linux-next/fs/f2fs/file.c
Linus Torvalds 44b4d13b70 f2fs-for-6.13-rc1
This series introduces a device aliasing feature where user can carve out
 partitions but reclaim the space back by deleting aliased file in root dir.
 In addition to that, there're numerous minor bug fixes in zoned device support,
 checkpoint=disable, extent cache management, fiemap, and lazytime mount option.
 The full list of noticeable changes can be found below.
 
 Enhancement:
  - introduce device aliasing file
  - add stats in debugfs to show multiple devices
  - add a sysfs node to limit max read extent count per-inode
  - modify f2fs_is_checkpoint_ready logic to allow more data to be written with the CP disable
  - decrease spare area for pinned files for zoned devices
 
 Bug fix:
  - Revert "f2fs: remove unreachable lazytime mount option parsing"
  - adjust unusable cap before checkpoint=disable mode
  - fix to drop all discards after creating snapshot on lvm device
  - fix to shrink read extent node in batches
  - fix changing cursegs if recovery fails on zoned device
  - fix to adjust appropriate length for fiemap
  - fix fiemap failure issue when page size is 16KB
  - fix to avoid forcing direct write to use buffered IO on inline_data inode
  - fix to map blocks correctly for direct write
  - fix to account dirty data in __get_secs_required()
  - fix null-ptr-deref in f2fs_submit_page_bio()
  - f2fs: compress: fix inconsistent update of i_blocks in release_compress_blocks and reserve_compress_blocks
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAmdD25MACgkQQBSofoJI
 UNKgLhAAgr0Dy/VWDgRlMovckq0q5EyQu/Jospv6mJyErQ4pZwwidNn9FSf0yua9
 O0Pofs1zMFWoe5R2UOvwOnahmvlwD1nnRMylA10/9hp+/aKlTRxOI7HrdL5wFgWG
 QRTb/k+mgoEQk8+9ElThzq/CkmQovPEUfhoxW7bE4zH9kVoxi2klFbkASZynqEFe
 a+TVQoDUnXvb1cbvr4zEVuD79QEmazD/bgc+gquxChCHfzX8ip4R0aCZM1ceTgm/
 Vru0LUKGQTWXPPReugJbOOtoIJ/kgD9Sg5xa7Icg3nxukgiYUDdl3e7MTgfvHOK6
 Fwwj+ZbM/yV/gpAQp+g+uOkKSFqfulyOb+nzX5tmebmiT2Vs6XSQ0Xo+fjm7N1QC
 j0G1vwz91xETK/gw2U/zL/HQVB3IU/2dtBT2ek4x6kmVL3rmHYoI6r2ofQcEFjGn
 2YQ9yvvT/fY6fza88kWO0PjgIRDzw9D9ihfZVyH9MCy5n6adhWlFXIg0HbAoecDE
 6xsVjb5BVYJfQvVz3FauGRXu6i3mePaURC1rrf5NKFfAWJP7pDfi9IvSL56u2aMt
 J+RJ7a2u1l1z/yhBxtr00KhMP586OZHVJwQvwNJV7mzBFhvOlm3a4jTzbG35dE+V
 MfbbjR628y/0IkqZiB7YVu1NIF2qdbZosv4nO7b584Q1h1NH/PU=
 =LOgM
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "This series introduces a device aliasing feature where user can carve
  out partitions but reclaim the space back by deleting aliased file in
  root dir.

  In addition to that, there're numerous minor bug fixes in zoned device
  support, checkpoint=disable, extent cache management, fiemap, and
  lazytime mount option. The full list of noticeable changes can be
  found below.

  Enhancements:
   - introduce device aliasing file
   - add stats in debugfs to show multiple devices
   - add a sysfs node to limit max read extent count per-inode
   - modify f2fs_is_checkpoint_ready logic to allow more data to be
     written with the CP disable
   - decrease spare area for pinned files for zoned devices

  Fixes:
   - Revert "f2fs: remove unreachable lazytime mount option parsing"
   - adjust unusable cap before checkpoint=disable mode
   - fix to drop all discards after creating snapshot on lvm device
   - fix to shrink read extent node in batches
   - fix changing cursegs if recovery fails on zoned device
   - fix to adjust appropriate length for fiemap
   - fix fiemap failure issue when page size is 16KB
   - fix to avoid forcing direct write to use buffered IO on inline_data
     inode
   - fix to map blocks correctly for direct write
   - fix to account dirty data in __get_secs_required()
   - fix null-ptr-deref in f2fs_submit_page_bio()
   - fix inconsistent update of i_blocks in release_compress_blocks and
     reserve_compress_blocks"

* tag 'f2fs-for-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (40 commits)
  f2fs: fix to drop all discards after creating snapshot on lvm device
  f2fs: add a sysfs node to limit max read extent count per-inode
  f2fs: fix to shrink read extent node in batches
  f2fs: print message if fscorrupted was found in f2fs_new_node_page()
  f2fs: clear SBI_POR_DOING before initing inmem curseg
  f2fs: fix changing cursegs if recovery fails on zoned device
  f2fs: adjust unusable cap before checkpoint=disable mode
  f2fs: fix to requery extent which cross boundary of inquiry
  f2fs: fix to adjust appropriate length for fiemap
  f2fs: clean up w/ F2FS_{BLK_TO_BYTES,BTYES_TO_BLK}
  f2fs: fix to do cast in F2FS_{BLK_TO_BYTES, BTYES_TO_BLK} to avoid overflow
  f2fs: replace deprecated strcpy with strscpy
  Revert "f2fs: remove unreachable lazytime mount option parsing"
  f2fs: fix to avoid forcing direct write to use buffered IO on inline_data inode
  f2fs: fix to map blocks correctly for direct write
  f2fs: fix race in concurrent f2fs_stop_gc_thread
  f2fs: fix fiemap failure issue when page size is 16KB
  f2fs: remove redundant atomic file check in defragment
  f2fs: fix to convert log type to segment data type correctly
  f2fs: clean up the unused variable additional_reserved_segments
  ...
