ENTRY_crc64,
|
|
common_fields(new),
|
|
.nonce = new.nonce,
|
|
.csum_lo = new.csum.lo,
|
|
.csum_hi = *((__le16 *) &new.csum.hi),
|
|
};
|
|
return;
|
|
}
|
|
|
|
if (bch_crc_bytes[new.csum_type] <= 16 &&
|
|
new.uncompressed_size <= CRC128_SIZE_MAX &&
|
|
new.nonce <= CRC128_NONCE_MAX) {
|
|
crc->crc128 = (struct bch_extent_crc128) {
|
|
.type = 1 << BCH_EXTENT_ENTRY_crc128,
|
|
common_fields(new),
|
|
.nonce = new.nonce,
|
|
.csum = new.csum,
|
|
};
|
|
return;
|
|
}
|
|
#undef common_fields
|
|
BUG();
|
|
}
|
|
|
|
void bch2_extent_crc_append(struct bkey_i_extent *e,
|
|
struct bch_extent_crc_unpacked new)
|
|
{
|
|
struct bch_extent_crc_unpacked crc;
|
|
const union bch_extent_entry *i;
|
|
|
|
BUG_ON(new.compressed_size > new.uncompressed_size);
|
|
BUG_ON(new.live_size != e->k.size);
|
|
BUG_ON(!new.compressed_size || !new.uncompressed_size);
|
|
|
|
/*
|
|
* Look up the last crc entry, so we can check if we need to add
|
|
* another:
|
|
*/
|
|
extent_for_each_crc(extent_i_to_s(e), crc, i)
|
|
;
|
|
|
|
if (!bch2_crc_unpacked_cmp(crc, new))
|
|
return;
|
|
|
|
bch2_extent_crc_init((void *) extent_entry_last(extent_i_to_s(e)), new);
|
|
__extent_entry_push(e);
|
|
}
|
|
|
|
/*
|
|
* bch_extent_normalize - clean up an extent, dropping stale pointers etc.
|
|
*
|
|
* Returns true if @k should be dropped entirely
|
|
*
|
|
* For existing keys, only called when btree nodes are being rewritten, not when
|
|
* they're merely being compacted/resorted in memory.
|
|
*/
|
|
bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k)
|
|
{
|
|
struct bkey_s_extent e;
|
|
|
|
switch (k.k->type) {
|
|
case KEY_TYPE_ERROR:
|
|
return false;
|
|
|
|
case KEY_TYPE_DELETED:
|
|
return true;
|
|
case KEY_TYPE_DISCARD:
|
|
return bversion_zero(k.k->version);
|
|
case KEY_TYPE_COOKIE:
|
|
return false;
|
|
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED:
|
|
e = bkey_s_to_extent(k);
|
|
|
|
bch2_extent_drop_stale(c, e);
|
|
|
|
if (!bkey_val_u64s(e.k)) {
|
|
if (bkey_extent_is_cached(e.k)) {
|
|
k.k->type = KEY_TYPE_DISCARD;
|
|
if (bversion_zero(k.k->version))
|
|
return true;
|
|
} else {
|
|
k.k->type = KEY_TYPE_ERROR;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
case BCH_RESERVATION:
|
|
return false;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
void bch2_extent_mark_replicas_cached(struct bch_fs *c,
|
|
struct bkey_s_extent e,
|
|
unsigned target,
|
|
unsigned nr_desired_replicas)
|
|
{
|
|
struct bch_extent_ptr *ptr;
|
|
int extra = bch2_extent_durability(c, e.c) - nr_desired_replicas;
|
|
|
|
if (target && extra > 0)
|
|
extent_for_each_ptr(e, ptr) {
|
|
int n = bch2_extent_ptr_durability(c, ptr);
|
|
|
|
if (n && n <= extra &&
|
|
!bch2_dev_in_target(c, ptr->dev, target)) {
|
|
ptr->cached = true;
|
|
extra -= n;
|
|
}
|
|
}
|
|
|
|
if (extra > 0)
|
|
extent_for_each_ptr(e, ptr) {
|
|
int n = bch2_extent_ptr_durability(c, ptr);
|
|
|
|
if (n && n <= extra) {
|
|
ptr->cached = true;
|
|
extra -= n;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This picks a non-stale pointer, preferably from a device other than @avoid.
