linux-next/kernel/sched/rt.c
Yafang Shao 57a5c2dafc sched/rt: Support schedstats for RT sched class
We want to measure the latency of RT tasks in our production
environment with schedstats facility, but currently schedstats is only
supported for fair sched class. This patch enable it for RT sched class
as well.

After we make the struct sched_statistics and the helpers of it
independent of fair sched class, we can easily use the schedstats
facility for RT sched class.

The schedstat usage in RT sched class is similar with fair sched class,
for example,
                fair                        RT
enqueue         update_stats_enqueue_fair   update_stats_enqueue_rt
dequeue         update_stats_dequeue_fair   update_stats_dequeue_rt
put_prev_task   update_stats_wait_start     update_stats_wait_start_rt
set_next_task   update_stats_wait_end       update_stats_wait_end_rt

The user can get the schedstats information in the same way in fair sched
class. For example,
       fair                            RT
       /proc/[pid]/sched               /proc/[pid]/sched

schedstats is not supported for RT group.

The output of a RT task's schedstats as follows,
$ cat /proc/10349/sched
...
sum_sleep_runtime                            :           972.434535
sum_block_runtime                            :           960.433522
wait_start                                   :        188510.871584
sleep_start                                  :             0.000000
block_start                                  :             0.000000
sleep_max                                    :            12.001013
block_max                                    :           952.660622
exec_max                                     :             0.049629
slice_max                                    :             0.000000
wait_max                                     :             0.018538
wait_sum                                     :             0.424340
wait_count                                   :                   49
iowait_sum                                   :           956.495640
iowait_count                                 :                   24
nr_migrations_cold                           :                    0
nr_failed_migrations_affine                  :                    0
nr_failed_migrations_running                 :                    0
nr_failed_migrations_hot                     :                    0
nr_forced_migrations                         :                    0
nr_wakeups                                   :                   49
nr_wakeups_sync                              :                    0
nr_wakeups_migrate                           :                    0
nr_wakeups_local                             :                   49
nr_wakeups_remote                            :                    0
nr_wakeups_affine                            :                    0
nr_wakeups_affine_attempts                   :                    0
nr_wakeups_passive                           :                    0
nr_wakeups_idle                              :                    0
...

The sched:sched_stat_{wait, sleep, iowait, blocked} tracepoints can
be used to trace RT tasks as well. The output of these tracepoints for a
RT tasks as follows,

- runtime
          stress-10352   [004] d.h.  1035.382286: sched_stat_runtime: comm=stress pid=10352 runtime=995769 [ns] vruntime=0 [ns]
          [vruntime=0 means it is a RT task]

- wait
          <idle>-0       [004] dN..  1227.688544: sched_stat_wait: comm=stress pid=10352 delay=46849882 [ns]

- blocked
     kworker/4:1-465     [004] dN..  1585.676371: sched_stat_blocked: comm=stress pid=17194 delay=189963 [ns]

- iowait
     kworker/4:1-465     [004] dN..  1585.675330: sched_stat_iowait: comm=stress pid=17189 delay=182848 [ns]

- sleep
           sleep-18194   [023] dN..  1780.891840: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001160770 [ns]
           sleep-18196   [023] dN..  1781.893208: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001161970 [ns]
           sleep-18197   [023] dN..  1782.894544: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001128840 [ns]
           [ In sleep.sh, it sleeps 1 sec each time. ]

[lkp@intel.com: reported build failure in earlier version]

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-7-laoar.shao@gmail.com
2021-10-05 15:51:51 +02:00

2985 lines
69 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
* policies)
*/
#include "sched.h"
#include "pelt.h"
int sched_rr_timeslice = RR_TIMESLICE;
int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
/* More than 4 hours if BW_SHIFT equals 20. */
static const u64 max_rt_runtime = MAX_BW;
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
struct rt_bandwidth def_rt_bandwidth;
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
struct rt_bandwidth *rt_b =
container_of(timer, struct rt_bandwidth, rt_period_timer);
int idle = 0;
int overrun;
raw_spin_lock(&rt_b->rt_runtime_lock);
for (;;) {
overrun = hrtimer_forward_now(timer, rt_b->rt_period);
if (!overrun)
break;
raw_spin_unlock(&rt_b->rt_runtime_lock);
idle = do_sched_rt_period_timer(rt_b, overrun);
raw_spin_lock(&rt_b->rt_runtime_lock);
}
if (idle)
rt_b->rt_period_active = 0;
raw_spin_unlock(&rt_b->rt_runtime_lock);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
rt_b->rt_period = ns_to_ktime(period);
rt_b->rt_runtime = runtime;
raw_spin_lock_init(&rt_b->rt_runtime_lock);
hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_HARD);
rt_b->rt_period_timer.function = sched_rt_period_timer;
}
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
return;
raw_spin_lock(&rt_b->rt_runtime_lock);
if (!rt_b->rt_period_active) {
rt_b->rt_period_active = 1;
/*
* SCHED_DEADLINE updates the bandwidth, as a run away
* RT task with a DL task could hog a CPU. But DL does
* not reset the period. If a deadline task was running
* without an RT task running, it can cause RT tasks to
* throttle when they start up. Kick the timer right away
* to update the period.
*/
hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
hrtimer_start_expires(&rt_b->rt_period_timer,
HRTIMER_MODE_ABS_PINNED_HARD);
}
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
void init_rt_rq(struct rt_rq *rt_rq)
{
struct rt_prio_array *array;
int i;
array = &rt_rq->active;
for (i = 0; i < MAX_RT_PRIO; i++) {
INIT_LIST_HEAD(array->queue + i);
__clear_bit(i, array->bitmap);
}
/* delimiter for bitsearch: */
__set_bit(MAX_RT_PRIO, array->bitmap);
#if defined CONFIG_SMP
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
rt_rq->highest_prio.next = MAX_RT_PRIO-1;
rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0;
plist_head_init(&rt_rq->pushable_tasks);
#endif /* CONFIG_SMP */
/* We start is dequeued state, because no RT tasks are queued */
rt_rq->rt_queued = 0;
rt_rq->rt_time = 0;
rt_rq->rt_throttled = 0;
rt_rq->rt_runtime = 0;
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}
#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
hrtimer_cancel(&rt_b->rt_period_timer);
}
#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
return container_of(rt_se, struct task_struct, rt);
}
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
return rt_rq->rq;
}
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
return rt_se->rt_rq;
}
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
struct rt_rq *rt_rq = rt_se->rt_rq;
return rt_rq->rq;
}
void free_rt_sched_group(struct task_group *tg)
{
int i;
if (tg->rt_se)
destroy_rt_bandwidth(&tg->rt_bandwidth);
for_each_possible_cpu(i) {
if (tg->rt_rq)
kfree(tg->rt_rq[i]);
if (tg->rt_se)
kfree(tg->rt_se[i]);
}
kfree(tg->rt_rq);
kfree(tg->rt_se);
}
void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu,
struct sched_rt_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
rt_rq->rt_nr_boosted = 0;
rt_rq->rq = rq;
rt_rq->tg = tg;
tg->rt_rq[cpu] = rt_rq;
tg->rt_se[cpu] = rt_se;
if (!rt_se)
return;
if (!parent)
rt_se->rt_rq = &rq->rt;
else
rt_se->rt_rq = parent->my_q;
rt_se->my_q = rt_rq;
rt_se->parent = parent;
INIT_LIST_HEAD(&rt_se->run_list);
}
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
struct rt_rq *rt_rq;
struct sched_rt_entity *rt_se;
int i;
tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
if (!tg->rt_rq)
goto err;
tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
if (!tg->rt_se)
goto err;
init_rt_bandwidth(&tg->rt_bandwidth,
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
for_each_possible_cpu(i) {
rt_rq = kzalloc_node(sizeof(struct rt_rq),
GFP_KERNEL, cpu_to_node(i));
if (!rt_rq)
goto err;
rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
GFP_KERNEL, cpu_to_node(i));
if (!rt_se)
goto err_free_rq;
init_rt_rq(rt_rq);
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
}
return 1;
err_free_rq:
kfree(rt_rq);
err:
return 0;
}
#else /* CONFIG_RT_GROUP_SCHED */
#define rt_entity_is_task(rt_se) (1)
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
return container_of(rt_se, struct task_struct, rt);
}
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
return container_of(rt_rq, struct rq, rt);
}
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
struct task_struct *p = rt_task_of(rt_se);
return task_rq(p);
}
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
struct rq *rq = rq_of_rt_se(rt_se);
return &rq->rt;
}
void free_rt_sched_group(struct task_group *tg) { }
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_SMP
static void pull_rt_task(struct rq *this_rq);
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
/* Try to pull RT tasks here if we lower this rq's prio */
return rq->online && rq->rt.highest_prio.curr > prev->prio;
}
static inline int rt_overloaded(struct rq *rq)
{
return atomic_read(&rq->rd->rto_count);
}
static inline void rt_set_overload(struct rq *rq)
{
if (!rq->online)
return;
cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
/*
* Make sure the mask is visible before we set
* the overload count. That is checked to determine
* if we should look at the mask. It would be a shame
* if we looked at the mask, but the mask was not
* updated yet.