2024-11-26 12:50:58 -08:00

5273 lines
126 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/file.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/stat.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/compat.h>
#include <linux/uaccess.h>
#include <linux/mount.h>
#include <linux/pagevec.h>
#include <linux/uio.h>
#include <linux/uuid.h>
#include <linux/file.h>
#include <linux/nls.h>
#include <linux/sched/signal.h>
#include <linux/fileattr.h>
#include <linux/fadvise.h>
#include <linux/iomap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "acl.h"
#include "gc.h"
#include "iostat.h"
#include <trace/events/f2fs.h>
#include <uapi/linux/f2fs.h>
static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
vm_flags_t flags = vmf->vma->vm_flags;
vm_fault_t ret;
ret = filemap_fault(vmf);
if (ret & VM_FAULT_LOCKED)
f2fs_update_iostat(F2FS_I_SB(inode), inode,
APP_MAPPED_READ_IO, F2FS_BLKSIZE);
trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
return ret;
}
static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
{
struct folio *folio = page_folio(vmf->page);
struct inode *inode = file_inode(vmf->vma->vm_file);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
bool need_alloc = !f2fs_is_pinned_file(inode);
int err = 0;
vm_fault_t ret;
if (unlikely(IS_IMMUTABLE(inode)))
return VM_FAULT_SIGBUS;
if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
err = -EIO;
goto out;
}
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto out;
}
if (!f2fs_is_checkpoint_ready(sbi)) {
err = -ENOSPC;
goto out;
}
err = f2fs_convert_inline_inode(inode);
if (err)
goto out;
#ifdef CONFIG_F2FS_FS_COMPRESSION
if (f2fs_compressed_file(inode)) {
int ret = f2fs_is_compressed_cluster(inode, folio->index);
if (ret < 0) {
err = ret;
goto out;
} else if (ret) {
need_alloc = false;
}
}
#endif
/* should do out of any locked page */
if (need_alloc)
f2fs_balance_fs(sbi, true);
sb_start_pagefault(inode->i_sb);
f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
file_update_time(vmf->vma->vm_file);
filemap_invalidate_lock_shared(inode->i_mapping);
folio_lock(folio);
if (unlikely(folio->mapping != inode->i_mapping ||
folio_pos(folio) > i_size_read(inode) ||
!folio_test_uptodate(folio))) {
folio_unlock(folio);
err = -EFAULT;
goto out_sem;
}
set_new_dnode(&dn, inode, NULL, NULL, 0);
if (need_alloc) {
/* block allocation */
err = f2fs_get_block_locked(&dn, folio->index);
} else {
err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
f2fs_put_dnode(&dn);
if (f2fs_is_pinned_file(inode) &&
!__is_valid_data_blkaddr(dn.data_blkaddr))
err = -EIO;
}
if (err) {
folio_unlock(folio);
goto out_sem;
}
f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
/* wait for GCed page writeback via META_MAPPING */
f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
/*
* check to see if the page is mapped already (no holes)
*/
if (folio_test_mappedtodisk(folio))
goto out_sem;
/* page is wholly or partially inside EOF */
if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
i_size_read(inode)) {
loff_t offset;
offset = i_size_read(inode) & ~PAGE_MASK;
folio_zero_segment(folio, offset, folio_size(folio));
}
folio_mark_dirty(folio);
f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
f2fs_update_time(sbi, REQ_TIME);
out_sem:
filemap_invalidate_unlock_shared(inode->i_mapping);
sb_end_pagefault(inode->i_sb);
out:
ret = vmf_fs_error(err);
trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
return ret;
}
static const struct vm_operations_struct f2fs_file_vm_ops = {
.fault = f2fs_filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = f2fs_vm_page_mkwrite,
};
static int get_parent_ino(struct inode *inode, nid_t *pino)
{
struct dentry *dentry;
/*
* Make sure to get the non-deleted alias. The alias associated with
* the open file descriptor being fsync()'ed may be deleted already.
*/
dentry = d_find_alias(inode);
if (!dentry)
return 0;
*pino = d_parent_ino(dentry);
dput(dentry);
return 1;
}
static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum cp_reason_type cp_reason = CP_NO_NEEDED;
if (!S_ISREG(inode->i_mode))
cp_reason = CP_NON_REGULAR;
else if (f2fs_compressed_file(inode))
cp_reason = CP_COMPRESSED;
else if (inode->i_nlink != 1)
cp_reason = CP_HARDLINK;
else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
cp_reason = CP_SB_NEED_CP;
else if (file_wrong_pino(inode))
cp_reason = CP_WRONG_PINO;
else if (!f2fs_space_for_roll_forward(sbi))
cp_reason = CP_NO_SPC_ROLL;
else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
cp_reason = CP_NODE_NEED_CP;
else if (test_opt(sbi, FASTBOOT))
cp_reason = CP_FASTBOOT_MODE;
else if (F2FS_OPTION(sbi).active_logs == 2)
cp_reason = CP_SPEC_LOG_NUM;
else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
f2fs_need_dentry_mark(sbi, inode->i_ino) &&
f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
TRANS_DIR_INO))
cp_reason = CP_RECOVER_DIR;
else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
XATTR_DIR_INO))
cp_reason = CP_XATTR_DIR;
return cp_reason;
}
static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
{
struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
bool ret = false;
/* But we need to avoid that there are some inode updates */
if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
ret = true;
f2fs_put_page(i, 0);
return ret;
}
static void try_to_fix_pino(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
nid_t pino;
f2fs_down_write(&fi->i_sem);
if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
get_parent_ino(inode, &pino)) {
f2fs_i_pino_write(inode, pino);
file_got_pino(inode);
}
f2fs_up_write(&fi->i_sem);
}
static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
int datasync, bool atomic)
{
struct inode *inode = file->f_mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t ino = inode->i_ino;
int ret = 0;
enum cp_reason_type cp_reason = 0;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
unsigned int seq_id = 0;
if (unlikely(f2fs_readonly(inode->i_sb)))
return 0;
trace_f2fs_sync_file_enter(inode);
if (S_ISDIR(inode->i_mode))
goto go_write;
/* if fdatasync is triggered, let's do in-place-update */
if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
set_inode_flag(inode, FI_NEED_IPU);
ret = file_write_and_wait_range(file, start, end);
clear_inode_flag(inode, FI_NEED_IPU);
if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
return ret;
}
/* if the inode is dirty, let's recover all the time */
if (!f2fs_skip_inode_update(inode, datasync)) {
f2fs_write_inode(inode, NULL);
goto go_write;
}
/*
* if there is no written data, don't waste time to write recovery info.
*/
if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
/* it may call write_inode just prior to fsync */
if (need_inode_page_update(sbi, ino))
goto go_write;
if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
f2fs_exist_written_data(sbi, ino, UPDATE_INO))
goto flush_out;
goto out;
} else {
/*
* for OPU case, during fsync(), node can be persisted before
* data when lower device doesn't support write barrier, result
* in data corruption after SPO.
* So for strict fsync mode, force to use atomic write semantics
* to keep write order in between data/node and last node to
* avoid potential data corruption.
*/
if (F2FS_OPTION(sbi).fsync_mode ==
FSYNC_MODE_STRICT && !atomic)
atomic = true;
}
go_write:
/*
* Both of fdatasync() and fsync() are able to be recovered from
* sudden-power-off.
*/
f2fs_down_read(&F2FS_I(inode)->i_sem);
cp_reason = need_do_checkpoint(inode);
f2fs_up_read(&F2FS_I(inode)->i_sem);
if (cp_reason) {
/* all the dirty node pages should be flushed for POR */
ret = f2fs_sync_fs(inode->i_sb, 1);
/*
* We've secured consistency through sync_fs. Following pino
* will be used only for fsynced inodes after checkpoint.
*/
try_to_fix_pino(inode);
clear_inode_flag(inode, FI_APPEND_WRITE);
clear_inode_flag(inode, FI_UPDATE_WRITE);
goto out;
}
sync_nodes:
atomic_inc(&sbi->wb_sync_req[NODE]);
ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
atomic_dec(&sbi->wb_sync_req[NODE]);
if (ret)
goto out;
/* if cp_error was enabled, we should avoid infinite loop */
if (unlikely(f2fs_cp_error(sbi))) {
ret = -EIO;
goto out;
}
if (f2fs_need_inode_block_update(sbi, ino)) {
f2fs_mark_inode_dirty_sync(inode, true);
f2fs_write_inode(inode, NULL);
goto sync_nodes;
}
/*
* If it's atomic_write, it's just fine to keep write ordering. So
* here we don't need to wait for node write completion, since we use
* node chain which serializes node blocks. If one of node writes are
* reordered, we can see simply broken chain, resulting in stopping
* roll-forward recovery. It means we'll recover all or none node blocks
* given fsync mark.
