Miklos Szeredi 51eb01e735 [PATCH] fuse: no backgrounding on interrupt
Don't put requests into the background when a fatal interrupt occurs while the
request is in userspace.  This removes a major wart from the implementation.

Backgrounding of requests was introduced to allow breaking of deadlocks.
However now the same can be achieved by aborting the filesystem through the
'abort' sysfs attribute.

This is a change in the interface, but should not cause problems, since these
kinds of deadlocks never happen during normal operation.

Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-25 10:01:19 -07:00

896 lines
21 KiB
C

/*
FUSE: Filesystem in Userspace
Copyright (C) 2001-2006 Miklos Szeredi <miklos@szeredi.hu>
This program can be distributed under the terms of the GNU GPL.
See the file COPYING.
*/
#include "fuse_i.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/uio.h>
#include <linux/miscdevice.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/slab.h>
MODULE_ALIAS_MISCDEV(FUSE_MINOR);
static kmem_cache_t *fuse_req_cachep;
static struct fuse_conn *fuse_get_conn(struct file *file)
{
/*
* Lockless access is OK, because file->private data is set
* once during mount and is valid until the file is released.
*/
return file->private_data;
}
static void fuse_request_init(struct fuse_req *req)
{
memset(req, 0, sizeof(*req));
INIT_LIST_HEAD(&req->list);
init_waitqueue_head(&req->waitq);
atomic_set(&req->count, 1);
}
struct fuse_req *fuse_request_alloc(void)
{
struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, SLAB_KERNEL);
if (req)
fuse_request_init(req);
return req;
}
void fuse_request_free(struct fuse_req *req)
{
kmem_cache_free(fuse_req_cachep, req);
}
static void block_sigs(sigset_t *oldset)
{
sigset_t mask;
siginitsetinv(&mask, sigmask(SIGKILL));
sigprocmask(SIG_BLOCK, &mask, oldset);
}
static void restore_sigs(sigset_t *oldset)
{
sigprocmask(SIG_SETMASK, oldset, NULL);
}
static void __fuse_get_request(struct fuse_req *req)
{
atomic_inc(&req->count);
}
/* Must be called with > 1 refcount */
static void __fuse_put_request(struct fuse_req *req)
{
BUG_ON(atomic_read(&req->count) < 2);
atomic_dec(&req->count);
}
struct fuse_req *fuse_get_req(struct fuse_conn *fc)
{
struct fuse_req *req;
sigset_t oldset;
int intr;
int err;
atomic_inc(&fc->num_waiting);
block_sigs(&oldset);
intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
restore_sigs(&oldset);
err = -EINTR;
if (intr)
goto out;
err = -ENOTCONN;
if (!fc->connected)
goto out;
req = fuse_request_alloc();
err = -ENOMEM;
if (!req)
goto out;
req->in.h.uid = current->fsuid;
req->in.h.gid = current->fsgid;
req->in.h.pid = current->pid;
req->waiting = 1;
return req;
out:
atomic_dec(&fc->num_waiting);
return ERR_PTR(err);
}
void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
{
if (atomic_dec_and_test(&req->count)) {
if (req->waiting)
atomic_dec(&fc->num_waiting);
fuse_request_free(req);
}
}
/*
* This function is called when a request is finished. Either a reply
* has arrived or it was interrupted (and not yet sent) or some error
* occurred during communication with userspace, or the device file
* was closed. The requester thread is woken up (if still waiting),
* the 'end' callback is called if given, else the reference to the
* request is released
*
* Called with fc->lock, unlocks it
*/
static void request_end(struct fuse_conn *fc, struct fuse_req *req)
{
void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
req->end = NULL;
list_del(&req->list);
req->state = FUSE_REQ_FINISHED;
if (req->background) {
if (fc->num_background == FUSE_MAX_BACKGROUND) {
fc->blocked = 0;
wake_up_all(&fc->blocked_waitq);
}
fc->num_background--;
}
spin_unlock(&fc->lock);
dput(req->dentry);
mntput(req->vfsmount);
if (req->file)
fput(req->file);
wake_up(&req->waitq);
if (end)
end(fc, req);
else
fuse_put_request(fc, req);
}
/* Called with fc->lock held. Releases, and then reacquires it. */
static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
{
sigset_t oldset;