*
* Matched by the barrier in pull_rt_task().
*/
smp_wmb();
atomic_inc(&rq->rd->rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
if (!rq->online)
return;
/* the order here really doesn't matter */
atomic_dec(&rq->rd->rto_count);
cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
}
static void update_rt_migration(struct rt_rq *rt_rq)
{
if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
if (!rt_rq->overloaded) {
rt_set_overload(rq_of_rt_rq(rt_rq));
rt_rq->overloaded = 1;
}
} else if (rt_rq->overloaded) {
rt_clear_overload(rq_of_rt_rq(rt_rq));
rt_rq->overloaded = 0;
}
}
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
struct task_struct *p;
if (!rt_entity_is_task(rt_se))
return;
p = rt_task_of(rt_se);
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
rt_rq->rt_nr_total++;
if (p->nr_cpus_allowed > 1)
rt_rq->rt_nr_migratory++;
update_rt_migration(rt_rq);
}
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
struct task_struct *p;
if (!rt_entity_is_task(rt_se))
return;
p = rt_task_of(rt_se);
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
rt_rq->rt_nr_total--;
if (p->nr_cpus_allowed > 1)
rt_rq->rt_nr_migratory--;
update_rt_migration(rt_rq);
}
static inline int has_pushable_tasks(struct rq *rq)
{
return !plist_head_empty(&rq->rt.pushable_tasks);
}
static DEFINE_PER_CPU(struct callback_head, rt_push_head);
static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
static void push_rt_tasks(struct rq *);
static void pull_rt_task(struct rq *);
static inline void rt_queue_push_tasks(struct rq *rq)
{
if (!has_pushable_tasks(rq))
return;
queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
}
static inline void rt_queue_pull_task(struct rq *rq)
{
queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
}
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
plist_node_init(&p->pushable_tasks, p->prio);
plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
/* Update the highest prio pushable task */
if (p->prio < rq->rt.highest_prio.next)
rq->rt.highest_prio.next = p->prio;
}
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
/* Update the new highest prio pushable task */
if (has_pushable_tasks(rq)) {
p = plist_first_entry(&rq->rt.pushable_tasks,
struct task_struct, pushable_tasks);
rq->rt.highest_prio.next = p->prio;
} else {
rq->rt.highest_prio.next = MAX_RT_PRIO-1;
}
}
#else
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
}
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}
static inline
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
static inline
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
return false;
}
static inline void pull_rt_task(struct rq *this_rq)
{
}
static inline void rt_queue_push_tasks(struct rq *rq)
{
}
#endif /* CONFIG_SMP */
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
return rt_se->on_rq;
}
#ifdef CONFIG_UCLAMP_TASK
/*
* Verify the fitness of task @p to run on @cpu taking into account the uclamp
* settings.
*
* This check is only important for heterogeneous systems where uclamp_min value
* is higher than the capacity of a @cpu. For non-heterogeneous system this
* function will always return true.
*
* The function will return true if the capacity of the @cpu is >= the
* uclamp_min and false otherwise.
*
* Note that uclamp_min will be clamped to uclamp_max if uclamp_min
* > uclamp_max.
*/
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
{
unsigned int min_cap;
unsigned int max_cap;
unsigned int cpu_cap;
/* Only heterogeneous systems can benefit from this check */
if (!static_branch_unlikely(&sched_asym_cpucapacity))
return true;
min_cap = uclamp_eff_value(p, UCLAMP_MIN);
max_cap = uclamp_eff_value(p, UCLAMP_MAX);
cpu_cap = capacity_orig_of(cpu);
return cpu_cap >= min(min_cap, max_cap);
}
#else
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
{
return true;
}
#endif
#ifdef CONFIG_RT_GROUP_SCHED
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
if (!rt_rq->tg)
return RUNTIME_INF;
return rt_rq->rt_runtime;
}
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
}
typedef struct task_group *rt_rq_iter_t;
static inline struct task_group *next_task_group(struct task_group *tg)
{
do {
tg = list_entry_rcu(tg->list.next,
typeof(struct task_group), list);
} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
if (&tg->list == &task_groups)
tg = NULL;
return tg;
}
#define for_each_rt_rq(rt_rq, iter, rq) \
for (iter = container_of(&task_groups, typeof(*iter), list); \
(iter = next_task_group(iter)) && \
(rt_rq = iter->rt_rq[cpu_of(rq)]);)
#define for_each_sched_rt_entity(rt_se) \
for (; rt_se; rt_se = rt_se->parent)
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
return rt_se->my_q;
}
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
struct rq *rq = rq_of_rt_rq(rt_rq);
struct sched_rt_entity *rt_se;
int cpu = cpu_of(rq);
rt_se = rt_rq->tg->rt_se[cpu];
if (rt_rq->rt_nr_running) {
if (!rt_se)
enqueue_top_rt_rq(rt_rq);
else if (!on_rt_rq(rt_se))
enqueue_rt_entity(rt_se, 0);
if (rt_rq->highest_prio.curr < curr->prio)
resched_curr(rq);
}
}
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
struct sched_rt_entity *rt_se;
int cpu = cpu_of(rq_of_rt_rq(rt_rq));
rt_se = rt_rq->tg->rt_se[cpu];
if (!rt_se) {
dequeue_top_rt_rq(rt_rq);
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
}
else if (on_rt_rq(rt_se))
dequeue_rt_entity(rt_se, 0);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
struct rt_rq *rt_rq = group_rt_rq(rt_se);
struct task_struct *p;
if (rt_rq)
return !!rt_rq->rt_nr_boosted;
p = rt_task_of(rt_se);
return p->prio != p->normal_prio;
}
#ifdef CONFIG_SMP
static inline const struct cpumask *sched_rt_period_mask(void)
{
return this_rq()->rd->span;
}
#else
static inline const struct cpumask *sched_rt_period_mask(void)
{
return cpu_online_mask;
}
#endif
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
return &rt_rq->tg->rt_bandwidth;
}
#else /* !CONFIG_RT_GROUP_SCHED */
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
return rt_rq->rt_runtime;
}
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
return ktime_to_ns(def_rt_bandwidth.rt_period);
}
typedef struct rt_rq *rt_rq_iter_t;
#define for_each_rt_rq(rt_rq, iter, rq) \
for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
#define for_each_sched_rt_entity(rt_se) \
for (; rt_se; rt_se = NULL)
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
return NULL;
}
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
if (!rt_rq->rt_nr_running)
return;
enqueue_top_rt_rq(rt_rq);
resched_curr(rq);
}
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
dequeue_top_rt_rq(rt_rq);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
return rt_rq->rt_throttled;
}
static inline const struct cpumask *sched_rt_period_mask(void)
{
return cpu_online_mask;
}
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
return &cpu_rq(cpu)->rt;
}
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
return &def_rt_bandwidth;
}
#endif /* CONFIG_RT_GROUP_SCHED */
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
return (hrtimer_active(&rt_b->rt_period_timer) ||
rt_rq->rt_time < rt_b->rt_runtime);
}
#ifdef CONFIG_SMP
/*
* We ran out of runtime, see if we can borrow some from our neighbours.
*/
static void do_balance_runtime(struct rt_rq *rt_rq)
{
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
int i, weight;
u64 rt_period;
weight = cpumask_weight(rd->span);
raw_spin_lock(&rt_b->rt_runtime_lock);
rt_period = ktime_to_ns(rt_b->rt_period);
for_each_cpu(i, rd->span) {
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
s64 diff;
if (iter == rt_rq)
continue;
raw_spin_lock(&iter->rt_runtime_lock);
/*
* Either all rqs have inf runtime and there's nothing to steal
* or __disable_runtime() below sets a specific rq to inf to
* indicate its been disabled and disallow stealing.
