linux-next/fs/f2fs/extent_cache.c
Chao Yu 009a8241a8 f2fs: add a sysfs node to limit max read extent count per-inode
Quoted:
"at this time, there are still 1086911 extent nodes in this zombie
extent tree that need to be cleaned up.

crash_arm64_sprd_v8.0.3++> extent_tree.node_cnt ffffff80896cc500
  node_cnt = {
    counter = 1086911
  },
"

As reported by Xiuhong, there will be a huge number of extent nodes
in extent tree, it may potentially cause:
- slab memory fragments
- extreme long time shrink on extent tree
- low mapping efficiency

Let's add a sysfs node to limit max read extent count for each inode,
by default, value of this threshold is 10240, it can be updated
according to user's requirement.

Reported-by: Xiuhong Wang <xiuhong.wang@unisoc.com>
Closes: https://lore.kernel.org/linux-f2fs-devel/20241112110627.1314632-1-xiuhong.wang@unisoc.com/
Signed-off-by: Xiuhong Wang <xiuhong.wang@unisoc.com>
Signed-off-by: Zhiguo Niu <zhiguo.niu@unisoc.com>
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2024-11-23 15:48:13 +00:00

1240 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* f2fs extent cache support
*
* Copyright (c) 2015 Motorola Mobility
* Copyright (c) 2015 Samsung Electronics
* Authors: Jaegeuk Kim <jaegeuk@kernel.org>
* Chao Yu <chao2.yu@samsung.com>
*
* block_age-based extent cache added by:
* Copyright (c) 2022 xiaomi Co., Ltd.
* http://www.xiaomi.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>
bool sanity_check_extent_cache(struct inode *inode, struct page *ipage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
struct extent_info ei;
int devi;
get_read_extent_info(&ei, i_ext);
if (!ei.len)
return true;
if (!f2fs_is_valid_blkaddr(sbi, ei.blk, DATA_GENERIC_ENHANCE) ||
!f2fs_is_valid_blkaddr(sbi, ei.blk + ei.len - 1,
DATA_GENERIC_ENHANCE)) {
f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix",
__func__, inode->i_ino,
ei.blk, ei.fofs, ei.len);
return false;
}
if (!IS_DEVICE_ALIASING(inode))
return true;
for (devi = 0; devi < sbi->s_ndevs; devi++) {
if (FDEV(devi).start_blk != ei.blk ||
FDEV(devi).end_blk != ei.blk + ei.len - 1)
continue;
if (devi == 0) {
f2fs_warn(sbi,
"%s: inode (ino=%lx) is an alias of meta device",
__func__, inode->i_ino);
return false;
}
if (bdev_is_zoned(FDEV(devi).bdev)) {
f2fs_warn(sbi,
"%s: device alias inode (ino=%lx)'s extent info "
"[%u, %u, %u] maps to zoned block device",
__func__, inode->i_ino, ei.blk, ei.fofs, ei.len);
return false;
}
return true;
}
f2fs_warn(sbi, "%s: device alias inode (ino=%lx)'s extent info "
"[%u, %u, %u] is inconsistent w/ any devices",
__func__, inode->i_ino, ei.blk, ei.fofs, ei.len);
return false;
}
static void __set_extent_info(struct extent_info *ei,
unsigned int fofs, unsigned int len,
block_t blk, bool keep_clen,
unsigned long age, unsigned long last_blocks,
enum extent_type type)
{
ei->fofs = fofs;
ei->len = len;
if (type == EX_READ) {
ei->blk = blk;
if (keep_clen)
return;
#ifdef CONFIG_F2FS_FS_COMPRESSION
ei->c_len = 0;
#endif
} else if (type == EX_BLOCK_AGE) {
ei->age = age;
ei->last_blocks = last_blocks;
}
}
static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
{
if (type == EX_READ)
return test_opt(F2FS_I_SB(inode), READ_EXTENT_CACHE) &&
S_ISREG(inode->i_mode);
if (type == EX_BLOCK_AGE)
return test_opt(F2FS_I_SB(inode), AGE_EXTENT_CACHE) &&
(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode));
return false;
}
static bool __may_extent_tree(struct inode *inode, enum extent_type type)
{
if (IS_DEVICE_ALIASING(inode) && type == EX_READ)
return true;
/*
* for recovered files during mount do not create extents
* if shrinker is not registered.
