mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 05:26:07 +00:00
85b08180df
The x86_match_cpu() infrastructure can match CPU steppings. Since there are only 16 possible steppings, the matching infrastructure goes all out and stores the stepping match as a bitmap. That means it can match any possible steppings in a single list entry. Fun. But it exposes this bitmap to each of the X86_MATCH_*() helpers when none of them really need a bitmap. It makes up for this by exporting a helper (X86_STEPPINGS()) which converts a contiguous stepping range into the bitmap which every single user leverages. Instead of a bitmap, have the main helper for this sort of thing (X86_MATCH_VFM_STEPS()) just take a stepping range. This ends up actually being even more compact than before. Leave the helper in place (renamed to __X86_STEPPINGS()) to make it more clear what is going on instead of just having a random GENMASK() in the middle of an already complicated macro. One oddity that I hit was this macro: X86_MATCH_VFM_STEPS(vfm, X86_STEPPING_MIN, max_stepping, issues) It *could* have been converted over to take a min/max stepping value for each entry. But that would have been a bit too verbose and would prevent the one oddball in the list (INTEL_COMETLAKE_L stepping 0) from sticking out. Instead, just have it take a *maximum* stepping and imply that the match is from 0=>max_stepping. This is functional for all the cases now and also retains the nice property of having INTEL_COMETLAKE_L stepping 0 stick out like a sore thumb. skx_cpuids[] is goofy. It uses the stepping match but encodes all possible steppings. Just use a normal, non-stepping match helper. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20241213185129.65527B2A%40davehans-spike.ostc.intel.com