*/
if (iter->rt_runtime == RUNTIME_INF)
goto next;
/*
* From runqueues with spare time, take 1/n part of their
* spare time, but no more than our period.
*/
diff = iter->rt_runtime - iter->rt_time;
if (diff > 0) {
diff = div_u64((u64)diff, weight);
if (rt_rq->rt_runtime + diff > rt_period)
diff = rt_period - rt_rq->rt_runtime;
iter->rt_runtime -= diff;
rt_rq->rt_runtime += diff;
if (rt_rq->rt_runtime == rt_period) {
raw_spin_unlock(&iter->rt_runtime_lock);
break;
}
}
next:
raw_spin_unlock(&iter->rt_runtime_lock);
}
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
/*
* Ensure this RQ takes back all the runtime it lend to its neighbours.
*/
static void __disable_runtime(struct rq *rq)
{
struct root_domain *rd = rq->rd;
rt_rq_iter_t iter;
struct rt_rq *rt_rq;
if (unlikely(!scheduler_running))
return;
for_each_rt_rq(rt_rq, iter, rq) {
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
s64 want;
int i;
raw_spin_lock(&rt_b->rt_runtime_lock);
raw_spin_lock(&rt_rq->rt_runtime_lock);
/*
* Either we're all inf and nobody needs to borrow, or we're
* already disabled and thus have nothing to do, or we have
* exactly the right amount of runtime to take out.
*/
if (rt_rq->rt_runtime == RUNTIME_INF ||
rt_rq->rt_runtime == rt_b->rt_runtime)
goto balanced;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
/*
* Calculate the difference between what we started out with
* and what we current have, that's the amount of runtime
* we lend and now have to reclaim.
*/
want = rt_b->rt_runtime - rt_rq->rt_runtime;
/*
* Greedy reclaim, take back as much as we can.
*/
for_each_cpu(i, rd->span) {
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
s64 diff;
/*
* Can't reclaim from ourselves or disabled runqueues.
*/
if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
continue;
raw_spin_lock(&iter->rt_runtime_lock);
if (want > 0) {
diff = min_t(s64, iter->rt_runtime, want);
iter->rt_runtime -= diff;
want -= diff;
} else {
iter->rt_runtime -= want;
want -= want;
}
raw_spin_unlock(&iter->rt_runtime_lock);
if (!want)
break;
}
raw_spin_lock(&rt_rq->rt_runtime_lock);
/*
* We cannot be left wanting - that would mean some runtime
* leaked out of the system.
*/
BUG_ON(want);
balanced:
/*
* Disable all the borrow logic by pretending we have inf
* runtime - in which case borrowing doesn't make sense.
*/
rt_rq->rt_runtime = RUNTIME_INF;
rt_rq->rt_throttled = 0;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
raw_spin_unlock(&rt_b->rt_runtime_lock);
/* Make rt_rq available for pick_next_task() */
sched_rt_rq_enqueue(rt_rq);
}
}
static void __enable_runtime(struct rq *rq)
{
rt_rq_iter_t iter;
struct rt_rq *rt_rq;
if (unlikely(!scheduler_running))
return;
/*
* Reset each runqueue's bandwidth settings
*/
for_each_rt_rq(rt_rq, iter, rq) {
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
raw_spin_lock(&rt_b->rt_runtime_lock);
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = rt_b->rt_runtime;
rt_rq->rt_time = 0;
rt_rq->rt_throttled = 0;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
}
static void balance_runtime(struct rt_rq *rt_rq)
{
if (!sched_feat(RT_RUNTIME_SHARE))
return;
if (rt_rq->rt_time > rt_rq->rt_runtime) {
raw_spin_unlock(&rt_rq->rt_runtime_lock);
do_balance_runtime(rt_rq);
raw_spin_lock(&rt_rq->rt_runtime_lock);
}
}
#else /* !CONFIG_SMP */
static inline void balance_runtime(struct rt_rq *rt_rq) {}
#endif /* CONFIG_SMP */
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
int i, idle = 1, throttled = 0;
const struct cpumask *span;
span = sched_rt_period_mask();
#ifdef CONFIG_RT_GROUP_SCHED
/*
* FIXME: isolated CPUs should really leave the root task group,
* whether they are isolcpus or were isolated via cpusets, lest
* the timer run on a CPU which does not service all runqueues,
* potentially leaving other CPUs indefinitely throttled. If
* isolation is really required, the user will turn the throttle
* off to kill the perturbations it causes anyway. Meanwhile,
* this maintains functionality for boot and/or troubleshooting.
*/
if (rt_b == &root_task_group.rt_bandwidth)
span = cpu_online_mask;
#endif
for_each_cpu(i, span) {
int enqueue = 0;
struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
struct rq *rq = rq_of_rt_rq(rt_rq);
int skip;
/*
* When span == cpu_online_mask, taking each rq->lock
* can be time-consuming. Try to avoid it when possible.
*/
raw_spin_lock(&rt_rq->rt_runtime_lock);
if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
rt_rq->rt_runtime = rt_b->rt_runtime;
skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
if (skip)
continue;
raw_spin_rq_lock(rq);
update_rq_clock(rq);
if (rt_rq->rt_time) {
u64 runtime;
raw_spin_lock(&rt_rq->rt_runtime_lock);
if (rt_rq->rt_throttled)
balance_runtime(rt_rq);
runtime = rt_rq->rt_runtime;
rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
rt_rq->rt_throttled = 0;
enqueue = 1;
/*
* When we're idle and a woken (rt) task is
* throttled check_preempt_curr() will set
* skip_update and the time between the wakeup
* and this unthrottle will get accounted as
* 'runtime'.
*/
if (rt_rq->rt_nr_running && rq->curr == rq->idle)
rq_clock_cancel_skipupdate(rq);
}
if (rt_rq->rt_time || rt_rq->rt_nr_running)
idle = 0;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
} else if (rt_rq->rt_nr_running) {
idle = 0;
if (!rt_rq_throttled(rt_rq))
enqueue = 1;
}
if (rt_rq->rt_throttled)
throttled = 1;
if (enqueue)
sched_rt_rq_enqueue(rt_rq);
raw_spin_rq_unlock(rq);
}
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
return 1;
return idle;
}
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_RT_GROUP_SCHED
struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq)
return rt_rq->highest_prio.curr;
#endif
return rt_task_of(rt_se)->prio;
}
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
{
u64 runtime = sched_rt_runtime(rt_rq);
if (rt_rq->rt_throttled)
return rt_rq_throttled(rt_rq);
if (runtime >= sched_rt_period(rt_rq))
return 0;
balance_runtime(rt_rq);
runtime = sched_rt_runtime(rt_rq);
if (runtime == RUNTIME_INF)
return 0;
if (rt_rq->rt_time > runtime) {
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
/*
* Don't actually throttle groups that have no runtime assigned
* but accrue some time due to boosting.
*/
if (likely(rt_b->rt_runtime)) {
rt_rq->rt_throttled = 1;
printk_deferred_once("sched: RT throttling activated\n");
} else {
/*
* In case we did anyway, make it go away,
* replenishment is a joke, since it will replenish us
* with exactly 0 ns.
*/
rt_rq->rt_time = 0;
}
if (rt_rq_throttled(rt_rq)) {
sched_rt_rq_dequeue(rt_rq);
return 1;
}
}
return 0;
}
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct sched_rt_entity *rt_se = &curr->rt;
u64 delta_exec;
u64 now;
if (curr->sched_class != &rt_sched_class)
return;
now = rq_clock_task(rq);
delta_exec = now - curr->se.exec_start;
if (unlikely((s64)delta_exec <= 0))
return;
schedstat_set(curr->stats.exec_max,
max(curr->stats.exec_max, delta_exec));
trace_sched_stat_runtime(curr, delta_exec, 0);
curr->se.sum_exec_runtime += delta_exec;
account_group_exec_runtime(curr, delta_exec);
curr->se.exec_start = now;
cgroup_account_cputime(curr, delta_exec);
if (!rt_bandwidth_enabled())
return;
for_each_sched_rt_entity(rt_se) {
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_time += delta_exec;
if (sched_rt_runtime_exceeded(rt_rq))
resched_curr(rq);
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
}
}
static void
dequeue_top_rt_rq(struct rt_rq *rt_rq)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
BUG_ON(&rq->rt != rt_rq);
if (!rt_rq->rt_queued)
return;
BUG_ON(!rq->nr_running);
sub_nr_running(rq, rt_rq->rt_nr_running);
rt_rq->rt_queued = 0;
}
static void
enqueue_top_rt_rq(struct rt_rq *rt_rq)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
BUG_ON(&rq->rt != rt_rq);
if (rt_rq->rt_queued)
return;
if (rt_rq_throttled(rt_rq))
return;
if (rt_rq->rt_nr_running) {
add_nr_running(rq, rt_rq->rt_nr_running);
rt_rq->rt_queued = 1;
}
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
cpufreq_update_util(rq, 0);
}
#if defined CONFIG_SMP
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Change rq's cpupri only if rt_rq is the top queue.