spin_unlock(&fc->lock);
if (req->force)
wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
else {
block_sigs(&oldset);
wait_event_interruptible(req->waitq,
req->state == FUSE_REQ_FINISHED);
restore_sigs(&oldset);
}
spin_lock(&fc->lock);
if (req->state == FUSE_REQ_FINISHED && !req->interrupted)
return;
if (!req->interrupted) {
req->out.h.error = -EINTR;
req->interrupted = 1;
}
if (req->locked) {
/* This is uninterruptible sleep, because data is
being copied to/from the buffers of req. During
locked state, there mustn't be any filesystem
operation (e.g. page fault), since that could lead
to deadlock */
spin_unlock(&fc->lock);
wait_event(req->waitq, !req->locked);
spin_lock(&fc->lock);
}
if (req->state == FUSE_REQ_PENDING) {
list_del(&req->list);
__fuse_put_request(req);
} else if (req->state == FUSE_REQ_SENT) {
spin_unlock(&fc->lock);
wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
spin_lock(&fc->lock);
}
}
static unsigned len_args(unsigned numargs, struct fuse_arg *args)
{
unsigned nbytes = 0;
unsigned i;
for (i = 0; i < numargs; i++)
nbytes += args[i].size;
return nbytes;
}
static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
{
fc->reqctr++;
/* zero is special */
if (fc->reqctr == 0)
fc->reqctr = 1;
req->in.h.unique = fc->reqctr;
req->in.h.len = sizeof(struct fuse_in_header) +
len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
list_add_tail(&req->list, &fc->pending);
req->state = FUSE_REQ_PENDING;
if (!req->waiting) {
req->waiting = 1;
atomic_inc(&fc->num_waiting);
}
wake_up(&fc->waitq);
kill_fasync(&fc->fasync, SIGIO, POLL_IN);
}
/*
* This can only be interrupted by a SIGKILL
*/
void request_send(struct fuse_conn *fc, struct fuse_req *req)
{
req->isreply = 1;
spin_lock(&fc->lock);
if (!fc->connected)
req->out.h.error = -ENOTCONN;
else if (fc->conn_error)
req->out.h.error = -ECONNREFUSED;
else {
queue_request(fc, req);
/* acquire extra reference, since request is still needed
after request_end() */
__fuse_get_request(req);
request_wait_answer(fc, req);
}
spin_unlock(&fc->lock);
}
static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
{
spin_lock(&fc->lock);
if (fc->connected) {
req->background = 1;
fc->num_background++;
if (fc->num_background == FUSE_MAX_BACKGROUND)
fc->blocked = 1;
queue_request(fc, req);
spin_unlock(&fc->lock);
} else {
req->out.h.error = -ENOTCONN;
request_end(fc, req);
}
}
void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
{
req->isreply = 0;
request_send_nowait(fc, req);
}
void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
{
req->isreply = 1;
request_send_nowait(fc, req);
}
/*
* Lock the request. Up to the next unlock_request() there mustn't be
* anything that could cause a page-fault. If the request was already
* interrupted bail out.
*/
static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
{
int err = 0;
if (req) {
spin_lock(&fc->lock);
if (req->interrupted)
err = -ENOENT;
else
req->locked = 1;
spin_unlock(&fc->lock);
}
return err;
}
/*
* Unlock request. If it was interrupted during being locked, the
* requester thread is currently waiting for it to be unlocked, so
* wake it up.
*/
static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
{
if (req) {
spin_lock(&fc->lock);
req->locked = 0;
if (req->interrupted)
wake_up(&req->waitq);
spin_unlock(&fc->lock);
}
}
struct fuse_copy_state {
struct fuse_conn *fc;
int write;
struct fuse_req *req;
const struct iovec *iov;
unsigned long nr_segs;
unsigned long seglen;
unsigned long addr;
struct page *pg;
void *mapaddr;
void *buf;
unsigned len;
};
static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
int write, struct fuse_req *req,
const struct iovec *iov, unsigned long nr_segs)
{
memset(cs, 0, sizeof(*cs));
cs->fc = fc;
cs->write = write;
cs->req = req;
cs->iov = iov;
cs->nr_segs = nr_segs;
}
/* Unmap and put previous page of userspace buffer */
static void fuse_copy_finish(struct fuse_copy_state *cs)
{
if (cs->mapaddr) {
kunmap_atomic(cs->mapaddr, KM_USER0);
if (cs->write) {