*/
if (list_empty(&F2FS_I_SB(inode)->s_list))
return false;
if (!__init_may_extent_tree(inode, type))
return false;
if (type == EX_READ) {
if (is_inode_flag_set(inode, FI_NO_EXTENT))
return false;
if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
!f2fs_sb_has_readonly(F2FS_I_SB(inode)))
return false;
} else if (type == EX_BLOCK_AGE) {
if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
return false;
if (file_is_cold(inode))
return false;
}
return true;
}
static void __try_update_largest_extent(struct extent_tree *et,
struct extent_node *en)
{
if (et->type != EX_READ)
return;
if (en->ei.len <= et->largest.len)
return;
et->largest = en->ei;
et->largest_updated = true;
}
static bool __is_extent_mergeable(struct extent_info *back,
struct extent_info *front, enum extent_type type)
{
if (type == EX_READ) {
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (back->c_len && back->len != back->c_len)
return false;
if (front->c_len && front->len != front->c_len)
return false;
#endif
return (back->fofs + back->len == front->fofs &&
back->blk + back->len == front->blk);
} else if (type == EX_BLOCK_AGE) {
return (back->fofs + back->len == front->fofs &&
abs(back->age - front->age) <= SAME_AGE_REGION &&
abs(back->last_blocks - front->last_blocks) <=
SAME_AGE_REGION);
}
return false;
}
static bool __is_back_mergeable(struct extent_info *cur,
struct extent_info *back, enum extent_type type)
{
return __is_extent_mergeable(back, cur, type);
}
static bool __is_front_mergeable(struct extent_info *cur,
struct extent_info *front, enum extent_type type)
{
return __is_extent_mergeable(cur, front, type);
}
static struct extent_node *__lookup_extent_node(struct rb_root_cached *root,
struct extent_node *cached_en, unsigned int fofs)
{
struct rb_node *node = root->rb_root.rb_node;
struct extent_node *en;
/* check a cached entry */
if (cached_en && cached_en->ei.fofs <= fofs &&
cached_en->ei.fofs + cached_en->ei.len > fofs)
return cached_en;
/* check rb_tree */
while (node) {
en = rb_entry(node, struct extent_node, rb_node);
if (fofs < en->ei.fofs)
node = node->rb_left;
else if (fofs >= en->ei.fofs + en->ei.len)
node = node->rb_right;
else
return en;
}
return NULL;
}
/*
* lookup rb entry in position of @fofs in rb-tree,
* if hit, return the entry, otherwise, return NULL
* @prev_ex: extent before fofs
* @next_ex: extent after fofs
* @insert_p: insert point for new extent at fofs
* in order to simplify the insertion after.
* tree must stay unchanged between lookup and insertion.