|
|
* Avoid can be NULL, meaning pick any. If there are no non-stale pointers to
|
|
* other devices, it will still pick a pointer from avoid.
|
|
*/
|
|
int bch2_extent_pick_ptr(struct bch_fs *c, struct bkey_s_c k,
|
|
struct bch_devs_mask *avoid,
|
|
struct extent_ptr_decoded *pick)
|
|
{
|
|
int ret;
|
|
|
|
switch (k.k->type) {
|
|
case KEY_TYPE_ERROR:
|
|
return -EIO;
|
|
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED:
|
|
ret = extent_pick_read_device(c, bkey_s_c_to_extent(k),
|
|
avoid, pick);
|
|
|
|
if (!ret && !bkey_extent_is_cached(k.k))
|
|
ret = -EIO;
|
|
|
|
return ret;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
enum merge_result bch2_extent_merge(struct bch_fs *c, struct btree *b,
|
|
struct bkey_i *l, struct bkey_i *r)
|
|
{
|
|
struct bkey_s_extent el, er;
|
|
union bch_extent_entry *en_l, *en_r;
|
|
|
|
if (key_merging_disabled(c))
|
|
return BCH_MERGE_NOMERGE;
|
|
|
|
/*
|
|
* Generic header checks
|
|
* Assumes left and right are in order
|
|
* Left and right must be exactly aligned
|
|
*/
|
|
|
|
if (l->k.u64s != r->k.u64s ||
|
|
l->k.type != r->k.type ||
|
|
bversion_cmp(l->k.version, r->k.version) ||
|
|
bkey_cmp(l->k.p, bkey_start_pos(&r->k)))
|
|
return BCH_MERGE_NOMERGE;
|
|
|
|
switch (l->k.type) {
|
|
case KEY_TYPE_DISCARD:
|
|
case KEY_TYPE_ERROR:
|
|
/* These types are mergeable, and no val to check */
|
|
break;
|
|
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED:
|
|
el = bkey_i_to_s_extent(l);
|
|
er = bkey_i_to_s_extent(r);
|
|
|
|
extent_for_each_entry(el, en_l) {
|
|
struct bch_extent_ptr *lp, *rp;
|
|
struct bch_dev *ca;
|
|
|
|
en_r = vstruct_idx(er.v, (u64 *) en_l - el.v->_data);
|
|
|
|
if ((extent_entry_type(en_l) !=
|
|
extent_entry_type(en_r)) ||
|
|
extent_entry_is_crc(en_l))
|
|
return BCH_MERGE_NOMERGE;
|
|
|
|
lp = &en_l->ptr;
|
|
rp = &en_r->ptr;
|
|
|
|
if (lp->offset + el.k->size != rp->offset ||
|
|
lp->dev != rp->dev ||
|
|
lp->gen != rp->gen)
|
|
return BCH_MERGE_NOMERGE;
|
|
|
|
/* We don't allow extents to straddle buckets: */
|
|
ca = bch_dev_bkey_exists(c, lp->dev);
|
|
|
|
if (PTR_BUCKET_NR(ca, lp) != PTR_BUCKET_NR(ca, rp))
|
|
return BCH_MERGE_NOMERGE;
|
|
}
|
|
|
|
break;
|
|
case BCH_RESERVATION: {
|
|
struct bkey_i_reservation *li = bkey_i_to_reservation(l);
|
|
struct bkey_i_reservation *ri = bkey_i_to_reservation(r);
|
|
|
|
if (li->v.generation != ri->v.generation ||
|
|
li->v.nr_replicas != ri->v.nr_replicas)
|
|
return BCH_MERGE_NOMERGE;
|
|
break;
|
|
}
|
|
default:
|
|
return BCH_MERGE_NOMERGE;
|
|
}
|
|
|
|
l->k.needs_whiteout |= r->k.needs_whiteout;
|
|
|
|
/* Keys with no pointers aren't restricted to one bucket and could
|
|
* overflow KEY_SIZE
|
|
*/
|
|
if ((u64) l->k.size + r->k.size > KEY_SIZE_MAX) {
|
|
bch2_key_resize(&l->k, KEY_SIZE_MAX);
|
|
bch2_cut_front(l->k.p, r);
|
|
return BCH_MERGE_PARTIAL;
|
|
}
|
|
|
|
bch2_key_resize(&l->k, l->k.size + r->k.size);
|
|
|
|
return BCH_MERGE_MERGE;
|
|
}
|
|
|
|
/*
|
|
* When merging an extent that we're inserting into a btree node, the new merged
|
|
* extent could overlap with an existing 0 size extent - if we don't fix that,
|
|
* it'll break the btree node iterator so this code finds those 0 size extents
|
|
* and shifts them out of the way.