flush_dcache_page(cs->pg);
set_page_dirty_lock(cs->pg);
}
put_page(cs->pg);
cs->mapaddr = NULL;
}
}
/*
* Get another pagefull of userspace buffer, and map it to kernel
* address space, and lock request
*/
static int fuse_copy_fill(struct fuse_copy_state *cs)
{
unsigned long offset;
int err;
unlock_request(cs->fc, cs->req);
fuse_copy_finish(cs);
if (!cs->seglen) {
BUG_ON(!cs->nr_segs);
cs->seglen = cs->iov[0].iov_len;
cs->addr = (unsigned long) cs->iov[0].iov_base;
cs->iov ++;
cs->nr_segs --;
}
down_read(&current->mm->mmap_sem);
err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
&cs->pg, NULL);
up_read(&current->mm->mmap_sem);
if (err < 0)
return err;
BUG_ON(err != 1);
offset = cs->addr % PAGE_SIZE;
cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
cs->buf = cs->mapaddr + offset;
cs->len = min(PAGE_SIZE - offset, cs->seglen);
cs->seglen -= cs->len;
cs->addr += cs->len;
return lock_request(cs->fc, cs->req);
}
/* Do as much copy to/from userspace buffer as we can */
static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
{
unsigned ncpy = min(*size, cs->len);
if (val) {
if (cs->write)
memcpy(cs->buf, *val, ncpy);
else
memcpy(*val, cs->buf, ncpy);
*val += ncpy;
}
*size -= ncpy;
cs->len -= ncpy;
cs->buf += ncpy;
return ncpy;
}
/*
* Copy a page in the request to/from the userspace buffer. Must be
* done atomically
*/
static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
unsigned offset, unsigned count, int zeroing)
{
if (page && zeroing && count < PAGE_SIZE) {
void *mapaddr = kmap_atomic(page, KM_USER1);
memset(mapaddr, 0, PAGE_SIZE);
kunmap_atomic(mapaddr, KM_USER1);
}
while (count) {
int err;
if (!cs->len && (err = fuse_copy_fill(cs)))
return err;
if (page) {
void *mapaddr = kmap_atomic(page, KM_USER1);
void *buf = mapaddr + offset;
offset += fuse_copy_do(cs, &buf, &count);
kunmap_atomic(mapaddr, KM_USER1);
} else
offset += fuse_copy_do(cs, NULL, &count);
}
if (page && !cs->write)
flush_dcache_page(page);
return 0;
}
/* Copy pages in the request to/from userspace buffer */
static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
int zeroing)
{
unsigned i;
struct fuse_req *req = cs->req;
unsigned offset = req->page_offset;
unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
struct page *page = req->pages[i];
int err = fuse_copy_page(cs, page, offset, count, zeroing);
if (err)
return err;
nbytes -= count;
count = min(nbytes, (unsigned) PAGE_SIZE);
offset = 0;
}
return 0;
}
/* Copy a single argument in the request to/from userspace buffer */
static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
{
while (size) {
int err;
if (!cs->len && (err = fuse_copy_fill(cs)))
return err;
fuse_copy_do(cs, &val, &size);
}
return 0;
}
/* Copy request arguments to/from userspace buffer */
static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
unsigned argpages, struct fuse_arg *args,
int zeroing)
{
int err = 0;
unsigned i;
for (i = 0; !err && i < numargs; i++) {
struct fuse_arg *arg = &args[i];
if (i == numargs - 1 && argpages)
err = fuse_copy_pages(cs, arg->size, zeroing);
else
err = fuse_copy_one(cs, arg->value, arg->size);
}
return err;
}
/* Wait until a request is available on the pending list */
static void request_wait(struct fuse_conn *fc)
{
DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(&fc->waitq, &wait);
while (fc->connected && list_empty(&fc->pending)) {
set_current_state(TASK_INTERRUPTIBLE);
if (signal_pending(current))
break;
spin_unlock(&fc->lock);
schedule();
spin_lock(&fc->lock);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&fc->waitq, &wait);
}
/*
* Read a single request into the userspace filesystem's buffer. This
* function waits until a request is available, then removes it from
* the pending list and copies request data to userspace buffer. If
* no reply is needed (FORGET) or request has been interrupted or
* there was an error during the copying then it's finished by calling
* request_end(). Otherwise add it to the processing list, and set
* the 'sent' flag.