*/
if (&rq->rt != rt_rq)
return;
#endif
if (rq->online && prio < prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
}
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Change rq's cpupri only if rt_rq is the top queue.
*/
if (&rq->rt != rt_rq)
return;
#endif
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
}
#else /* CONFIG_SMP */
static inline
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
#endif /* CONFIG_SMP */
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
int prev_prio = rt_rq->highest_prio.curr;
if (prio < prev_prio)
rt_rq->highest_prio.curr = prio;
inc_rt_prio_smp(rt_rq, prio, prev_prio);
}
static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
int prev_prio = rt_rq->highest_prio.curr;
if (rt_rq->rt_nr_running) {
WARN_ON(prio < prev_prio);
/*
* This may have been our highest task, and therefore
* we may have some recomputation to do
*/
if (prio == prev_prio) {
struct rt_prio_array *array = &rt_rq->active;
rt_rq->highest_prio.curr =
sched_find_first_bit(array->bitmap);
}
} else {
rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
}
dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
#else
static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
if (rt_se_boosted(rt_se))
rt_rq->rt_nr_boosted++;
if (rt_rq->tg)
start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}
static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
if (rt_se_boosted(rt_se))
rt_rq->rt_nr_boosted--;
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
}
#else /* CONFIG_RT_GROUP_SCHED */
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
start_rt_bandwidth(&def_rt_bandwidth);
}
static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
#endif /* CONFIG_RT_GROUP_SCHED */
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
struct rt_rq *group_rq = group_rt_rq(rt_se);
if (group_rq)
return group_rq->rt_nr_running;
else
return 1;
}
static inline
unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
{
struct rt_rq *group_rq = group_rt_rq(rt_se);
struct task_struct *tsk;
if (group_rq)
return group_rq->rr_nr_running;
tsk = rt_task_of(rt_se);
return (tsk->policy == SCHED_RR) ? 1 : 0;
}
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
int prio = rt_se_prio(rt_se);
WARN_ON(!rt_prio(prio));
rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
inc_rt_prio(rt_rq, prio);
inc_rt_migration(rt_se, rt_rq);
inc_rt_group(rt_se, rt_rq);
}
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
WARN_ON(!rt_rq->rt_nr_running);
rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
dec_rt_prio(rt_rq, rt_se_prio(rt_se));
dec_rt_migration(rt_se, rt_rq);
dec_rt_group(rt_se, rt_rq);
}
/*
* Change rt_se->run_list location unless SAVE && !MOVE
*
* assumes ENQUEUE/DEQUEUE flags match
*/
static inline bool move_entity(unsigned int flags)
{
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
return false;
return true;
}
static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
{
list_del_init(&rt_se->run_list);
if (list_empty(array->queue + rt_se_prio(rt_se)))
__clear_bit(rt_se_prio(rt_se), array->bitmap);
rt_se->on_list = 0;
}
static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_RT_GROUP_SCHED
/* schedstats is not supported for rt group. */
if (!rt_entity_is_task(rt_se))
return NULL;
#endif
return &rt_task_of(rt_se)->stats;
}
static inline void
update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
struct sched_statistics *stats;
struct task_struct *p = NULL;
if (!schedstat_enabled())
return;
if (rt_entity_is_task(rt_se))
p = rt_task_of(rt_se);
stats = __schedstats_from_rt_se(rt_se);
if (!stats)
return;
__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
}
static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
struct sched_statistics *stats;
struct task_struct *p = NULL;
if (!schedstat_enabled())
return;
if (rt_entity_is_task(rt_se))
p = rt_task_of(rt_se);
stats = __schedstats_from_rt_se(rt_se);
if (!stats)
return;
__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
}
static inline void
update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
int flags)
{
if (!schedstat_enabled())
return;
if (flags & ENQUEUE_WAKEUP)
update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
}
static inline void
update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
{
struct sched_statistics *stats;
struct task_struct *p = NULL;
if (!schedstat_enabled())
return;
if (rt_entity_is_task(rt_se))
p = rt_task_of(rt_se);
stats = __schedstats_from_rt_se(rt_se);
if (!stats)
return;
__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
}
static inline void
update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
int flags)
{
struct task_struct *p = NULL;
if (!schedstat_enabled())
return;
if (rt_entity_is_task(rt_se))
p = rt_task_of(rt_se);
if ((flags & DEQUEUE_SLEEP) && p) {
unsigned int state;
state = READ_ONCE(p->__state);
if (state & TASK_INTERRUPTIBLE)
__schedstat_set(p->stats.sleep_start,
rq_clock(rq_of_rt_rq(rt_rq)));
if (state & TASK_UNINTERRUPTIBLE)
__schedstat_set(p->stats.block_start,
rq_clock(rq_of_rt_rq(rt_rq)));
}
}
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
struct rt_rq *group_rq = group_rt_rq(rt_se);
struct list_head *queue = array->queue + rt_se_prio(rt_se);
/*
* Don't enqueue the group if its throttled, or when empty.
* The latter is a consequence of the former when a child group
* get throttled and the current group doesn't have any other
* active members.
*/
if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
if (rt_se->on_list)
__delist_rt_entity(rt_se, array);
return;
}
if (move_entity(flags)) {
WARN_ON_ONCE(rt_se->on_list);
if (flags & ENQUEUE_HEAD)
list_add(&rt_se->run_list, queue);
else
list_add_tail(&rt_se->run_list, queue);
__set_bit(rt_se_prio(rt_se), array->bitmap);
rt_se->on_list = 1;
}
rt_se->on_rq = 1;
inc_rt_tasks(rt_se, rt_rq);
}
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
if (move_entity(flags)) {
WARN_ON_ONCE(!rt_se->on_list);
__delist_rt_entity(rt_se, array);
}
rt_se->on_rq = 0;
dec_rt_tasks(rt_se, rt_rq);
}
/*
* Because the prio of an upper entry depends on the lower
* entries, we must remove entries top - down.
*/
static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct sched_rt_entity *back = NULL;
for_each_sched_rt_entity(rt_se) {
rt_se->back = back;
back = rt_se;
}
dequeue_top_rt_rq(rt_rq_of_se(back));
for (rt_se = back; rt_se; rt_se = rt_se->back) {
if (on_rt_rq(rt_se))
__dequeue_rt_entity(rt_se, flags);
}
}
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rq *rq = rq_of_rt_se(rt_se);
update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
dequeue_rt_stack(rt_se, flags);
for_each_sched_rt_entity(rt_se)
__enqueue_rt_entity(rt_se, flags);
enqueue_top_rt_rq(&rq->rt);
}
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rq *rq = rq_of_rt_se(rt_se);
update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
dequeue_rt_stack(rt_se, flags);
for_each_sched_rt_entity(rt_se) {
struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq && rt_rq->rt_nr_running)
__enqueue_rt_entity(rt_se, flags);
}
enqueue_top_rt_rq(&rq->rt);
}
/*
* Adding/removing a task to/from a priority array:
*/
static void
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{
struct sched_rt_entity *rt_se = &p->rt;
if (flags & ENQUEUE_WAKEUP)
rt_se->timeout = 0;
check_schedstat_required();
update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
enqueue_rt_entity(rt_se, flags);
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
}
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{
struct sched_rt_entity *rt_se = &p->rt;
update_curr_rt(rq);
dequeue_rt_entity(rt_se, flags);
dequeue_pushable_task(rq, p);
}
/*
* Put task to the head or the end of the run list without the overhead of
* dequeue followed by enqueue.