*/
static struct extent_node *__lookup_extent_node_ret(struct rb_root_cached *root,
struct extent_node *cached_en,
unsigned int fofs,
struct extent_node **prev_entry,
struct extent_node **next_entry,
struct rb_node ***insert_p,
struct rb_node **insert_parent,
bool *leftmost)
{
struct rb_node **pnode = &root->rb_root.rb_node;
struct rb_node *parent = NULL, *tmp_node;
struct extent_node *en = cached_en;
*insert_p = NULL;
*insert_parent = NULL;
*prev_entry = NULL;
*next_entry = NULL;
if (RB_EMPTY_ROOT(&root->rb_root))
return NULL;
if (en && en->ei.fofs <= fofs && en->ei.fofs + en->ei.len > fofs)
goto lookup_neighbors;
*leftmost = true;
while (*pnode) {
parent = *pnode;
en = rb_entry(*pnode, struct extent_node, rb_node);
if (fofs < en->ei.fofs) {
pnode = &(*pnode)->rb_left;
} else if (fofs >= en->ei.fofs + en->ei.len) {
pnode = &(*pnode)->rb_right;
*leftmost = false;
} else {
goto lookup_neighbors;
}
}
*insert_p = pnode;
*insert_parent = parent;
en = rb_entry(parent, struct extent_node, rb_node);
tmp_node = parent;
if (parent && fofs > en->ei.fofs)
tmp_node = rb_next(parent);
*next_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node);
tmp_node = parent;
if (parent && fofs < en->ei.fofs)
tmp_node = rb_prev(parent);
*prev_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node);
return NULL;
lookup_neighbors:
if (fofs == en->ei.fofs) {
/* lookup prev node for merging backward later */
tmp_node = rb_prev(&en->rb_node);
*prev_entry = rb_entry_safe(tmp_node,
struct extent_node, rb_node);
}
if (fofs == en->ei.fofs + en->ei.len - 1) {
/* lookup next node for merging frontward later */
tmp_node = rb_next(&en->rb_node);
*next_entry = rb_entry_safe(tmp_node,
struct extent_node, rb_node);
}
return en;
}
static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node *parent, struct rb_node **p,
bool leftmost)
{
struct extent_tree_info *eti = &sbi->extent_tree[et->type];
struct extent_node *en;
en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
if (!en)
return NULL;
en->ei = *ei;
INIT_LIST_HEAD(&en->list);
en->et = et;
rb_link_node(&en->rb_node, parent, p);
rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
atomic_inc(&et->node_cnt);
atomic_inc(&eti->total_ext_node);
return en;
}
static void __detach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
struct extent_tree_info *eti = &sbi->extent_tree[et->type];
rb_erase_cached(&en->rb_node, &et->root);
atomic_dec(&et->node_cnt);
atomic_dec(&eti->total_ext_node);
if (et->cached_en == en)
et->cached_en = NULL;
kmem_cache_free(extent_node_slab, en);
}
/*
* Flow to release an extent_node:
* 1. list_del_init
* 2. __detach_extent_node
* 3. kmem_cache_free.
*/
static void __release_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
struct extent_tree_info *eti = &sbi->extent_tree[et->type];
spin_lock(&eti->extent_lock);
f2fs_bug_on(sbi, list_empty(&en->list));
list_del_init(&en->list);
spin_unlock(&eti->extent_lock);
__detach_extent_node(sbi, et, en);
}
static struct extent_tree *__grab_extent_tree(struct inode *inode,
enum extent_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree_info *eti = &sbi->extent_tree[type];
struct extent_tree *et;
nid_t ino = inode->i_ino;
mutex_lock(&eti->extent_tree_lock);
et = radix_tree_lookup(&eti->extent_tree_root, ino);
if (!et) {
et = f2fs_kmem_cache_alloc(extent_tree_slab,
GFP_NOFS, true, NULL);
f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
memset(et, 0, sizeof(struct extent_tree));
et->ino = ino;
et->type = type;
et->root = RB_ROOT_CACHED;
et->cached_en = NULL;
rwlock_init(&et->lock);
INIT_LIST_HEAD(&et->list);
atomic_set(&et->node_cnt, 0);
atomic_inc(&eti->total_ext_tree);
} else {
atomic_dec(&eti->total_zombie_tree);
list_del_init(&et->list);
}
mutex_unlock(&eti->extent_tree_lock);
/* never died until evict_inode */
F2FS_I(inode)->extent_tree[type] = et;
return et;
}
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, unsigned int nr_shrink)
{
struct rb_node *node, *next;