*/
if (!atomic) {
ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
if (ret)
goto out;
}
/* once recovery info is written, don't need to tack this */
f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
clear_inode_flag(inode, FI_APPEND_WRITE);
flush_out:
if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
ret = f2fs_issue_flush(sbi, inode->i_ino);
if (!ret) {
f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
clear_inode_flag(inode, FI_UPDATE_WRITE);
f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
}
f2fs_update_time(sbi, REQ_TIME);
out:
trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
return ret;
}
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
return -EIO;
return f2fs_do_sync_file(file, start, end, datasync, false);
}
static bool __found_offset(struct address_space *mapping,
struct dnode_of_data *dn, pgoff_t index, int whence)
{
block_t blkaddr = f2fs_data_blkaddr(dn);
struct inode *inode = mapping->host;
bool compressed_cluster = false;
if (f2fs_compressed_file(inode)) {
block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
compressed_cluster = first_blkaddr == COMPRESS_ADDR;
}
switch (whence) {
case SEEK_DATA:
if (__is_valid_data_blkaddr(blkaddr))
return true;
if (blkaddr == NEW_ADDR &&
xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
return true;
if (compressed_cluster)
return true;
break;
case SEEK_HOLE:
if (compressed_cluster)
return false;
if (blkaddr == NULL_ADDR)
return true;
break;
}
return false;
}
static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
struct dnode_of_data dn;
pgoff_t pgofs, end_offset;
loff_t data_ofs = offset;
loff_t isize;
int err = 0;
inode_lock_shared(inode);
isize = i_size_read(inode);
if (offset >= isize)
goto fail;
/* handle inline data case */
if (f2fs_has_inline_data(inode)) {
if (whence == SEEK_HOLE) {
data_ofs = isize;
goto found;
} else if (whence == SEEK_DATA) {
data_ofs = offset;
goto found;
}
}
pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
if (err && err != -ENOENT) {
goto fail;
} else if (err == -ENOENT) {
/* direct node does not exists */
if (whence == SEEK_DATA) {
pgofs = f2fs_get_next_page_offset(&dn, pgofs);
continue;
} else {
goto found;
}
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
/* find data/hole in dnode block */
for (; dn.ofs_in_node < end_offset;
dn.ofs_in_node++, pgofs++,
data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
block_t blkaddr;
blkaddr = f2fs_data_blkaddr(&dn);
if (__is_valid_data_blkaddr(blkaddr) &&
!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
blkaddr, DATA_GENERIC_ENHANCE)) {
f2fs_put_dnode(&dn);
goto fail;
}
if (__found_offset(file->f_mapping, &dn,
pgofs, whence)) {
f2fs_put_dnode(&dn);
goto found;
}
}
f2fs_put_dnode(&dn);
}
if (whence == SEEK_DATA)
goto fail;
found:
if (whence == SEEK_HOLE && data_ofs > isize)
data_ofs = isize;
inode_unlock_shared(inode);
return vfs_setpos(file, data_ofs, maxbytes);
fail:
inode_unlock_shared(inode);
return -ENXIO;
}
static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
switch (whence) {
case SEEK_SET:
case SEEK_CUR:
case SEEK_END:
return generic_file_llseek_size(file, offset, whence,
maxbytes, i_size_read(inode));
case SEEK_DATA:
case SEEK_HOLE:
if (offset < 0)
return -ENXIO;
return f2fs_seek_block(file, offset, whence);
}
return -EINVAL;
}
static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file_inode(file);
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if (!f2fs_is_compress_backend_ready(inode))
return -EOPNOTSUPP;
file_accessed(file);
vma->vm_ops = &f2fs_file_vm_ops;
f2fs_down_read(&F2FS_I(inode)->i_sem);
set_inode_flag(inode, FI_MMAP_FILE);
f2fs_up_read(&F2FS_I(inode)->i_sem);
return 0;
}
static int finish_preallocate_blocks(struct inode *inode)
{
int ret;
inode_lock(inode);
if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
inode_unlock(inode);
return 0;
}
if (!file_should_truncate(inode)) {
set_inode_flag(inode, FI_OPENED_FILE);
inode_unlock(inode);
return 0;
}
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
truncate_setsize(inode, i_size_read(inode));
ret = f2fs_truncate(inode);
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
if (!ret)
set_inode_flag(inode, FI_OPENED_FILE);
inode_unlock(inode);
if (ret)
return ret;
file_dont_truncate(inode);
return 0;
}
static int f2fs_file_open(struct inode *inode, struct file *filp)
{
int err = fscrypt_file_open(inode, filp);
if (err)
return err;
if (!f2fs_is_compress_backend_ready(inode))
return -EOPNOTSUPP;
err = fsverity_file_open(inode, filp);
if (err)
return err;
filp->f_mode |= FMODE_NOWAIT;
filp->f_mode |= FMODE_CAN_ODIRECT;
err = dquot_file_open(inode, filp);
if (err)
return err;
return finish_preallocate_blocks(inode);
}
void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
int nr_free = 0, ofs = dn->ofs_in_node, len = count;
__le32 *addr;
bool compressed_cluster = false;
int cluster_index = 0, valid_blocks = 0;
int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
/* Assumption: truncation starts with cluster */
for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
block_t blkaddr = le32_to_cpu(*addr);
if (f2fs_compressed_file(dn->inode) &&
!(cluster_index & (cluster_size - 1))) {
if (compressed_cluster)
f2fs_i_compr_blocks_update(dn->inode,
valid_blocks, false);
compressed_cluster = (blkaddr == COMPRESS_ADDR);
valid_blocks = 0;
}
if (blkaddr == NULL_ADDR)
continue;
f2fs_set_data_blkaddr(dn, NULL_ADDR);
if (__is_valid_data_blkaddr(blkaddr)) {
if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
continue;
if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
DATA_GENERIC_ENHANCE))
continue;
if (compressed_cluster)
valid_blocks++;
}
f2fs_invalidate_blocks(sbi, blkaddr);
if (!released || blkaddr != COMPRESS_ADDR)
nr_free++;
}
if (compressed_cluster)
f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
if (nr_free) {
pgoff_t fofs;
/*
* once we invalidate valid blkaddr in range [ofs, ofs + count],
* we will invalidate all blkaddr in the whole range.
*/
fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
dn->inode) + ofs;
f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
f2fs_update_age_extent_cache_range(dn, fofs, len);
dec_valid_block_count(sbi, dn->inode, nr_free);
}
dn->ofs_in_node = ofs;
f2fs_update_time(sbi, REQ_TIME);
trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
dn->ofs_in_node, nr_free);
}
static int truncate_partial_data_page(struct inode *inode, u64 from,
bool cache_only)
{
loff_t offset = from & (PAGE_SIZE - 1);
pgoff_t index = from >> PAGE_SHIFT;
struct address_space *mapping = inode->i_mapping;
struct page *page;
if (!offset && !cache_only)
return 0;
if (cache_only) {
page = find_lock_page(mapping, index);
if (page && PageUptodate(page))
goto truncate_out;
f2fs_put_page(page, 1);
return 0;
}
page = f2fs_get_lock_data_page(inode, index, true);
if (IS_ERR(page))
return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
truncate_out:
f2fs_wait_on_page_writeback(page, DATA, true, true);
zero_user(page, offset, PAGE_SIZE - offset);
/* An encrypted inode should have a key and truncate the last page. */
f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
if (!cache_only)
set_page_dirty(page);
f2fs_put_page(page, 1);
return 0;
}
int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
pgoff_t free_from;
int count = 0, err = 0;
struct page *ipage;
bool truncate_page = false;
trace_f2fs_truncate_blocks_enter(inode, from);
if (IS_DEVICE_ALIASING(inode) && from) {
err = -EINVAL;
goto out_err;
}
free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
if (free_from >= max_file_blocks(inode))
goto free_partial;
if (lock)
f2fs_lock_op(sbi);
ipage = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto out;
}
if (IS_DEVICE_ALIASING(inode)) {
struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
struct extent_info ei = et->largest;
unsigned int i;
for (i = 0; i < ei.len; i++)
f2fs_invalidate_blocks(sbi, ei.blk + i);
dec_valid_block_count(sbi, inode, ei.len);
f2fs_update_time(sbi, REQ_TIME);
f2fs_put_page(ipage, 1);
goto out;
}
if (f2fs_has_inline_data(inode)) {
f2fs_truncate_inline_inode(inode, ipage, from);
f2fs_put_page(ipage, 1);
truncate_page = true;
goto out;
}
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
if (err) {
if (err == -ENOENT)
goto free_next;
goto out;
}
count = ADDRS_PER_PAGE(dn.node_page, inode);
count -= dn.ofs_in_node;
f2fs_bug_on(sbi, count < 0);
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
f2fs_truncate_data_blocks_range(&dn, count);
free_from += count;
}
f2fs_put_dnode(&dn);
free_next:
err = f2fs_truncate_inode_blocks(inode, free_from);
out:
if (lock)
f2fs_unlock_op(sbi);
free_partial:
/* lastly zero out the first data page */
if (!err)
err = truncate_partial_data_page(inode, from, truncate_page);
out_err:
trace_f2fs_truncate_blocks_exit(inode, err);
return err;
}
int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
{
u64 free_from = from;
int err;
#ifdef CONFIG_F2FS_FS_COMPRESSION
/*
* for compressed file, only support cluster size
* aligned truncation.