*/
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
{
if (on_rt_rq(rt_se)) {
struct rt_prio_array *array = &rt_rq->active;
struct list_head *queue = array->queue + rt_se_prio(rt_se);
if (head)
list_move(&rt_se->run_list, queue);
else
list_move_tail(&rt_se->run_list, queue);
}
}
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
{
struct sched_rt_entity *rt_se = &p->rt;
struct rt_rq *rt_rq;
for_each_sched_rt_entity(rt_se) {
rt_rq = rt_rq_of_se(rt_se);
requeue_rt_entity(rt_rq, rt_se, head);
}
}
static void yield_task_rt(struct rq *rq)
{
requeue_task_rt(rq, rq->curr, 0);
}
#ifdef CONFIG_SMP
static int find_lowest_rq(struct task_struct *task);
static int
select_task_rq_rt(struct task_struct *p, int cpu, int flags)
{
struct task_struct *curr;
struct rq *rq;
bool test;
/* For anything but wake ups, just return the task_cpu */
if (!(flags & (WF_TTWU | WF_FORK)))
goto out;
rq = cpu_rq(cpu);
rcu_read_lock();
curr = READ_ONCE(rq->curr); /* unlocked access */
/*
* If the current task on @p's runqueue is an RT task, then
* try to see if we can wake this RT task up on another
* runqueue. Otherwise simply start this RT task
* on its current runqueue.
*
* We want to avoid overloading runqueues. If the woken
* task is a higher priority, then it will stay on this CPU
* and the lower prio task should be moved to another CPU.
* Even though this will probably make the lower prio task
* lose its cache, we do not want to bounce a higher task
* around just because it gave up its CPU, perhaps for a
* lock?
*
* For equal prio tasks, we just let the scheduler sort it out.
*
* Otherwise, just let it ride on the affined RQ and the
* post-schedule router will push the preempted task away
*
* This test is optimistic, if we get it wrong the load-balancer
* will have to sort it out.
*
* We take into account the capacity of the CPU to ensure it fits the
* requirement of the task - which is only important on heterogeneous
* systems like big.LITTLE.
*/
test = curr &&
unlikely(rt_task(curr)) &&
(curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
if (test || !rt_task_fits_capacity(p, cpu)) {
int target = find_lowest_rq(p);
/*
* Bail out if we were forcing a migration to find a better
* fitting CPU but our search failed.
*/
if (!test && target != -1 && !rt_task_fits_capacity(p, target))
goto out_unlock;
/*
* Don't bother moving it if the destination CPU is
* not running a lower priority task.
*/
if (target != -1 &&
p->prio < cpu_rq(target)->rt.highest_prio.curr)
cpu = target;
}
out_unlock:
rcu_read_unlock();
out:
return cpu;
}
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
/*
* Current can't be migrated, useless to reschedule,
* let's hope p can move out.
*/
if (rq->curr->nr_cpus_allowed == 1 ||
!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
return;
/*
* p is migratable, so let's not schedule it and
* see if it is pushed or pulled somewhere else.
*/
if (p->nr_cpus_allowed != 1 &&
cpupri_find(&rq->rd->cpupri, p, NULL))
return;
/*
* There appear to be other CPUs that can accept
* the current task but none can run 'p', so lets reschedule
* to try and push the current task away:
*/
requeue_task_rt(rq, p, 1);
resched_curr(rq);
}
static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
{
if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
/*
* This is OK, because current is on_cpu, which avoids it being
* picked for load-balance and preemption/IRQs are still
* disabled avoiding further scheduler activity on it and we've
* not yet started the picking loop.
*/
rq_unpin_lock(rq, rf);
pull_rt_task(rq);
rq_repin_lock(rq, rf);
}
return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
}
#endif /* CONFIG_SMP */
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
{
if (p->prio < rq->curr->prio) {
resched_curr(rq);
return;
}
#ifdef CONFIG_SMP
/*
* If:
*
* - the newly woken task is of equal priority to the current task
* - the newly woken task is non-migratable while current is migratable
* - current will be preempted on the next reschedule
*
* we should check to see if current can readily move to a different
* cpu. If so, we will reschedule to allow the push logic to try
* to move current somewhere else, making room for our non-migratable
* task.
*/
if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
check_preempt_equal_prio(rq, p);
#endif
}
static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
{
struct sched_rt_entity *rt_se = &p->rt;
struct rt_rq *rt_rq = &rq->rt;
p->se.exec_start = rq_clock_task(rq);
if (on_rt_rq(&p->rt))
update_stats_wait_end_rt(rt_rq, rt_se);
/* The running task is never eligible for pushing */
dequeue_pushable_task(rq, p);
if (!first)
return;
/*
* If prev task was rt, put_prev_task() has already updated the
* utilization. We only care of the case where we start to schedule a
* rt task
*/
if (rq->curr->sched_class != &rt_sched_class)
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
rt_queue_push_tasks(rq);
}
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
struct rt_rq *rt_rq)
{
struct rt_prio_array *array = &rt_rq->active;
struct sched_rt_entity *next = NULL;
struct list_head *queue;
int idx;
idx = sched_find_first_bit(array->bitmap);
BUG_ON(idx >= MAX_RT_PRIO);
queue = array->queue + idx;
next = list_entry(queue->next, struct sched_rt_entity, run_list);
return next;
}
static struct task_struct *_pick_next_task_rt(struct rq *rq)
{
struct sched_rt_entity *rt_se;
struct rt_rq *rt_rq = &rq->rt;
do {
rt_se = pick_next_rt_entity(rq, rt_rq);
BUG_ON(!rt_se);
rt_rq = group_rt_rq(rt_se);
} while (rt_rq);
return rt_task_of(rt_se);
}
static struct task_struct *pick_task_rt(struct rq *rq)
{
struct task_struct *p;
if (!sched_rt_runnable(rq))
return NULL;
p = _pick_next_task_rt(rq);
return p;
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct task_struct *p = pick_task_rt(rq);
if (p)
set_next_task_rt(rq, p, true);
return p;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
struct sched_rt_entity *rt_se = &p->rt;
struct rt_rq *rt_rq = &rq->rt;
if (on_rt_rq(&p->rt))
update_stats_wait_start_rt(rt_rq, rt_se);
update_curr_rt(rq);
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
/*
* The previous task needs to be made eligible for pushing
* if it is still active
*/
if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
}
#ifdef CONFIG_SMP
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
cpumask_test_cpu(cpu, &p->cpus_mask))
return 1;
return 0;
}
/*
* Return the highest pushable rq's task, which is suitable to be executed
* on the CPU, NULL otherwise
*/
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
{
struct plist_head *head = &rq->rt.pushable_tasks;
struct task_struct *p;
if (!has_pushable_tasks(rq))
return NULL;
plist_for_each_entry(p, head, pushable_tasks) {
if (pick_rt_task(rq, p, cpu))
return p;
}
return NULL;
}
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
static int find_lowest_rq(struct task_struct *task)
{
struct sched_domain *sd;
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
int this_cpu = smp_processor_id();
int cpu = task_cpu(task);
int ret;
/* Make sure the mask is initialized first */
if (unlikely(!lowest_mask))
return -1;
if (task->nr_cpus_allowed == 1)
return -1; /* No other targets possible */
/*
* If we're on asym system ensure we consider the different capacities
* of the CPUs when searching for the lowest_mask.
*/
if (static_branch_unlikely(&sched_asym_cpucapacity)) {
ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
task, lowest_mask,
rt_task_fits_capacity);
} else {
ret = cpupri_find(&task_rq(task)->rd->cpupri,
task, lowest_mask);
}
if (!ret)
return -1; /* No targets found */
/*
* At this point we have built a mask of CPUs representing the
* lowest priority tasks in the system. Now we want to elect
* the best one based on our affinity and topology.
*
* We prioritize the last CPU that the task executed on since
* it is most likely cache-hot in that location.
*/
if (cpumask_test_cpu(cpu, lowest_mask))
return cpu;
/*
* Otherwise, we consult the sched_domains span maps to figure
* out which CPU is logically closest to our hot cache data.
*/
if (!cpumask_test_cpu(this_cpu, lowest_mask))
this_cpu = -1; /* Skip this_cpu opt if not among lowest */
rcu_read_lock();
for_each_domain(cpu, sd) {
if (sd->flags & SD_WAKE_AFFINE) {
int best_cpu;
/*
* "this_cpu" is cheaper to preempt than a
* remote processor.