struct extent_node *en;
unsigned int count;
node = rb_first_cached(&et->root);
for (count = 0; node && count < nr_shrink; count++) {
next = rb_next(node);
en = rb_entry(node, struct extent_node, rb_node);
__release_extent_node(sbi, et, en);
node = next;
}
return count;
}
static void __drop_largest_extent(struct extent_tree *et,
pgoff_t fofs, unsigned int len)
{
if (fofs < (pgoff_t)et->largest.fofs + et->largest.len &&
fofs + len > et->largest.fofs) {
et->largest.len = 0;
et->largest_updated = true;
}
}
void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
struct extent_tree *et;
struct extent_node *en;
struct extent_info ei;
if (!__may_extent_tree(inode, EX_READ)) {
/* drop largest read extent */
if (i_ext->len) {
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
i_ext->len = 0;
set_page_dirty(ipage);
}
set_inode_flag(inode, FI_NO_EXTENT);
return;
}
et = __grab_extent_tree(inode, EX_READ);
get_read_extent_info(&ei, i_ext);
write_lock(&et->lock);
if (atomic_read(&et->node_cnt) || !ei.len)
goto skip;
if (IS_DEVICE_ALIASING(inode)) {
et->largest = ei;
goto skip;
}
en = __attach_extent_node(sbi, et, &ei, NULL,
&et->root.rb_root.rb_node, true);
if (en) {
et->largest = en->ei;
et->cached_en = en;
spin_lock(&eti->extent_lock);
list_add_tail(&en->list, &eti->extent_list);
spin_unlock(&eti->extent_lock);
}
skip:
/* Let's drop, if checkpoint got corrupted. */
if (f2fs_cp_error(sbi)) {
et->largest.len = 0;
et->largest_updated = true;
}
write_unlock(&et->lock);
}
void f2fs_init_age_extent_tree(struct inode *inode)
{
if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
return;
__grab_extent_tree(inode, EX_BLOCK_AGE);
}
void f2fs_init_extent_tree(struct inode *inode)
{
/* initialize read cache */
if (__init_may_extent_tree(inode, EX_READ))
__grab_extent_tree(inode, EX_READ);
/* initialize block age cache */
if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
__grab_extent_tree(inode, EX_BLOCK_AGE);
}
static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei, enum extent_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree_info *eti = &sbi->extent_tree[type];
struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
struct extent_node *en;
bool ret = false;
if (!et)
return false;
trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
read_lock(&et->lock);
if (type == EX_READ &&
et->largest.fofs <= pgofs &&
(pgoff_t)et->largest.fofs + et->largest.len > pgofs) {
*ei = et->largest;
ret = true;
stat_inc_largest_node_hit(sbi);
goto out;
}
if (IS_DEVICE_ALIASING(inode)) {
ret = false;
goto out;
}
en = __lookup_extent_node(&et->root, et->cached_en, pgofs);
if (!en)
goto out;
if (en == et->cached_en)
stat_inc_cached_node_hit(sbi, type);
else
stat_inc_rbtree_node_hit(sbi, type);
*ei = en->ei;
spin_lock(&eti->extent_lock);
if (!list_empty(&en->list)) {
list_move_tail(&en->list, &eti->extent_list);
et->cached_en = en;
}
spin_unlock(&eti->extent_lock);
ret = true;
out:
stat_inc_total_hit(sbi, type);
read_unlock(&et->lock);
if (type == EX_READ)
trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
else if (type == EX_BLOCK_AGE)
trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
return ret;
}
static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct extent_node *prev_ex,
struct extent_node *next_ex)
{
struct extent_tree_info *eti = &sbi->extent_tree[et->type];
struct extent_node *en = NULL;
if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
prev_ex->ei.len += ei->len;
ei = &prev_ex->ei;
en = prev_ex;
}
if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
next_ex->ei.fofs = ei->fofs;
next_ex->ei.len += ei->len;
if (et->type == EX_READ)
next_ex->ei.blk = ei->blk;
if (en)
__release_extent_node(sbi, et, prev_ex);
en = next_ex;
}
if (!en)
return NULL;
__try_update_largest_extent(et, en);
spin_lock(&eti->extent_lock);
if (!list_empty(&en->list)) {
list_move_tail(&en->list, &eti->extent_list);
et->cached_en = en;
}
spin_unlock(&eti->extent_lock);
return en;
}