*/
if (f2fs_compressed_file(inode))
free_from = round_up(from,
F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
#endif
err = f2fs_do_truncate_blocks(inode, free_from, lock);
if (err)
return err;
#ifdef CONFIG_F2FS_FS_COMPRESSION
/*
* For compressed file, after release compress blocks, don't allow write
* direct, but we should allow write direct after truncate to zero.
*/
if (f2fs_compressed_file(inode) && !free_from
&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
clear_inode_flag(inode, FI_COMPRESS_RELEASED);
if (from != free_from) {
err = f2fs_truncate_partial_cluster(inode, from, lock);
if (err)
return err;
}
#endif
return 0;
}
int f2fs_truncate(struct inode *inode)
{
int err;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return 0;
trace_f2fs_truncate(inode);
if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
return -EIO;
err = f2fs_dquot_initialize(inode);
if (err)
return err;
/* we should check inline_data size */
if (!f2fs_may_inline_data(inode)) {
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
if (err)
return err;
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
f2fs_mark_inode_dirty_sync(inode, false);
return 0;
}
static bool f2fs_force_buffered_io(struct inode *inode, int rw)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (!fscrypt_dio_supported(inode))
return true;
if (fsverity_active(inode))
return true;
if (f2fs_compressed_file(inode))
return true;
/*
* only force direct read to use buffered IO, for direct write,
* it expects inline data conversion before committing IO.
*/
if (f2fs_has_inline_data(inode) && rw == READ)
return true;
/* disallow direct IO if any of devices has unaligned blksize */
if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
return true;
/*
* for blkzoned device, fallback direct IO to buffered IO, so
* all IOs can be serialized by log-structured write.
*/
if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
!f2fs_is_pinned_file(inode))
return true;
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
return true;
return false;
}
int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_inode *ri = NULL;
unsigned int flags;
if (f2fs_has_extra_attr(inode) &&
f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
stat->result_mask |= STATX_BTIME;
stat->btime.tv_sec = fi->i_crtime.tv_sec;
stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
}
/*
* Return the DIO alignment restrictions if requested. We only return
* this information when requested, since on encrypted files it might
* take a fair bit of work to get if the file wasn't opened recently.
*
* f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
* cannot represent that, so in that case we report no DIO support.
*/
if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
unsigned int bsize = i_blocksize(inode);
stat->result_mask |= STATX_DIOALIGN;
if (!f2fs_force_buffered_io(inode, WRITE)) {
stat->dio_mem_align = bsize;
stat->dio_offset_align = bsize;
}
}
flags = fi->i_flags;
if (flags & F2FS_COMPR_FL)
stat->attributes |= STATX_ATTR_COMPRESSED;
if (flags & F2FS_APPEND_FL)
stat->attributes |= STATX_ATTR_APPEND;
if (IS_ENCRYPTED(inode))
stat->attributes |= STATX_ATTR_ENCRYPTED;
if (flags & F2FS_IMMUTABLE_FL)
stat->attributes |= STATX_ATTR_IMMUTABLE;
if (flags & F2FS_NODUMP_FL)
stat->attributes |= STATX_ATTR_NODUMP;
if (IS_VERITY(inode))
stat->attributes |= STATX_ATTR_VERITY;
stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
STATX_ATTR_APPEND |
STATX_ATTR_ENCRYPTED |
STATX_ATTR_IMMUTABLE |
STATX_ATTR_NODUMP |
STATX_ATTR_VERITY);
generic_fillattr(idmap, request_mask, inode, stat);
/* we need to show initial sectors used for inline_data/dentries */
if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
f2fs_has_inline_dentry(inode))
stat->blocks += (stat->size + 511) >> 9;
return 0;
}
#ifdef CONFIG_F2FS_FS_POSIX_ACL
static void __setattr_copy(struct mnt_idmap *idmap,
struct inode *inode, const struct iattr *attr)
{
unsigned int ia_valid = attr->ia_valid;
i_uid_update(idmap, attr, inode);
i_gid_update(idmap, attr, inode);
if (ia_valid & ATTR_ATIME)
inode_set_atime_to_ts(inode, attr->ia_atime);
if (ia_valid & ATTR_MTIME)
inode_set_mtime_to_ts(inode, attr->ia_mtime);
if (ia_valid & ATTR_CTIME)
inode_set_ctime_to_ts(inode, attr->ia_ctime);
if (ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
mode &= ~S_ISGID;
set_acl_inode(inode, mode);
}
}
#else
#define __setattr_copy setattr_copy
#endif
int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct f2fs_inode_info *fi = F2FS_I(inode);
int err;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if (unlikely(IS_IMMUTABLE(inode)))
return -EPERM;
if (unlikely(IS_APPEND(inode) &&
(attr->ia_valid & (ATTR_MODE | ATTR_UID |
ATTR_GID | ATTR_TIMES_SET))))
return -EPERM;
if ((attr->ia_valid & ATTR_SIZE)) {
if (!f2fs_is_compress_backend_ready(inode) ||
IS_DEVICE_ALIASING(inode))
return -EOPNOTSUPP;
if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
!IS_ALIGNED(attr->ia_size,
F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
return -EINVAL;
}
err = setattr_prepare(idmap, dentry, attr);
if (err)
return err;
err = fscrypt_prepare_setattr(dentry, attr);
if (err)
return err;
err = fsverity_prepare_setattr(dentry, attr);
if (err)
return err;
if (is_quota_modification(idmap, inode, attr)) {
err = f2fs_dquot_initialize(inode);
if (err)
return err;
}
if (i_uid_needs_update(idmap, attr, inode) ||
i_gid_needs_update(idmap, attr, inode)) {
f2fs_lock_op(F2FS_I_SB(inode));
err = dquot_transfer(idmap, inode, attr);
if (err) {
set_sbi_flag(F2FS_I_SB(inode),
SBI_QUOTA_NEED_REPAIR);
f2fs_unlock_op(F2FS_I_SB(inode));
return err;
}
/*
* update uid/gid under lock_op(), so that dquot and inode can
* be updated atomically.
*/
i_uid_update(idmap, attr, inode);
i_gid_update(idmap, attr, inode);
f2fs_mark_inode_dirty_sync(inode, true);
f2fs_unlock_op(F2FS_I_SB(inode));
}
if (attr->ia_valid & ATTR_SIZE) {
loff_t old_size = i_size_read(inode);
if (attr->ia_size > MAX_INLINE_DATA(inode)) {
/*
* should convert inline inode before i_size_write to
* keep smaller than inline_data size with inline flag.
*/
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
/*
* wait for inflight dio, blocks should be removed after
* IO completion.
*/
if (attr->ia_size < old_size)
inode_dio_wait(inode);
f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
truncate_setsize(inode, attr->ia_size);
if (attr->ia_size <= old_size)
err = f2fs_truncate(inode);
/*
* do not trim all blocks after i_size if target size is
* larger than i_size.