*/
if (this_cpu != -1 &&
cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
rcu_read_unlock();
return this_cpu;
}
best_cpu = cpumask_any_and_distribute(lowest_mask,
sched_domain_span(sd));
if (best_cpu < nr_cpu_ids) {
rcu_read_unlock();
return best_cpu;
}
}
}
rcu_read_unlock();
/*
* And finally, if there were no matches within the domains
* just give the caller *something* to work with from the compatible
* locations.
*/
if (this_cpu != -1)
return this_cpu;
cpu = cpumask_any_distribute(lowest_mask);
if (cpu < nr_cpu_ids)
return cpu;
return -1;
}
/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
{
struct rq *lowest_rq = NULL;
int tries;
int cpu;
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
cpu = find_lowest_rq(task);
if ((cpu == -1) || (cpu == rq->cpu))
break;
lowest_rq = cpu_rq(cpu);
if (lowest_rq->rt.highest_prio.curr <= task->prio) {
/*
* Target rq has tasks of equal or higher priority,
* retrying does not release any lock and is unlikely
* to yield a different result.
*/
lowest_rq = NULL;
break;
}
/* if the prio of this runqueue changed, try again */
if (double_lock_balance(rq, lowest_rq)) {
/*
* We had to unlock the run queue. In
* the mean time, task could have
* migrated already or had its affinity changed.
* Also make sure that it wasn't scheduled on its rq.
*/
if (unlikely(task_rq(task) != rq ||
!cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
task_running(rq, task) ||
!rt_task(task) ||
!task_on_rq_queued(task))) {
double_unlock_balance(rq, lowest_rq);
lowest_rq = NULL;
break;
}
}
/* If this rq is still suitable use it. */
if (lowest_rq->rt.highest_prio.curr > task->prio)
break;
/* try again */
double_unlock_balance(rq, lowest_rq);
lowest_rq = NULL;
}
return lowest_rq;
}
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
struct task_struct *p;
if (!has_pushable_tasks(rq))
return NULL;
p = plist_first_entry(&rq->rt.pushable_tasks,
struct task_struct, pushable_tasks);
BUG_ON(rq->cpu != task_cpu(p));
BUG_ON(task_current(rq, p));
BUG_ON(p->nr_cpus_allowed <= 1);
BUG_ON(!task_on_rq_queued(p));
BUG_ON(!rt_task(p));
return p;
}
/*
* If the current CPU has more than one RT task, see if the non
* running task can migrate over to a CPU that is running a task
* of lesser priority.
*/
static int push_rt_task(struct rq *rq, bool pull)
{
struct task_struct *next_task;
struct rq *lowest_rq;
int ret = 0;
if (!rq->rt.overloaded)
return 0;
next_task = pick_next_pushable_task(rq);
if (!next_task)
return 0;
retry:
if (is_migration_disabled(next_task)) {
struct task_struct *push_task = NULL;
int cpu;
if (!pull || rq->push_busy)
return 0;
cpu = find_lowest_rq(rq->curr);
if (cpu == -1 || cpu == rq->cpu)
return 0;
/*
* Given we found a CPU with lower priority than @next_task,
* therefore it should be running. However we cannot migrate it
* to this other CPU, instead attempt to push the current
* running task on this CPU away.
*/
push_task = get_push_task(rq);
if (push_task) {
raw_spin_rq_unlock(rq);
stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
push_task, &rq->push_work);
raw_spin_rq_lock(rq);
}
return 0;
}
if (WARN_ON(next_task == rq->curr))
return 0;
/*
* It's possible that the next_task slipped in of
* higher priority than current. If that's the case
* just reschedule current.
*/
if (unlikely(next_task->prio < rq->curr->prio)) {
resched_curr(rq);
return 0;
}
/* We might release rq lock */
get_task_struct(next_task);
/* find_lock_lowest_rq locks the rq if found */
lowest_rq = find_lock_lowest_rq(next_task, rq);
if (!lowest_rq) {
struct task_struct *task;
/*
* find_lock_lowest_rq releases rq->lock
* so it is possible that next_task has migrated.
*
* We need to make sure that the task is still on the same
* run-queue and is also still the next task eligible for
* pushing.
*/
task = pick_next_pushable_task(rq);
if (task == next_task) {
/*
* The task hasn't migrated, and is still the next
* eligible task, but we failed to find a run-queue
* to push it to. Do not retry in this case, since
* other CPUs will pull from us when ready.
*/
goto out;
}
if (!task)
/* No more tasks, just exit */
goto out;
/*
* Something has shifted, try again.
*/
put_task_struct(next_task);
next_task = task;
goto retry;
}
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
activate_task(lowest_rq, next_task, 0);
resched_curr(lowest_rq);
ret = 1;
double_unlock_balance(rq, lowest_rq);
out:
put_task_struct(next_task);
return ret;
}
static void push_rt_tasks(struct rq *rq)
{
/* push_rt_task will return true if it moved an RT */
while (push_rt_task(rq, false))
;
}
#ifdef HAVE_RT_PUSH_IPI
/*
* When a high priority task schedules out from a CPU and a lower priority
* task is scheduled in, a check is made to see if there's any RT tasks
* on other CPUs that are waiting to run because a higher priority RT task
* is currently running on its CPU. In this case, the CPU with multiple RT
* tasks queued on it (overloaded) needs to be notified that a CPU has opened
* up that may be able to run one of its non-running queued RT tasks.
*
* All CPUs with overloaded RT tasks need to be notified as there is currently
* no way to know which of these CPUs have the highest priority task waiting
* to run. Instead of trying to take a spinlock on each of these CPUs,
* which has shown to cause large latency when done on machines with many
* CPUs, sending an IPI to the CPUs to have them push off the overloaded
* RT tasks waiting to run.
*
* Just sending an IPI to each of the CPUs is also an issue, as on large
* count CPU machines, this can cause an IPI storm on a CPU, especially
* if its the only CPU with multiple RT tasks queued, and a large number
* of CPUs scheduling a lower priority task at the same time.
*
* Each root domain has its own irq work function that can iterate over
* all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
* task must be checked if there's one or many CPUs that are lowering
* their priority, there's a single irq work iterator that will try to
* push off RT tasks that are waiting to run.
*
* When a CPU schedules a lower priority task, it will kick off the
* irq work iterator that will jump to each CPU with overloaded RT tasks.
* As it only takes the first CPU that schedules a lower priority task
* to start the process, the rto_start variable is incremented and if
* the atomic result is one, then that CPU will try to take the rto_lock.
* This prevents high contention on the lock as the process handles all
* CPUs scheduling lower priority tasks.
*
* All CPUs that are scheduling a lower priority task will increment the
* rt_loop_next variable. This will make sure that the irq work iterator
* checks all RT overloaded CPUs whenever a CPU schedules a new lower
* priority task, even if the iterator is in the middle of a scan. Incrementing
* the rt_loop_next will cause the iterator to perform another scan.
*
*/
static int rto_next_cpu(struct root_domain *rd)
{
int next;
int cpu;
/*
* When starting the IPI RT pushing, the rto_cpu is set to -1,
* rt_next_cpu() will simply return the first CPU found in
* the rto_mask.
*
* If rto_next_cpu() is called with rto_cpu is a valid CPU, it
* will return the next CPU found in the rto_mask.
*
* If there are no more CPUs left in the rto_mask, then a check is made
* against rto_loop and rto_loop_next. rto_loop is only updated with
* the rto_lock held, but any CPU may increment the rto_loop_next
* without any locking.
*/
for (;;) {
/* When rto_cpu is -1 this acts like cpumask_first() */
cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
rd->rto_cpu = cpu;
if (cpu < nr_cpu_ids)
return cpu;
rd->rto_cpu = -1;
/*
* ACQUIRE ensures we see the @rto_mask changes
* made prior to the @next value observed.
*
* Matches WMB in rt_set_overload().
*/
next = atomic_read_acquire(&rd->rto_loop_next);
if (rd->rto_loop == next)
break;
rd->rto_loop = next;
}
return -1;
}
static inline bool rto_start_trylock(atomic_t *v)
{
return !atomic_cmpxchg_acquire(v, 0, 1);
}
static inline void rto_start_unlock(atomic_t *v)
{
atomic_set_release(v, 0);
}
static void tell_cpu_to_push(struct rq *rq)
{
int cpu = -1;
/* Keep the loop going if the IPI is currently active */
atomic_inc(&rq->rd->rto_loop_next);
/* Only one CPU can initiate a loop at a time */
if (!rto_start_trylock(&rq->rd->rto_loop_start))
return;
raw_spin_lock(&rq->rd->rto_lock);
/*
* The rto_cpu is updated under the lock, if it has a valid CPU
* then the IPI is still running and will continue due to the
* update to loop_next, and nothing needs to be done here.