static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node **insert_p,
struct rb_node *insert_parent,
bool leftmost)
{
struct extent_tree_info *eti = &sbi->extent_tree[et->type];
struct rb_node **p = &et->root.rb_root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en = NULL;
if (insert_p && insert_parent) {
parent = insert_parent;
p = insert_p;
goto do_insert;
}
leftmost = true;
/* look up extent_node in the rb tree */
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs) {
p = &(*p)->rb_left;
} else if (ei->fofs >= en->ei.fofs + en->ei.len) {
p = &(*p)->rb_right;
leftmost = false;
} else {
f2fs_bug_on(sbi, 1);
}
}
do_insert:
en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
if (!en)
return NULL;
__try_update_largest_extent(et, en);
/* update in global extent list */
spin_lock(&eti->extent_lock);
list_add_tail(&en->list, &eti->extent_list);
et->cached_en = en;
spin_unlock(&eti->extent_lock);
return en;
}
static unsigned int __destroy_extent_node(struct inode *inode,
enum extent_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
unsigned int nr_shrink = type == EX_READ ?
READ_EXTENT_CACHE_SHRINK_NUMBER :
AGE_EXTENT_CACHE_SHRINK_NUMBER;
unsigned int node_cnt = 0;
if (!et || !atomic_read(&et->node_cnt))
return 0;
while (atomic_read(&et->node_cnt)) {
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, nr_shrink);
write_unlock(&et->lock);
}
f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
return node_cnt;
}
static void __update_extent_tree_range(struct inode *inode,
struct extent_info *tei, enum extent_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
struct extent_node *en = NULL, *en1 = NULL;
struct extent_node *prev_en = NULL, *next_en = NULL;
struct extent_info ei, dei, prev;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
unsigned int fofs = tei->fofs, len = tei->len;
unsigned int end = fofs + len;
bool updated = false;
bool leftmost = false;
if (!et)
return;
if (type == EX_READ)
trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
tei->blk, 0);
else if (type == EX_BLOCK_AGE)
trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
tei->age, tei->last_blocks);
write_lock(&et->lock);
if (type == EX_READ) {
if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
write_unlock(&et->lock);
return;
}
prev = et->largest;
dei.len = 0;
/*
* drop largest extent before lookup, in case it's already
* been shrunk from extent tree
*/
__drop_largest_extent(et, fofs, len);
}
/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
en = __lookup_extent_node_ret(&et->root,
et->cached_en, fofs,
&prev_en, &next_en,
&insert_p, &insert_parent,
&leftmost);
if (!en)
en = next_en;
/* 2. invalidate all extent nodes in range [fofs, fofs + len - 1] */
while (en && en->ei.fofs < end) {
unsigned int org_end;
int parts = 0; /* # of parts current extent split into */
next_en = en1 = NULL;
dei = en->ei;
org_end = dei.fofs + dei.len;
f2fs_bug_on(sbi, fofs >= org_end);
if (fofs > dei.fofs && (type != EX_READ ||
fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
en->ei.len = fofs - en->ei.fofs;
prev_en = en;
parts = 1;
}
if (end < org_end && (type != EX_READ ||
(org_end - end >= F2FS_MIN_EXTENT_LEN &&
atomic_read(&et->node_cnt) <
sbi->max_read_extent_count))) {
if (parts) {
__set_extent_info(&ei,
end, org_end - end,
end - dei.fofs + dei.blk, false,
dei.age, dei.last_blocks,
type);
en1 = __insert_extent_tree(sbi, et, &ei,
NULL, NULL, true);
next_en = en1;
} else {
__set_extent_info(&en->ei,
end, en->ei.len - (end - dei.fofs),
en->ei.blk + (end - dei.fofs), true,
dei.age, dei.last_blocks,
type);
next_en = en;
}
parts++;
}
if (!next_en) {
struct rb_node *node = rb_next(&en->rb_node);
next_en = rb_entry_safe(node, struct extent_node,
rb_node);
}
if (parts)
__try_update_largest_extent(et, en);
else
__release_extent_node(sbi, et, en);
/*
* if original extent is split into zero or two parts, extent
* tree has been altered by deletion or insertion, therefore
* invalidate pointers regard to tree.