*/
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
if (err)
return err;
spin_lock(&fi->i_size_lock);
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
fi->last_disk_size = i_size_read(inode);
spin_unlock(&fi->i_size_lock);
}
__setattr_copy(idmap, inode, attr);
if (attr->ia_valid & ATTR_MODE) {
err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
if (is_inode_flag_set(inode, FI_ACL_MODE)) {
if (!err)
inode->i_mode = fi->i_acl_mode;
clear_inode_flag(inode, FI_ACL_MODE);
}
}
/* file size may changed here */
f2fs_mark_inode_dirty_sync(inode, true);
/* inode change will produce dirty node pages flushed by checkpoint */
f2fs_balance_fs(F2FS_I_SB(inode), true);
return err;
}
const struct inode_operations f2fs_file_inode_operations = {
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
.get_inode_acl = f2fs_get_acl,
.set_acl = f2fs_set_acl,
.listxattr = f2fs_listxattr,
.fiemap = f2fs_fiemap,
.fileattr_get = f2fs_fileattr_get,
.fileattr_set = f2fs_fileattr_set,
};
static int fill_zero(struct inode *inode, pgoff_t index,
loff_t start, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page;
if (!len)
return 0;
f2fs_balance_fs(sbi, true);
f2fs_lock_op(sbi);
page = f2fs_get_new_data_page(inode, NULL, index, false);
f2fs_unlock_op(sbi);
if (IS_ERR(page))
return PTR_ERR(page);
f2fs_wait_on_page_writeback(page, DATA, true, true);
zero_user(page, start, len);
set_page_dirty(page);
f2fs_put_page(page, 1);
return 0;
}
int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
{
int err;
while (pg_start < pg_end) {
struct dnode_of_data dn;
pgoff_t end_offset, count;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
if (err) {
if (err == -ENOENT) {
pg_start = f2fs_get_next_page_offset(&dn,
pg_start);
continue;
}
return err;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
f2fs_truncate_data_blocks_range(&dn, count);
f2fs_put_dnode(&dn);
pg_start += count;
}
return 0;
}
static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
{
pgoff_t pg_start, pg_end;
loff_t off_start, off_end;
int ret;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
off_start = offset & (PAGE_SIZE - 1);
off_end = (offset + len) & (PAGE_SIZE - 1);
if (pg_start == pg_end) {
ret = fill_zero(inode, pg_start, off_start,
off_end - off_start);
if (ret)
return ret;
} else {
if (off_start) {
ret = fill_zero(inode, pg_start++, off_start,
PAGE_SIZE - off_start);
if (ret)
return ret;
}
if (off_end) {
ret = fill_zero(inode, pg_end, 0, off_end);
if (ret)
return ret;
}
if (pg_start < pg_end) {
loff_t blk_start, blk_end;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
f2fs_balance_fs(sbi, true);
blk_start = (loff_t)pg_start << PAGE_SHIFT;
blk_end = (loff_t)pg_end << PAGE_SHIFT;
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
truncate_pagecache_range(inode, blk_start, blk_end - 1);
f2fs_lock_op(sbi);
ret = f2fs_truncate_hole(inode, pg_start, pg_end);
f2fs_unlock_op(sbi);
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
}
}
return ret;
}
static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
int *do_replace, pgoff_t off, pgoff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
int ret, done, i;
next_dnode:
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
if (ret && ret != -ENOENT) {
return ret;
} else if (ret == -ENOENT) {
if (dn.max_level == 0)
return -ENOENT;
done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
dn.ofs_in_node, len);
blkaddr += done;
do_replace += done;
goto next;
}
done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
dn.ofs_in_node, len);
for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
*blkaddr = f2fs_data_blkaddr(&dn);
if (__is_valid_data_blkaddr(*blkaddr) &&
!f2fs_is_valid_blkaddr(sbi, *blkaddr,
DATA_GENERIC_ENHANCE)) {
f2fs_put_dnode(&dn);
return -EFSCORRUPTED;
}
if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
if (f2fs_lfs_mode(sbi)) {
f2fs_put_dnode(&dn);
return -EOPNOTSUPP;
}
/* do not invalidate this block address */
f2fs_update_data_blkaddr(&dn, NULL_ADDR);
*do_replace = 1;
}
}
f2fs_put_dnode(&dn);
next:
len -= done;
off += done;
if (len)
goto next_dnode;
return 0;
}
static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
int *do_replace, pgoff_t off, int len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
int ret, i;
for (i = 0; i < len; i++, do_replace++, blkaddr++) {
if (*do_replace == 0)
continue;
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
if (ret) {
dec_valid_block_count(sbi, inode, 1);
f2fs_invalidate_blocks(sbi, *blkaddr);
} else {
f2fs_update_data_blkaddr(&dn, *blkaddr);
}
f2fs_put_dnode(&dn);
}
return 0;
}
static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
block_t *blkaddr, int *do_replace,
pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
pgoff_t i = 0;
int ret;
while (i < len) {
if (blkaddr[i] == NULL_ADDR && !full) {
i++;
continue;
}
if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
struct dnode_of_data dn;
struct node_info ni;
size_t new_size;
pgoff_t ilen;
set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
if (ret)
return ret;
ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
if (ret) {
f2fs_put_dnode(&dn);
return ret;
}
ilen = min((pgoff_t)
ADDRS_PER_PAGE(dn.node_page, dst_inode) -
dn.ofs_in_node, len - i);
do {
dn.data_blkaddr = f2fs_data_blkaddr(&dn);
f2fs_truncate_data_blocks_range(&dn, 1);
if (do_replace[i]) {
f2fs_i_blocks_write(src_inode,
1, false, false);
f2fs_i_blocks_write(dst_inode,
1, true, false);
f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
blkaddr[i], ni.version, true, false);
do_replace[i] = 0;
}
dn.ofs_in_node++;
i++;
new_size = (loff_t)(dst + i) << PAGE_SHIFT;
if (dst_inode->i_size < new_size)
f2fs_i_size_write(dst_inode, new_size);
} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
f2fs_put_dnode(&dn);
} else {
struct page *psrc, *pdst;
psrc = f2fs_get_lock_data_page(src_inode,
src + i, true);
if (IS_ERR(psrc))
return PTR_ERR(psrc);
pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
true);
if (IS_ERR(pdst)) {
f2fs_put_page(psrc, 1);
return PTR_ERR(pdst);
}
f2fs_wait_on_page_writeback(pdst, DATA, true, true);
memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
set_page_dirty(pdst);
set_page_private_gcing(pdst);
f2fs_put_page(pdst, 1);
f2fs_put_page(psrc, 1);
ret = f2fs_truncate_hole(src_inode,
src + i, src + i + 1);
if (ret)
return ret;
i++;
}
}
return 0;
}
static int __exchange_data_block(struct inode *src_inode,
struct inode *dst_inode, pgoff_t src, pgoff_t dst,
pgoff_t len, bool full)
{
block_t *src_blkaddr;
int *do_replace;
pgoff_t olen;
int ret;
while (len) {
olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
array_size(olen, sizeof(block_t)),
GFP_NOFS);
if (!src_blkaddr)
return -ENOMEM;
do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
array_size(olen, sizeof(int)),
GFP_NOFS);
if (!do_replace) {
kvfree(src_blkaddr);
return -ENOMEM;
}
ret = __read_out_blkaddrs(src_inode, src_blkaddr,
do_replace, src, olen);
if (ret)
goto roll_back;
ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
do_replace, src, dst, olen, full);
if (ret)
goto roll_back;
src += olen;
dst += olen;
len -= olen;
kvfree(src_blkaddr);
kvfree(do_replace);
}
return 0;
roll_back:
__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
kvfree(src_blkaddr);
kvfree(do_replace);
return ret;
}
static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
pgoff_t start = offset >> PAGE_SHIFT;
pgoff_t end = (offset + len) >> PAGE_SHIFT;
int ret;
f2fs_balance_fs(sbi, true);
/* avoid gc operation during block exchange */
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
f2fs_lock_op(sbi);
f2fs_drop_extent_tree(inode);
truncate_pagecache(inode, offset);
ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
f2fs_unlock_op(sbi);
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
return ret;
}
static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
{
loff_t new_size;
int ret;
if (offset + len >= i_size_read(inode))
return -EINVAL;
/* collapse range should be aligned to block size of f2fs. */
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
return -EINVAL;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
/* write out all dirty pages from offset */
ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
if (ret)
return ret;
ret = f2fs_do_collapse(inode, offset, len);
if (ret)
return ret;
/* write out all moved pages, if possible */
filemap_invalidate_lock(inode->i_mapping);
filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
truncate_pagecache(inode, offset);
new_size = i_size_read(inode) - len;
ret = f2fs_truncate_blocks(inode, new_size, true);
filemap_invalidate_unlock(inode->i_mapping);
if (!ret)
f2fs_i_size_write(inode, new_size);
return ret;
}
static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
pgoff_t end)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
pgoff_t index = start;
unsigned int ofs_in_node = dn->ofs_in_node;
blkcnt_t count = 0;
int ret;
for (; index < end; index++, dn->ofs_in_node++) {
if (f2fs_data_blkaddr(dn) == NULL_ADDR)
count++;
}
dn->ofs_in_node = ofs_in_node;
ret = f2fs_reserve_new_blocks(dn, count);
if (ret)
return ret;
dn->ofs_in_node = ofs_in_node;
for (index = start; index < end; index++, dn->ofs_in_node++) {
dn->data_blkaddr = f2fs_data_blkaddr(dn);
/*
* f2fs_reserve_new_blocks will not guarantee entire block
* allocation.