* Otherwise it is finishing up and an ipi needs to be sent.
*/
if (rq->rd->rto_cpu < 0)
cpu = rto_next_cpu(rq->rd);
raw_spin_unlock(&rq->rd->rto_lock);
rto_start_unlock(&rq->rd->rto_loop_start);
if (cpu >= 0) {
/* Make sure the rd does not get freed while pushing */
sched_get_rd(rq->rd);
irq_work_queue_on(&rq->rd->rto_push_work, cpu);
}
}
/* Called from hardirq context */
void rto_push_irq_work_func(struct irq_work *work)
{
struct root_domain *rd =
container_of(work, struct root_domain, rto_push_work);
struct rq *rq;
int cpu;
rq = this_rq();
/*
* We do not need to grab the lock to check for has_pushable_tasks.
* When it gets updated, a check is made if a push is possible.
*/
if (has_pushable_tasks(rq)) {
raw_spin_rq_lock(rq);
while (push_rt_task(rq, true))
;
raw_spin_rq_unlock(rq);
}
raw_spin_lock(&rd->rto_lock);
/* Pass the IPI to the next rt overloaded queue */
cpu = rto_next_cpu(rd);
raw_spin_unlock(&rd->rto_lock);
if (cpu < 0) {
sched_put_rd(rd);
return;
}
/* Try the next RT overloaded CPU */
irq_work_queue_on(&rd->rto_push_work, cpu);
}
#endif /* HAVE_RT_PUSH_IPI */
static void pull_rt_task(struct rq *this_rq)
{
int this_cpu = this_rq->cpu, cpu;
bool resched = false;
struct task_struct *p, *push_task;
struct rq *src_rq;
int rt_overload_count = rt_overloaded(this_rq);
if (likely(!rt_overload_count))
return;
/*
* Match the barrier from rt_set_overloaded; this guarantees that if we
* see overloaded we must also see the rto_mask bit.
*/
smp_rmb();
/* If we are the only overloaded CPU do nothing */
if (rt_overload_count == 1 &&
cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
return;
#ifdef HAVE_RT_PUSH_IPI
if (sched_feat(RT_PUSH_IPI)) {
tell_cpu_to_push(this_rq);
return;
}
#endif
for_each_cpu(cpu, this_rq->rd->rto_mask) {
if (this_cpu == cpu)
continue;
src_rq = cpu_rq(cpu);
/*
* Don't bother taking the src_rq->lock if the next highest
* task is known to be lower-priority than our current task.
* This may look racy, but if this value is about to go
* logically higher, the src_rq will push this task away.
* And if its going logically lower, we do not care
*/
if (src_rq->rt.highest_prio.next >=
this_rq->rt.highest_prio.curr)
continue;
/*
* We can potentially drop this_rq's lock in
* double_lock_balance, and another CPU could
* alter this_rq
*/
push_task = NULL;
double_lock_balance(this_rq, src_rq);
/*
* We can pull only a task, which is pushable
* on its rq, and no others.
*/
p = pick_highest_pushable_task(src_rq, this_cpu);
/*
* Do we have an RT task that preempts
* the to-be-scheduled task?
*/
if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
WARN_ON(p == src_rq->curr);
WARN_ON(!task_on_rq_queued(p));
/*
* There's a chance that p is higher in priority
* than what's currently running on its CPU.
* This is just that p is waking up and hasn't
* had a chance to schedule. We only pull
* p if it is lower in priority than the
* current task on the run queue
*/
if (p->prio < src_rq->curr->prio)
goto skip;
if (is_migration_disabled(p)) {
push_task = get_push_task(src_rq);
} else {
deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
activate_task(this_rq, p, 0);
resched = true;
}
/*
* We continue with the search, just in
* case there's an even higher prio task
* in another runqueue. (low likelihood
* but possible)
*/
}
skip:
double_unlock_balance(this_rq, src_rq);
if (push_task) {
raw_spin_rq_unlock(this_rq);
stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
push_task, &src_rq->push_work);
raw_spin_rq_lock(this_rq);
}
}
if (resched)
resched_curr(this_rq);
}
/*
* If we are not running and we are not going to reschedule soon, we should
* try to push tasks away now
*/
static void task_woken_rt(struct rq *rq, struct task_struct *p)
{
bool need_to_push = !task_running(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
p->nr_cpus_allowed > 1 &&
(dl_task(rq->curr) || rt_task(rq->curr)) &&
(rq->curr->nr_cpus_allowed < 2 ||
rq->curr->prio <= p->prio);
if (need_to_push)
push_rt_tasks(rq);
}
/* Assumes rq->lock is held */
static void rq_online_rt(struct rq *rq)
{
if (rq->rt.overloaded)
rt_set_overload(rq);
__enable_runtime(rq);
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
}
/* Assumes rq->lock is held */
static void rq_offline_rt(struct rq *rq)
{
if (rq->rt.overloaded)
rt_clear_overload(rq);
__disable_runtime(rq);
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
}
/*
* When switch from the rt queue, we bring ourselves to a position
* that we might want to pull RT tasks from other runqueues.
*/
static void switched_from_rt(struct rq *rq, struct task_struct *p)
{
/*
* If there are other RT tasks then we will reschedule
* and the scheduling of the other RT tasks will handle
* the balancing. But if we are the last RT task
* we may need to handle the pulling of RT tasks
* now.
*/
if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
return;
rt_queue_pull_task(rq);
}
void __init init_sched_rt_class(void)
{
unsigned int i;
for_each_possible_cpu(i) {
zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
GFP_KERNEL, cpu_to_node(i));
}
}
#endif /* CONFIG_SMP */
/*
* When switching a task to RT, we may overload the runqueue
* with RT tasks. In this case we try to push them off to
* other runqueues.
*/
static void switched_to_rt(struct rq *rq, struct task_struct *p)
{
/*
* If we are running, update the avg_rt tracking, as the running time
* will now on be accounted into the latter.
*/
if (task_current(rq, p)) {
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
return;
}
/*
* If we are not running we may need to preempt the current
* running task. If that current running task is also an RT task
* then see if we can move to another run queue.
*/
if (task_on_rq_queued(p)) {
#ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
rt_queue_push_tasks(rq);
#endif /* CONFIG_SMP */
if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
resched_curr(rq);
}
}
/*
* Priority of the task has changed. This may cause
* us to initiate a push or pull.
*/
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
{
if (!task_on_rq_queued(p))
return;
if (task_current(rq, p)) {
#ifdef CONFIG_SMP
/*
* If our priority decreases while running, we
* may need to pull tasks to this runqueue.
*/
if (oldprio < p->prio)
rt_queue_pull_task(rq);
/*
* If there's a higher priority task waiting to run
* then reschedule.
*/
if (p->prio > rq->rt.highest_prio.curr)
resched_curr(rq);
#else
/* For UP simply resched on drop of prio */
if (oldprio < p->prio)
resched_curr(rq);
#endif /* CONFIG_SMP */
} else {
/*
* This task is not running, but if it is
* greater than the current running task
* then reschedule.
*/
if (p->prio < rq->curr->prio)
resched_curr(rq);
}
}
#ifdef CONFIG_POSIX_TIMERS
static void watchdog(struct rq *rq, struct task_struct *p)
{
unsigned long soft, hard;
/* max may change after cur was read, this will be fixed next tick */
soft = task_rlimit(p, RLIMIT_RTTIME);
hard = task_rlimit_max(p, RLIMIT_RTTIME);
if (soft != RLIM_INFINITY) {
unsigned long next;
if (p->rt.watchdog_stamp != jiffies) {
p->rt.timeout++;
p->rt.watchdog_stamp = jiffies;
}
next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
if (p->rt.timeout > next) {
posix_cputimers_rt_watchdog(&p->posix_cputimers,
p->se.sum_exec_runtime);
}
}
}
#else
static inline void watchdog(struct rq *rq, struct task_struct *p) { }
#endif
/*
* scheduler tick hitting a task of our scheduling class.
*
* NOTE: This function can be called remotely by the tick offload that
* goes along full dynticks. Therefore no local assumption can be made
* and everything must be accessed through the @rq and @curr passed in
* parameters.