*/
if (parts != 1) {
insert_p = NULL;
insert_parent = NULL;
}
en = next_en;
}
if (type == EX_BLOCK_AGE)
goto update_age_extent_cache;
/* 3. update extent in read extent cache */
BUG_ON(type != EX_READ);
if (tei->blk) {
__set_extent_info(&ei, fofs, len, tei->blk, false,
0, 0, EX_READ);
if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
__insert_extent_tree(sbi, et, &ei,
insert_p, insert_parent, leftmost);
/* give up extent_cache, if split and small updates happen */
if (dei.len >= 1 &&
prev.len < F2FS_MIN_EXTENT_LEN &&
et->largest.len < F2FS_MIN_EXTENT_LEN) {
et->largest.len = 0;
et->largest_updated = true;
set_inode_flag(inode, FI_NO_EXTENT);
}
}
if (et->largest_updated) {
et->largest_updated = false;
updated = true;
}
goto out_read_extent_cache;
update_age_extent_cache:
if (!tei->last_blocks)
goto out_read_extent_cache;
__set_extent_info(&ei, fofs, len, 0, false,
tei->age, tei->last_blocks, EX_BLOCK_AGE);
if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
__insert_extent_tree(sbi, et, &ei,
insert_p, insert_parent, leftmost);
out_read_extent_cache:
write_unlock(&et->lock);
if (is_inode_flag_set(inode, FI_NO_EXTENT))
__destroy_extent_node(inode, EX_READ);
if (updated)
f2fs_mark_inode_dirty_sync(inode, true);
}
#ifdef CONFIG_F2FS_FS_COMPRESSION
void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
pgoff_t fofs, block_t blkaddr, unsigned int llen,
unsigned int c_len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
struct extent_node *en = NULL;
struct extent_node *prev_en = NULL, *next_en = NULL;
struct extent_info ei;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
bool leftmost = false;
trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
blkaddr, c_len);
/* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
if (is_inode_flag_set(inode, FI_NO_EXTENT))
return;
write_lock(&et->lock);
en = __lookup_extent_node_ret(&et->root,
et->cached_en, fofs,
&prev_en, &next_en,
&insert_p, &insert_parent,
&leftmost);
if (en)
goto unlock_out;
__set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
ei.c_len = c_len;
if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
__insert_extent_tree(sbi, et, &ei,
insert_p, insert_parent, leftmost);
unlock_out:
write_unlock(&et->lock);
}
#endif
static unsigned long long __calculate_block_age(struct f2fs_sb_info *sbi,
unsigned long long new,
unsigned long long old)
{
unsigned int rem_old, rem_new;
unsigned long long res;
unsigned int weight = sbi->last_age_weight;
res = div_u64_rem(new, 100, &rem_new) * (100 - weight)
+ div_u64_rem(old, 100, &rem_old) * weight;
if (rem_new)
res += rem_new * (100 - weight) / 100;
if (rem_old)
res += rem_old * weight / 100;
return res;
}
/* This returns a new age and allocated blocks in ei */
static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
block_t blkaddr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t f_size = i_size_read(inode);
unsigned long long cur_blocks =
atomic64_read(&sbi->allocated_data_blocks);
struct extent_info tei = *ei; /* only fofs and len are valid */
/*
* When I/O is not aligned to a PAGE_SIZE, update will happen to the last
* file block even in seq write. So don't record age for newly last file
* block here.