*/
if (dn->data_blkaddr == NULL_ADDR) {
ret = -ENOSPC;
break;
}
if (dn->data_blkaddr == NEW_ADDR)
continue;
if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
DATA_GENERIC_ENHANCE)) {
ret = -EFSCORRUPTED;
break;
}
f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
f2fs_set_data_blkaddr(dn, NEW_ADDR);
}
f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
f2fs_update_age_extent_cache_range(dn, start, index - start);
return ret;
}
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
int mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct address_space *mapping = inode->i_mapping;
pgoff_t index, pg_start, pg_end;
loff_t new_size = i_size_read(inode);
loff_t off_start, off_end;
int ret = 0;
ret = inode_newsize_ok(inode, (len + offset));
if (ret)
return ret;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
if (ret)
return ret;
pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
off_start = offset & (PAGE_SIZE - 1);
off_end = (offset + len) & (PAGE_SIZE - 1);
if (pg_start == pg_end) {
ret = fill_zero(inode, pg_start, off_start,
off_end - off_start);
if (ret)
return ret;
new_size = max_t(loff_t, new_size, offset + len);
} else {
if (off_start) {
ret = fill_zero(inode, pg_start++, off_start,
PAGE_SIZE - off_start);
if (ret)
return ret;
new_size = max_t(loff_t, new_size,
(loff_t)pg_start << PAGE_SHIFT);
}
for (index = pg_start; index < pg_end;) {
struct dnode_of_data dn;
unsigned int end_offset;
pgoff_t end;
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(mapping);
truncate_pagecache_range(inode,
(loff_t)index << PAGE_SHIFT,
((loff_t)pg_end << PAGE_SHIFT) - 1);
f2fs_lock_op(sbi);
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
if (ret) {
f2fs_unlock_op(sbi);
filemap_invalidate_unlock(mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
goto out;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
end = min(pg_end, end_offset - dn.ofs_in_node + index);
ret = f2fs_do_zero_range(&dn, index, end);
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
filemap_invalidate_unlock(mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
f2fs_balance_fs(sbi, dn.node_changed);
if (ret)
goto out;
index = end;
new_size = max_t(loff_t, new_size,
(loff_t)index << PAGE_SHIFT);
}
if (off_end) {
ret = fill_zero(inode, pg_end, 0, off_end);
if (ret)
goto out;
new_size = max_t(loff_t, new_size, offset + len);
}
}
out:
if (new_size > i_size_read(inode)) {
if (mode & FALLOC_FL_KEEP_SIZE)
file_set_keep_isize(inode);
else
f2fs_i_size_write(inode, new_size);
}
return ret;
}
static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct address_space *mapping = inode->i_mapping;
pgoff_t nr, pg_start, pg_end, delta, idx;
loff_t new_size;
int ret = 0;
new_size = i_size_read(inode) + len;
ret = inode_newsize_ok(inode, new_size);
if (ret)
return ret;
if (offset >= i_size_read(inode))
return -EINVAL;
/* insert range should be aligned to block size of f2fs. */
if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
return -EINVAL;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
f2fs_balance_fs(sbi, true);
filemap_invalidate_lock(mapping);
ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
filemap_invalidate_unlock(mapping);
if (ret)
return ret;
/* write out all dirty pages from offset */
ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
if (ret)
return ret;
pg_start = offset >> PAGE_SHIFT;
pg_end = (offset + len) >> PAGE_SHIFT;
delta = pg_end - pg_start;
idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
/* avoid gc operation during block exchange */
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(mapping);
truncate_pagecache(inode, offset);
while (!ret && idx > pg_start) {
nr = idx - pg_start;
if (nr > delta)
nr = delta;
idx -= nr;
f2fs_lock_op(sbi);
f2fs_drop_extent_tree(inode);
ret = __exchange_data_block(inode, inode, idx,
idx + delta, nr, false);
f2fs_unlock_op(sbi);
}
filemap_invalidate_unlock(mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
if (ret)
return ret;
/* write out all moved pages, if possible */
filemap_invalidate_lock(mapping);
ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
truncate_pagecache(inode, offset);
filemap_invalidate_unlock(mapping);
if (!ret)
f2fs_i_size_write(inode, new_size);
return ret;
}
static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
loff_t len, int mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
.m_may_create = true };
struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
.init_gc_type = FG_GC,
.should_migrate_blocks = false,
.err_gc_skipped = true,
.nr_free_secs = 0 };
pgoff_t pg_start, pg_end;
loff_t new_size;
loff_t off_end;
block_t expanded = 0;
int err;
err = inode_newsize_ok(inode, (len + offset));
if (err)
return err;
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
f2fs_balance_fs(sbi, true);
pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
off_end = (offset + len) & (PAGE_SIZE - 1);
map.m_lblk = pg_start;
map.m_len = pg_end - pg_start;
if (off_end)
map.m_len++;
if (!map.m_len)
return 0;
if (f2fs_is_pinned_file(inode)) {
block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
block_t sec_len = roundup(map.m_len, sec_blks);
map.m_len = sec_blks;
next_alloc:
if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ?
ZONED_PIN_SEC_REQUIRED_COUNT :
GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
f2fs_down_write(&sbi->gc_lock);
stat_inc_gc_call_count(sbi, FOREGROUND);
err = f2fs_gc(sbi, &gc_control);
if (err && err != -ENODATA)
goto out_err;
}
f2fs_down_write(&sbi->pin_sem);
err = f2fs_allocate_pinning_section(sbi);
if (err) {
f2fs_up_write(&sbi->pin_sem);
goto out_err;
}
map.m_seg_type = CURSEG_COLD_DATA_PINNED;
err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
file_dont_truncate(inode);
f2fs_up_write(&sbi->pin_sem);
expanded += map.m_len;
sec_len -= map.m_len;
map.m_lblk += map.m_len;
if (!err && sec_len)
goto next_alloc;
map.m_len = expanded;
} else {
err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
expanded = map.m_len;
}
out_err:
if (err) {
pgoff_t last_off;
if (!expanded)
return err;
last_off = pg_start + expanded - 1;
/* update new size to the failed position */
new_size = (last_off == pg_end) ? offset + len :
(loff_t)(last_off + 1) << PAGE_SHIFT;
} else {
new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
}
if (new_size > i_size_read(inode)) {
if (mode & FALLOC_FL_KEEP_SIZE)
file_set_keep_isize(inode);
else
f2fs_i_size_write(inode, new_size);
}
return err;
}
static long f2fs_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file_inode(file);
long ret = 0;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
return -ENOSPC;
if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
return -EOPNOTSUPP;
/* f2fs only support ->fallocate for regular file */
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (IS_ENCRYPTED(inode) &&
(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
return -EOPNOTSUPP;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
FALLOC_FL_INSERT_RANGE))
return -EOPNOTSUPP;
inode_lock(inode);
/*
* Pinned file should not support partial truncation since the block
* can be used by applications.