*/
static ssize_t fuse_dev_readv(struct file *file, const struct iovec *iov,
unsigned long nr_segs, loff_t *off)
{
int err;
struct fuse_req *req;
struct fuse_in *in;
struct fuse_copy_state cs;
unsigned reqsize;
struct fuse_conn *fc = fuse_get_conn(file);
if (!fc)
return -EPERM;
restart:
spin_lock(&fc->lock);
err = -EAGAIN;
if ((file->f_flags & O_NONBLOCK) && fc->connected &&
list_empty(&fc->pending))
goto err_unlock;
request_wait(fc);
err = -ENODEV;
if (!fc->connected)
goto err_unlock;
err = -ERESTARTSYS;
if (list_empty(&fc->pending))
goto err_unlock;
req = list_entry(fc->pending.next, struct fuse_req, list);
req->state = FUSE_REQ_READING;
list_move(&req->list, &fc->io);
in = &req->in;
reqsize = in->h.len;
/* If request is too large, reply with an error and restart the read */
if (iov_length(iov, nr_segs) < reqsize) {
req->out.h.error = -EIO;
/* SETXATTR is special, since it may contain too large data */
if (in->h.opcode == FUSE_SETXATTR)
req->out.h.error = -E2BIG;
request_end(fc, req);
goto restart;
}
spin_unlock(&fc->lock);
fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
if (!err)
err = fuse_copy_args(&cs, in->numargs, in->argpages,
(struct fuse_arg *) in->args, 0);
fuse_copy_finish(&cs);
spin_lock(&fc->lock);
req->locked = 0;
if (!err && req->interrupted)
err = -ENOENT;
if (err) {
if (!req->interrupted)
req->out.h.error = -EIO;
request_end(fc, req);
return err;
}
if (!req->isreply)
request_end(fc, req);
else {
req->state = FUSE_REQ_SENT;
list_move_tail(&req->list, &fc->processing);
spin_unlock(&fc->lock);
}
return reqsize;
err_unlock:
spin_unlock(&fc->lock);
return err;
}
static ssize_t fuse_dev_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *off)
{
struct iovec iov;
iov.iov_len = nbytes;
iov.iov_base = buf;
return fuse_dev_readv(file, &iov, 1, off);
}
/* Look up request on processing list by unique ID */
static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
{
struct list_head *entry;
list_for_each(entry, &fc->processing) {
struct fuse_req *req;
req = list_entry(entry, struct fuse_req, list);
if (req->in.h.unique == unique)
return req;
}
return NULL;
}
static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
unsigned nbytes)
{
unsigned reqsize = sizeof(struct fuse_out_header);
if (out->h.error)
return nbytes != reqsize ? -EINVAL : 0;
reqsize += len_args(out->numargs, out->args);
if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
return -EINVAL;
else if (reqsize > nbytes) {
struct fuse_arg *lastarg = &out->args[out->numargs-1];
unsigned diffsize = reqsize - nbytes;
if (diffsize > lastarg->size)
return -EINVAL;
lastarg->size -= diffsize;
}
return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
out->page_zeroing);
}
/*
* Write a single reply to a request. First the header is copied from
* the write buffer. The request is then searched on the processing
* list by the unique ID found in the header. If found, then remove
* it from the list and copy the rest of the buffer to the request.
* The request is finished by calling request_end()
*/
static ssize_t fuse_dev_writev(struct file *file, const struct iovec *iov,
unsigned long nr_segs, loff_t *off)
{
int err;
unsigned nbytes = iov_length(iov, nr_segs);
struct fuse_req *req;
struct fuse_out_header oh;
struct fuse_copy_state cs;
struct fuse_conn *fc = fuse_get_conn(file);
if (!fc)
return -EPERM;
fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
if (nbytes < sizeof(struct fuse_out_header))
return -EINVAL;
err = fuse_copy_one(&cs, &oh, sizeof(oh));
if (err)
goto err_finish;
err = -EINVAL;
if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
oh.len != nbytes)
goto err_finish;
spin_lock(&fc->lock);
err = -ENOENT;
if (!fc->connected)
goto err_unlock;
req = request_find(fc, oh.unique);
err = -EINVAL;
if (!req)
goto err_unlock;
if (req->interrupted) {
spin_unlock(&fc->lock);
fuse_copy_finish(&cs);
spin_lock(&fc->lock);
request_end(fc, req);
return -ENOENT;
}
list_move(&req->list, &fc->io);
req->out.h = oh;
req->locked = 1;
cs.req = req;
spin_unlock(&fc->lock);
err = copy_out_args(&cs, &req->out, nbytes);
fuse_copy_finish(&cs);
spin_lock(&fc->lock);
req->locked = 0;
if (!err) {
if (req->interrupted)
err = -ENOENT;
} else if (!req->interrupted)
req->out.h.error = -EIO;
request_end(fc, req);
return err ? err : nbytes;
err_unlock:
spin_unlock(&fc->lock);
err_finish:
fuse_copy_finish(&cs);
return err;
}
static ssize_t fuse_dev_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *off)
{
struct iovec iov;
iov.iov_len = nbytes;
iov.iov_base = (char __user *) buf;
return fuse_dev_writev(file, &iov, 1, off);
}
static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
{
unsigned mask = POLLOUT | POLLWRNORM;
struct fuse_conn *fc = fuse_get_conn(file);
if (!fc)
return POLLERR;
poll_wait(file, &fc->waitq, wait);
spin_lock(&fc->lock);
if (!fc->connected)
mask = POLLERR;
else if (!list_empty(&fc->pending))
mask |= POLLIN | POLLRDNORM;
spin_unlock(&fc->lock);
return mask;
}
/*
* Abort all requests on the given list (pending or processing)
*
* This function releases and reacquires fc->lock
*/
static void end_requests(struct fuse_conn *fc, struct list_head *head)
{
while (!list_empty(head)) {
struct fuse_req *req;
req = list_entry(head->next, struct fuse_req, list);
req->out.h.error = -ECONNABORTED;
request_end(fc, req);
spin_lock(&fc->lock);
}
}
/*
* Abort requests under I/O
*
* The requests are set to interrupted and finished, and the request
* waiter is woken up. This will make request_wait_answer() wait
* until the request is unlocked and then return.