*/
if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
blkaddr == NEW_ADDR)
return -EINVAL;
if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
unsigned long long cur_age;
if (cur_blocks >= tei.last_blocks)
cur_age = cur_blocks - tei.last_blocks;
else
/* allocated_data_blocks overflow */
cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
if (tei.age)
ei->age = __calculate_block_age(sbi, cur_age, tei.age);
else
ei->age = cur_age;
ei->last_blocks = cur_blocks;
WARN_ON(ei->age > cur_blocks);
return 0;
}
f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
/* the data block was allocated for the first time */
if (blkaddr == NEW_ADDR)
goto out;
if (__is_valid_data_blkaddr(blkaddr) &&
!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
return -EINVAL;
out:
/*
* init block age with zero, this can happen when the block age extent
* was reclaimed due to memory constraint or system reboot
*/
ei->age = 0;
ei->last_blocks = cur_blocks;
return 0;
}
static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
{
struct extent_info ei = {};
if (!__may_extent_tree(dn->inode, type))
return;
ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
dn->ofs_in_node;
ei.len = 1;
if (type == EX_READ) {
if (dn->data_blkaddr == NEW_ADDR)
ei.blk = NULL_ADDR;
else
ei.blk = dn->data_blkaddr;
} else if (type == EX_BLOCK_AGE) {
if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
return;
}
__update_extent_tree_range(dn->inode, &ei, type);
}
static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
enum extent_type type)
{
struct extent_tree_info *eti = &sbi->extent_tree[type];
struct extent_tree *et, *next;
struct extent_node *en;
unsigned int node_cnt = 0, tree_cnt = 0;
int remained;
if (!atomic_read(&eti->total_zombie_tree))
goto free_node;
if (!mutex_trylock(&eti->extent_tree_lock))
goto out;
/* 1. remove unreferenced extent tree */
list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
if (atomic_read(&et->node_cnt)) {
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et,
nr_shrink - node_cnt - tree_cnt);
write_unlock(&et->lock);
}
if (atomic_read(&et->node_cnt))
goto unlock_out;
list_del_init(&et->list);
radix_tree_delete(&eti->extent_tree_root, et->ino);
kmem_cache_free(extent_tree_slab, et);
atomic_dec(&eti->total_ext_tree);
atomic_dec(&eti->total_zombie_tree);
tree_cnt++;
if (node_cnt + tree_cnt >= nr_shrink)
goto unlock_out;
cond_resched();
}
mutex_unlock(&eti->extent_tree_lock);
free_node:
/* 2. remove LRU extent entries */
if (!mutex_trylock(&eti->extent_tree_lock))
goto out;
remained = nr_shrink - (node_cnt + tree_cnt);
spin_lock(&eti->extent_lock);
for (; remained > 0; remained--) {
if (list_empty(&eti->extent_list))
break;
en = list_first_entry(&eti->extent_list,
struct extent_node, list);
et = en->et;
if (!write_trylock(&et->lock)) {
/* refresh this extent node's position in extent list */
list_move_tail(&en->list, &eti->extent_list);
continue;
}
list_del_init(&en->list);
spin_unlock(&eti->extent_lock);
__detach_extent_node(sbi, et, en);
write_unlock(&et->lock);
node_cnt++;
spin_lock(&eti->extent_lock);
}
spin_unlock(&eti->extent_lock);
unlock_out:
mutex_unlock(&eti->extent_tree_lock);
out:
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
return node_cnt + tree_cnt;
}
/* read extent cache operations */
bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (!__may_extent_tree(inode, EX_READ))
return false;
return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
}
bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
block_t *blkaddr)
{
struct extent_info ei = {};
if (!f2fs_lookup_read_extent_cache(inode, index, &ei))
return false;
*blkaddr = ei.blk + index - ei.fofs;
return true;
}
void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
{
return __update_extent_cache(dn, EX_READ);
}
void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
struct extent_info ei = {
.fofs = fofs,
.len = len,
.blk = blkaddr,
};
if (!__may_extent_tree(dn->inode, EX_READ))
return;