*/
if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
ret = -EOPNOTSUPP;
goto out;
}
ret = file_modified(file);
if (ret)
goto out;
/*
* wait for inflight dio, blocks should be removed after IO
* completion.
*/
inode_dio_wait(inode);
if (mode & FALLOC_FL_PUNCH_HOLE) {
if (offset >= inode->i_size)
goto out;
ret = f2fs_punch_hole(inode, offset, len);
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
ret = f2fs_collapse_range(inode, offset, len);
} else if (mode & FALLOC_FL_ZERO_RANGE) {
ret = f2fs_zero_range(inode, offset, len, mode);
} else if (mode & FALLOC_FL_INSERT_RANGE) {
ret = f2fs_insert_range(inode, offset, len);
} else {
ret = f2fs_expand_inode_data(inode, offset, len, mode);
}
if (!ret) {
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
f2fs_mark_inode_dirty_sync(inode, false);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
}
out:
inode_unlock(inode);
trace_f2fs_fallocate(inode, mode, offset, len, ret);
return ret;
}
static int f2fs_release_file(struct inode *inode, struct file *filp)
{
/*
* f2fs_release_file is called at every close calls. So we should
* not drop any inmemory pages by close called by other process.
*/
if (!(filp->f_mode & FMODE_WRITE) ||
atomic_read(&inode->i_writecount) != 1)
return 0;
inode_lock(inode);
f2fs_abort_atomic_write(inode, true);
inode_unlock(inode);
return 0;
}
static int f2fs_file_flush(struct file *file, fl_owner_t id)
{
struct inode *inode = file_inode(file);
/*
* If the process doing a transaction is crashed, we should do
* roll-back. Otherwise, other reader/write can see corrupted database
* until all the writers close its file. Since this should be done
* before dropping file lock, it needs to do in ->flush.
*/
if (F2FS_I(inode)->atomic_write_task == current &&
(current->flags & PF_EXITING)) {
inode_lock(inode);
f2fs_abort_atomic_write(inode, true);
inode_unlock(inode);
}
return 0;
}
static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
u32 masked_flags = fi->i_flags & mask;
/* mask can be shrunk by flags_valid selector */
iflags &= mask;
/* Is it quota file? Do not allow user to mess with it */
if (IS_NOQUOTA(inode))
return -EPERM;
if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
return -EOPNOTSUPP;
if (!f2fs_empty_dir(inode))
return -ENOTEMPTY;
}
if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
return -EOPNOTSUPP;
if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
return -EINVAL;
}
if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
if (masked_flags & F2FS_COMPR_FL) {
if (!f2fs_disable_compressed_file(inode))
return -EINVAL;
} else {
/* try to convert inline_data to support compression */
int err = f2fs_convert_inline_inode(inode);
if (err)
return err;
f2fs_down_write(&fi->i_sem);
if (!f2fs_may_compress(inode) ||
(S_ISREG(inode->i_mode) &&
F2FS_HAS_BLOCKS(inode))) {
f2fs_up_write(&fi->i_sem);
return -EINVAL;
}
err = set_compress_context(inode);
f2fs_up_write(&fi->i_sem);
if (err)
return err;
}
}
fi->i_flags = iflags | (fi->i_flags & ~mask);
f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
(fi->i_flags & F2FS_NOCOMP_FL));
if (fi->i_flags & F2FS_PROJINHERIT_FL)
set_inode_flag(inode, FI_PROJ_INHERIT);
else
clear_inode_flag(inode, FI_PROJ_INHERIT);
inode_set_ctime_current(inode);
f2fs_set_inode_flags(inode);
f2fs_mark_inode_dirty_sync(inode, true);
return 0;
}
/* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
/*
* To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
* for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
* F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
* its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
*
* Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
* FS_IOC_FSSETXATTR is done by the VFS.
*/
static const struct {
u32 iflag;
u32 fsflag;
} f2fs_fsflags_map[] = {
{ F2FS_COMPR_FL, FS_COMPR_FL },
{ F2FS_SYNC_FL, FS_SYNC_FL },
{ F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
{ F2FS_APPEND_FL, FS_APPEND_FL },
{ F2FS_NODUMP_FL, FS_NODUMP_FL },
{ F2FS_NOATIME_FL, FS_NOATIME_FL },
{ F2FS_NOCOMP_FL, FS_NOCOMP_FL },
{ F2FS_INDEX_FL, FS_INDEX_FL },
{ F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
{ F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
{ F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
};
#define F2FS_GETTABLE_FS_FL ( \
FS_COMPR_FL | \
FS_SYNC_FL | \
FS_IMMUTABLE_FL | \
FS_APPEND_FL | \
FS_NODUMP_FL | \
FS_NOATIME_FL | \
FS_NOCOMP_FL | \
FS_INDEX_FL | \
FS_DIRSYNC_FL | \
FS_PROJINHERIT_FL | \
FS_ENCRYPT_FL | \
FS_INLINE_DATA_FL | \
FS_NOCOW_FL | \
FS_VERITY_FL | \
FS_CASEFOLD_FL)
#define F2FS_SETTABLE_FS_FL ( \
FS_COMPR_FL | \
FS_SYNC_FL | \
FS_IMMUTABLE_FL | \
FS_APPEND_FL | \
FS_NODUMP_FL | \
FS_NOATIME_FL | \
FS_NOCOMP_FL | \
FS_DIRSYNC_FL | \
FS_PROJINHERIT_FL | \
FS_CASEFOLD_FL)
/* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
{
u32 fsflags = 0;
int i;
for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
if (iflags & f2fs_fsflags_map[i].iflag)
fsflags |= f2fs_fsflags_map[i].fsflag;
return fsflags;
}
/* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
{
u32 iflags = 0;
int i;
for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
if (fsflags & f2fs_fsflags_map[i].fsflag)
iflags |= f2fs_fsflags_map[i].iflag;
return iflags;
}
static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
return put_user(inode->i_generation, (int __user *)arg);
}
static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
{
struct inode *inode = file_inode(filp);
struct mnt_idmap *idmap = file_mnt_idmap(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t isize;
int ret;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
if (!inode_owner_or_capable(idmap, inode))
return -EACCES;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (filp->f_flags & O_DIRECT)
return -EINVAL;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (!f2fs_disable_compressed_file(inode) ||
f2fs_is_pinned_file(inode)) {
ret = -EINVAL;
goto out;
}
if (f2fs_is_atomic_file(inode))
goto out;
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto out;
f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
f2fs_down_write(&fi->i_gc_rwsem[READ]);
/*
* Should wait end_io to count F2FS_WB_CP_DATA correctly by
* f2fs_is_atomic_file.