*
* If the request is asynchronous, then the end function needs to be
* called after waiting for the request to be unlocked (if it was
* locked).
*/
static void end_io_requests(struct fuse_conn *fc)
{
while (!list_empty(&fc->io)) {
struct fuse_req *req =
list_entry(fc->io.next, struct fuse_req, list);
void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
req->interrupted = 1;
req->out.h.error = -ECONNABORTED;
req->state = FUSE_REQ_FINISHED;
list_del_init(&req->list);
wake_up(&req->waitq);
if (end) {
req->end = NULL;
/* The end function will consume this reference */
__fuse_get_request(req);
spin_unlock(&fc->lock);
wait_event(req->waitq, !req->locked);
end(fc, req);
spin_lock(&fc->lock);
}
}
}
/*
* Abort all requests.
*
* Emergency exit in case of a malicious or accidental deadlock, or
* just a hung filesystem.
*
* The same effect is usually achievable through killing the
* filesystem daemon and all users of the filesystem. The exception
* is the combination of an asynchronous request and the tricky
* deadlock (see Documentation/filesystems/fuse.txt).
*
* During the aborting, progression of requests from the pending and
* processing lists onto the io list, and progression of new requests
* onto the pending list is prevented by req->connected being false.
*
* Progression of requests under I/O to the processing list is
* prevented by the req->interrupted flag being true for these
* requests. For this reason requests on the io list must be aborted
* first.
*/
void fuse_abort_conn(struct fuse_conn *fc)
{
spin_lock(&fc->lock);
if (fc->connected) {
fc->connected = 0;
fc->blocked = 0;
end_io_requests(fc);
end_requests(fc, &fc->pending);
end_requests(fc, &fc->processing);
wake_up_all(&fc->waitq);
wake_up_all(&fc->blocked_waitq);
kill_fasync(&fc->fasync, SIGIO, POLL_IN);
}
spin_unlock(&fc->lock);
}
static int fuse_dev_release(struct inode *inode, struct file *file)
{
struct fuse_conn *fc = fuse_get_conn(file);
if (fc) {
spin_lock(&fc->lock);
fc->connected = 0;
end_requests(fc, &fc->pending);
end_requests(fc, &fc->processing);
spin_unlock(&fc->lock);
fasync_helper(-1, file, 0, &fc->fasync);
kobject_put(&fc->kobj);
}
return 0;
}
static int fuse_dev_fasync(int fd, struct file *file, int on)
{
struct fuse_conn *fc = fuse_get_conn(file);
if (!fc)
return -EPERM;
/* No locking - fasync_helper does its own locking */
return fasync_helper(fd, file, on, &fc->fasync);
}
const struct file_operations fuse_dev_operations = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = fuse_dev_read,
.readv = fuse_dev_readv,
.write = fuse_dev_write,
.writev = fuse_dev_writev,
.poll = fuse_dev_poll,
.release = fuse_dev_release,
.fasync = fuse_dev_fasync,
};
static struct miscdevice fuse_miscdevice = {
.minor = FUSE_MINOR,
.name = "fuse",
.fops = &fuse_dev_operations,
};
int __init fuse_dev_init(void)
{
int err = -ENOMEM;
fuse_req_cachep = kmem_cache_create("fuse_request",
sizeof(struct fuse_req),
0, 0, NULL, NULL);
if (!fuse_req_cachep)
goto out;
err = misc_register(&fuse_miscdevice);
if (err)
goto out_cache_clean;
return 0;
out_cache_clean:
kmem_cache_destroy(fuse_req_cachep);
out:
return err;
}
void fuse_dev_cleanup(void)
{
misc_deregister(&fuse_miscdevice);
kmem_cache_destroy(fuse_req_cachep);
}