*/
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
{
struct sched_rt_entity *rt_se = &p->rt;
update_curr_rt(rq);
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
watchdog(rq, p);
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;
if (--p->rt.time_slice)
return;
p->rt.time_slice = sched_rr_timeslice;
/*
* Requeue to the end of queue if we (and all of our ancestors) are not
* the only element on the queue
*/
for_each_sched_rt_entity(rt_se) {
if (rt_se->run_list.prev != rt_se->run_list.next) {
requeue_task_rt(rq, p, 0);
resched_curr(rq);
return;
}
}
}
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
{
/*
* Time slice is 0 for SCHED_FIFO tasks
*/
if (task->policy == SCHED_RR)
return sched_rr_timeslice;
else
return 0;
}
DEFINE_SCHED_CLASS(rt) = {
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
.set_next_task = set_next_task_rt,
#ifdef CONFIG_SMP
.balance = balance_rt,
.pick_task = pick_task_rt,
.select_task_rq = select_task_rq_rt,
.set_cpus_allowed = set_cpus_allowed_common,
.rq_online = rq_online_rt,
.rq_offline = rq_offline_rt,
.task_woken = task_woken_rt,
.switched_from = switched_from_rt,
.find_lock_rq = find_lock_lowest_rq,
#endif
.task_tick = task_tick_rt,
.get_rr_interval = get_rr_interval_rt,
.prio_changed = prio_changed_rt,
.switched_to = switched_to_rt,
.update_curr = update_curr_rt,
#ifdef CONFIG_UCLAMP_TASK
.uclamp_enabled = 1,
#endif
};
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Ensure that the real time constraints are schedulable.
*/
static DEFINE_MUTEX(rt_constraints_mutex);
static inline int tg_has_rt_tasks(struct task_group *tg)
{
struct task_struct *task;
struct css_task_iter it;
int ret = 0;
/*
* Autogroups do not have RT tasks; see autogroup_create().
*/
if (task_group_is_autogroup(tg))
return 0;
css_task_iter_start(&tg->css, 0, &it);
while (!ret && (task = css_task_iter_next(&it)))
ret |= rt_task(task);
css_task_iter_end(&it);
return ret;
}
struct rt_schedulable_data {
struct task_group *tg;
u64 rt_period;
u64 rt_runtime;
};
static int tg_rt_schedulable(struct task_group *tg, void *data)
{
struct rt_schedulable_data *d = data;
struct task_group *child;
unsigned long total, sum = 0;
u64 period, runtime;
period = ktime_to_ns(tg->rt_bandwidth.rt_period);
runtime = tg->rt_bandwidth.rt_runtime;
if (tg == d->tg) {
period = d->rt_period;
runtime = d->rt_runtime;
}
/*
* Cannot have more runtime than the period.
*/
if (runtime > period && runtime != RUNTIME_INF)
return -EINVAL;
/*
* Ensure we don't starve existing RT tasks if runtime turns zero.
*/
if (rt_bandwidth_enabled() && !runtime &&
tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
return -EBUSY;
total = to_ratio(period, runtime);
/*
* Nobody can have more than the global setting allows.
*/
if (total > to_ratio(global_rt_period(), global_rt_runtime()))
return -EINVAL;
/*
* The sum of our children's runtime should not exceed our own.
*/
list_for_each_entry_rcu(child, &tg->children, siblings) {
period = ktime_to_ns(child->rt_bandwidth.rt_period);
runtime = child->rt_bandwidth.rt_runtime;
if (child == d->tg) {
period = d->rt_period;
runtime = d->rt_runtime;
}
sum += to_ratio(period, runtime);
}
if (sum > total)
return -EINVAL;
return 0;
}
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
int ret;
struct rt_schedulable_data data = {
.tg = tg,
.rt_period = period,
.rt_runtime = runtime,
};
rcu_read_lock();
ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
rcu_read_unlock();
return ret;
}
static int tg_set_rt_bandwidth(struct task_group *tg,
u64 rt_period, u64 rt_runtime)
{
int i, err = 0;
/*
* Disallowing the root group RT runtime is BAD, it would disallow the
* kernel creating (and or operating) RT threads.
*/
if (tg == &root_task_group && rt_runtime == 0)
return -EINVAL;
/* No period doesn't make any sense. */
if (rt_period == 0)
return -EINVAL;
/*
* Bound quota to defend quota against overflow during bandwidth shift.
*/
if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
return -EINVAL;
mutex_lock(&rt_constraints_mutex);
err = __rt_schedulable(tg, rt_period, rt_runtime);
if (err)
goto unlock;
raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
tg->rt_bandwidth.rt_runtime = rt_runtime;
for_each_possible_cpu(i) {
struct rt_rq *rt_rq = tg->rt_rq[i];
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = rt_runtime;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
unlock:
mutex_unlock(&rt_constraints_mutex);
return err;
}
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
u64 rt_runtime, rt_period;
rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
if (rt_runtime_us < 0)
rt_runtime = RUNTIME_INF;
else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
return -EINVAL;
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
}
long sched_group_rt_runtime(struct task_group *tg)
{
u64 rt_runtime_us;
if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
return -1;
rt_runtime_us = tg->rt_bandwidth.rt_runtime;
do_div(rt_runtime_us, NSEC_PER_USEC);
return rt_runtime_us;
}
int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
{
u64 rt_runtime, rt_period;
if (rt_period_us > U64_MAX / NSEC_PER_USEC)
return -EINVAL;
rt_period = rt_period_us * NSEC_PER_USEC;
rt_runtime = tg->rt_bandwidth.rt_runtime;
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
}
long sched_group_rt_period(struct task_group *tg)
{
u64 rt_period_us;
rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
do_div(rt_period_us, NSEC_PER_USEC);
return rt_period_us;
}
static int sched_rt_global_constraints(void)
{
int ret = 0;
mutex_lock(&rt_constraints_mutex);
ret = __rt_schedulable(NULL, 0, 0);
mutex_unlock(&rt_constraints_mutex);
return ret;
}
int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
/* Don't accept realtime tasks when there is no way for them to run */
if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
return 0;
return 1;
}
#else /* !CONFIG_RT_GROUP_SCHED */
static int sched_rt_global_constraints(void)
{
unsigned long flags;
int i;
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
for_each_possible_cpu(i) {
struct rt_rq *rt_rq = &cpu_rq(i)->rt;
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = global_rt_runtime();
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
return 0;
}
#endif /* CONFIG_RT_GROUP_SCHED */
static int sched_rt_global_validate(void)
{
if (sysctl_sched_rt_period <= 0)
return -EINVAL;
if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
((u64)sysctl_sched_rt_runtime *
NSEC_PER_USEC > max_rt_runtime)))
return -EINVAL;
return 0;
}
static void sched_rt_do_global(void)
{
def_rt_bandwidth.rt_runtime = global_rt_runtime();
def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
}
int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
int old_period, old_runtime;
static DEFINE_MUTEX(mutex);
int ret;
mutex_lock(&mutex);
old_period = sysctl_sched_rt_period;
old_runtime = sysctl_sched_rt_runtime;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (!ret && write) {
ret = sched_rt_global_validate();
if (ret)
goto undo;
ret = sched_dl_global_validate();
if (ret)
goto undo;
ret = sched_rt_global_constraints();
if (ret)
goto undo;
sched_rt_do_global();
sched_dl_do_global();
}
if (0) {
undo:
sysctl_sched_rt_period = old_period;
sysctl_sched_rt_runtime = old_runtime;
}
mutex_unlock(&mutex);
return ret;
}
int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
int ret;
static DEFINE_MUTEX(mutex);
mutex_lock(&mutex);
ret = proc_dointvec(table, write, buffer, lenp, ppos);
/*
* Make sure that internally we keep jiffies.
* Also, writing zero resets the timeslice to default:
*/
if (!ret && write) {
sched_rr_timeslice =
sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
msecs_to_jiffies(sysctl_sched_rr_timeslice);
}
mutex_unlock(&mutex);
return ret;
}
#ifdef CONFIG_SCHED_DEBUG
void print_rt_stats(struct seq_file *m, int cpu)
{
rt_rq_iter_t iter;
struct rt_rq *rt_rq;
rcu_read_lock();
for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
print_rt_rq(m, cpu, rt_rq);
rcu_read_unlock();
}
#endif /* CONFIG_SCHED_DEBUG */