__update_extent_tree_range(dn->inode, &ei, EX_READ);
}
unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
if (!test_opt(sbi, READ_EXTENT_CACHE))
return 0;
return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
}
/* block age extent cache operations */
bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (!__may_extent_tree(inode, EX_BLOCK_AGE))
return false;
return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
}
void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
{
return __update_extent_cache(dn, EX_BLOCK_AGE);
}
void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, unsigned int len)
{
struct extent_info ei = {
.fofs = fofs,
.len = len,
};
if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
return;
__update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
}
unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
if (!test_opt(sbi, AGE_EXTENT_CACHE))
return 0;
return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
}
void f2fs_destroy_extent_node(struct inode *inode)
{
__destroy_extent_node(inode, EX_READ);
__destroy_extent_node(inode, EX_BLOCK_AGE);
}
static void __drop_extent_tree(struct inode *inode, enum extent_type type)
{
struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
bool updated = false;
if (!__may_extent_tree(inode, type))
return;
write_lock(&et->lock);
if (type == EX_READ) {
set_inode_flag(inode, FI_NO_EXTENT);
if (et->largest.len) {
et->largest.len = 0;
updated = true;
}
}
write_unlock(&et->lock);
__destroy_extent_node(inode, type);
if (updated)
f2fs_mark_inode_dirty_sync(inode, true);
}
void f2fs_drop_extent_tree(struct inode *inode)
{
__drop_extent_tree(inode, EX_READ);
__drop_extent_tree(inode, EX_BLOCK_AGE);
}
static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree_info *eti = &sbi->extent_tree[type];
struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
unsigned int node_cnt = 0;
if (!et)
return;
if (inode->i_nlink && !is_bad_inode(inode) &&
atomic_read(&et->node_cnt)) {
mutex_lock(&eti->extent_tree_lock);
list_add_tail(&et->list, &eti->zombie_list);
atomic_inc(&eti->total_zombie_tree);
mutex_unlock(&eti->extent_tree_lock);
return;
}
/* free all extent info belong to this extent tree */
node_cnt = __destroy_extent_node(inode, type);
/* delete extent tree entry in radix tree */
mutex_lock(&eti->extent_tree_lock);
f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
kmem_cache_free(extent_tree_slab, et);
atomic_dec(&eti->total_ext_tree);
mutex_unlock(&eti->extent_tree_lock);
F2FS_I(inode)->extent_tree[type] = NULL;
trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
}
void f2fs_destroy_extent_tree(struct inode *inode)
{
__destroy_extent_tree(inode, EX_READ);
__destroy_extent_tree(inode, EX_BLOCK_AGE);
}
static void __init_extent_tree_info(struct extent_tree_info *eti)
{
INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
mutex_init(&eti->extent_tree_lock);
INIT_LIST_HEAD(&eti->extent_list);
spin_lock_init(&eti->extent_lock);
atomic_set(&eti->total_ext_tree, 0);
INIT_LIST_HEAD(&eti->zombie_list);
atomic_set(&eti->total_zombie_tree, 0);
atomic_set(&eti->total_ext_node, 0);
}
void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
{
__init_extent_tree_info(&sbi->extent_tree[EX_READ]);
__init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
/* initialize for block age extents */
atomic64_set(&sbi->allocated_data_blocks, 0);
sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
sbi->last_age_weight = LAST_AGE_WEIGHT;
sbi->max_read_extent_count = DEF_MAX_READ_EXTENT_COUNT;
}
int __init f2fs_create_extent_cache(void)
{
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
sizeof(struct extent_tree));
if (!extent_tree_slab)
return -ENOMEM;
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
sizeof(struct extent_node));
if (!extent_node_slab) {
kmem_cache_destroy(extent_tree_slab);
return -ENOMEM;
}
return 0;
}
void f2fs_destroy_extent_cache(void)
{
kmem_cache_destroy(extent_node_slab);
kmem_cache_destroy(extent_tree_slab);
}