|
|
*
|
|
* Also unpacks and repacks.
|
|
*/
|
|
static bool bch2_extent_merge_inline(struct bch_fs *c,
|
|
struct btree_iter *iter,
|
|
struct bkey_packed *l,
|
|
struct bkey_packed *r,
|
|
bool back_merge)
|
|
{
|
|
struct btree *b = iter->l[0].b;
|
|
struct btree_node_iter *node_iter = &iter->l[0].iter;
|
|
BKEY_PADDED(k) li, ri;
|
|
struct bkey_packed *m = back_merge ? l : r;
|
|
struct bkey_i *mi = back_merge ? &li.k : &ri.k;
|
|
struct bset_tree *t = bch2_bkey_to_bset(b, m);
|
|
enum merge_result ret;
|
|
|
|
EBUG_ON(bkey_written(b, m));
|
|
|
|
/*
|
|
* We need to save copies of both l and r, because we might get a
|
|
* partial merge (which modifies both) and then fails to repack
|
|
*/
|
|
bch2_bkey_unpack(b, &li.k, l);
|
|
bch2_bkey_unpack(b, &ri.k, r);
|
|
|
|
ret = bch2_extent_merge(c, b, &li.k, &ri.k);
|
|
if (ret == BCH_MERGE_NOMERGE)
|
|
return false;
|
|
|
|
/*
|
|
* check if we overlap with deleted extents - would break the sort
|
|
* order:
|
|
*/
|
|
if (back_merge) {
|
|
struct bkey_packed *n = bkey_next(m);
|
|
|
|
if (n != btree_bkey_last(b, t) &&
|
|
bkey_cmp_left_packed(b, n, &li.k.k.p) <= 0 &&
|
|
bkey_deleted(n))
|
|
return false;
|
|
} else if (ret == BCH_MERGE_MERGE) {
|
|
struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
|
|
|
|
if (prev &&
|
|
bkey_cmp_left_packed_byval(b, prev,
|
|
bkey_start_pos(&li.k.k)) > 0)
|
|
return false;
|
|
}
|
|
|
|
if (ret == BCH_MERGE_PARTIAL) {
|
|
if (!extent_i_save(b, m, mi))
|
|
return false;
|
|
|
|
if (!back_merge)
|
|
bkey_copy(packed_to_bkey(l), &li.k);
|
|
else
|
|
bkey_copy(packed_to_bkey(r), &ri.k);
|
|
} else {
|
|
if (!extent_i_save(b, m, &li.k))
|
|
return false;
|
|
}
|
|
|
|
bch2_bset_fix_invalidated_key(b, m);
|
|
bch2_btree_node_iter_fix(iter, b, node_iter,
|
|
m, m->u64s, m->u64s);
|
|
verify_modified_extent(iter, m);
|
|
|
|
return ret == BCH_MERGE_MERGE;
|
|
}
|
|
|
|
int bch2_check_range_allocated(struct bch_fs *c, struct bpos pos, u64 size)
|
|
{
|
|
struct btree_iter iter;
|
|
struct bpos end = pos;
|
|
struct bkey_s_c k;
|
|
int ret = 0;
|
|
|
|
end.offset += size;
|
|
|
|
for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, pos,
|
|
BTREE_ITER_SLOTS, k) {
|
|
if (bkey_cmp(bkey_start_pos(k.k), end) >= 0)
|
|
break;
|
|
|
|
if (!bch2_extent_is_fully_allocated(k)) {
|
|
ret = -ENOSPC;
|
|
break;
|
|
}
|
|
}
|
|
bch2_btree_iter_unlock(&iter);
|
|
|
|
return ret;
|
|
}
|