*/
if (get_dirty_pages(inode))
f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
inode->i_ino, get_dirty_pages(inode));
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (ret)
goto out_unlock;
/* Check if the inode already has a COW inode */
if (fi->cow_inode == NULL) {
/* Create a COW inode for atomic write */
struct dentry *dentry = file_dentry(filp);
struct inode *dir = d_inode(dentry->d_parent);
ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
if (ret)
goto out_unlock;
set_inode_flag(fi->cow_inode, FI_COW_FILE);
clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
/* Set the COW inode's atomic_inode to the atomic inode */
F2FS_I(fi->cow_inode)->atomic_inode = inode;
} else {
/* Reuse the already created COW inode */
f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
if (ret)
goto out_unlock;
}
f2fs_write_inode(inode, NULL);
stat_inc_atomic_inode(inode);
set_inode_flag(inode, FI_ATOMIC_FILE);
isize = i_size_read(inode);
fi->original_i_size = isize;
if (truncate) {
set_inode_flag(inode, FI_ATOMIC_REPLACE);
truncate_inode_pages_final(inode->i_mapping);
f2fs_i_size_write(inode, 0);
isize = 0;
}
f2fs_i_size_write(fi->cow_inode, isize);
out_unlock:
f2fs_up_write(&fi->i_gc_rwsem[READ]);
f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
if (ret)
goto out;
f2fs_update_time(sbi, REQ_TIME);
fi->atomic_write_task = current;
stat_update_max_atomic_write(inode);
fi->atomic_write_cnt = 0;
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_commit_atomic_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
struct mnt_idmap *idmap = file_mnt_idmap(filp);
int ret;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
if (!inode_owner_or_capable(idmap, inode))
return -EACCES;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
f2fs_balance_fs(F2FS_I_SB(inode), true);
inode_lock(inode);
if (f2fs_is_atomic_file(inode)) {
ret = f2fs_commit_atomic_write(inode);
if (!ret)
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
f2fs_abort_atomic_write(inode, ret);
} else {
ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
}
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_abort_atomic_write(struct file *filp)
{
struct inode *inode = file_inode(filp);
struct mnt_idmap *idmap = file_mnt_idmap(filp);
int ret;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
if (!inode_owner_or_capable(idmap, inode))
return -EACCES;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
f2fs_abort_atomic_write(inode, true);
inode_unlock(inode);
mnt_drop_write_file(filp);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return ret;
}
int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
bool readonly, bool need_lock)
{
struct super_block *sb = sbi->sb;
int ret = 0;
switch (flag) {
case F2FS_GOING_DOWN_FULLSYNC:
ret = bdev_freeze(sb->s_bdev);
if (ret)
goto out;
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
bdev_thaw(sb->s_bdev);
break;
case F2FS_GOING_DOWN_METASYNC:
/* do checkpoint only */
ret = f2fs_sync_fs(sb, 1);
if (ret) {
if (ret == -EIO)
ret = 0;
goto out;
}
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
break;
case F2FS_GOING_DOWN_NOSYNC:
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
break;
case F2FS_GOING_DOWN_METAFLUSH:
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
break;
case F2FS_GOING_DOWN_NEED_FSCK:
set_sbi_flag(sbi, SBI_NEED_FSCK);
set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
set_sbi_flag(sbi, SBI_IS_DIRTY);
/* do checkpoint only */
ret = f2fs_sync_fs(sb, 1);
if (ret == -EIO)
ret = 0;
goto out;
default:
ret = -EINVAL;
goto out;
}
if (readonly)
goto out;
/*
* grab sb->s_umount to avoid racing w/ remount() and other shutdown
* paths.
*/
if (need_lock)
down_write(&sbi->sb->s_umount);
f2fs_stop_gc_thread(sbi);
f2fs_stop_discard_thread(sbi);
f2fs_drop_discard_cmd(sbi);
clear_opt(sbi, DISCARD);
if (need_lock)
up_write(&sbi->sb->s_umount);
f2fs_update_time(sbi, REQ_TIME);
out:
trace_f2fs_shutdown(sbi, flag, ret);
return ret;
}
static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
__u32 in;
int ret;
bool need_drop = false, readonly = false;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(in, (__u32 __user *)arg))
return -EFAULT;
if (in != F2FS_GOING_DOWN_FULLSYNC) {
ret = mnt_want_write_file(filp);
if (ret) {
if (ret != -EROFS)
return ret;
/* fallback to nosync shutdown for readonly fs */
in = F2FS_GOING_DOWN_NOSYNC;
readonly = true;
} else {
need_drop = true;
}
}
ret = f2fs_do_shutdown(sbi, in, readonly, true);
if (need_drop)
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct super_block *sb = inode->i_sb;
struct fstrim_range range;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!f2fs_hw_support_discard(F2FS_SB(sb)))
return -EOPNOTSUPP;
if (copy_from_user(&range, (struct fstrim_range __user *)arg,
sizeof(range)))
return -EFAULT;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
range.minlen = max((unsigned int)range.minlen,
bdev_discard_granularity(sb->s_bdev));
ret = f2fs_trim_fs(F2FS_SB(sb), &range);
mnt_drop_write_file(filp);
if (ret < 0)
return ret;
if (copy_to_user((struct fstrim_range __user *)arg, &range,
sizeof(range)))
return -EFAULT;
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return 0;
}
static bool uuid_is_nonzero(__u8 u[16])
{
int i;
for (i = 0; i < 16; i++)
if (u[i])
return true;
return false;
}
static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
int ret;
if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
return -EOPNOTSUPP;
ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
return ret;
}
static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
}
static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
u8 encrypt_pw_salt[16];
int err;
if (!f2fs_sb_has_encrypt(sbi))
return -EOPNOTSUPP;
err = mnt_want_write_file(filp);
if (err)
return err;
f2fs_down_write(&sbi->sb_lock);
if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
goto got_it;
/* update superblock with uuid */
generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
err = f2fs_commit_super(sbi, false);
if (err) {
/* undo new data */
memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
goto out_err;
}
got_it:
memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
out_err:
f2fs_up_write(&sbi->sb_lock);
mnt_drop_write_file(filp);
if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
err = -EFAULT;
return err;
}
static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
}
static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_add_key(filp, (void __user *)arg);
}
static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
}
static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
}
static int f2fs_ioc_get_encryption_key_status(struct file *filp,
unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
}
static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
}
static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
.no_bg_gc = false,
.should_migrate_blocks = false,
.nr_free_secs = 0 };
__u32 sync;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(sync, (__u32 __user *)arg))
return -EFAULT;
if (f2fs_readonly(sbi->sb))
return -EROFS;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
if (!sync) {
if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
ret = -EBUSY;
goto out;
}
} else {
f2fs_down_write(&sbi->gc_lock);
}
gc_control.init_gc_type = sync ? FG_GC : BG_GC;
gc_control.err_gc_skipped = sync;
stat_inc_gc_call_count(sbi, FOREGROUND);
ret = f2fs_gc(sbi, &gc_control);
out:
mnt_drop_write_file(filp);
return ret;
}
static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
struct f2fs_gc_control gc_control = {
.init_gc_type = range->sync ? FG_GC : BG_GC,
.no_bg_gc = false,
.should_migrate_blocks = false,
.err_gc_skipped = range->sync,
.nr_free_secs = 0 };
u64 end;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (f2fs_readonly(sbi->sb))
return -EROFS;
end = range->start + range->len;
if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
end >= MAX_BLKADDR(sbi))
return -EINVAL;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
do_more:
if (!range->sync) {
if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
ret = -EBUSY;
goto out;
}
} else {
f2fs_down_write(&sbi->gc_lock);
}
gc_control.victim_segno = GET_SEGNO(sbi, range->start);
stat_inc_gc_call_count(sbi, FOREGROUND);
ret = f2fs_gc(sbi, &gc_control);
if (ret) {
if (ret == -EBUSY)
ret = -EAGAIN;
goto out;
}
range->start += CAP_BLKS_PER_SEC(sbi);
if (range->start <= end)
goto do_more;
out:
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
{
struct f2fs_gc_range range;
if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
sizeof(range)))
return -EFAULT;
return __f2fs_ioc_gc_range(filp, &range);
}
static int f2fs_ioc_write_checkpoint(struct file *filp)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
return -EINVAL;
}
ret = mnt_want_write_file(filp);
if (ret)
return ret;
ret = f2fs_sync_fs(sbi->sb, 1);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
struct file *filp,
struct f2fs_defragment *range)
{
struct inode *inode = file_inode(filp);
struct f2fs_map_blocks map = { .m_next_extent = NULL,
.m_seg_type = NO_CHECK_TYPE,
.m_may_create = false };
struct extent_info ei = {};
pgoff_t pg_start, pg_end, next_pgofs;
unsigned int total = 0, sec_num;
block_t blk_end = 0;
bool fragmented = false;
int err;
f2fs_balance_fs(sbi, true);
inode_lock(inode);
pg_start = range->start >> PAGE_SHIFT;
pg_end = min_t(pgoff_t,
(range->start + range->len) >> PAGE_SHIFT,
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
f2fs_is_atomic_file(inode)) {
err = -EINVAL;
goto unlock_out;
}
/* if in-place-update policy is enabled, don't waste time here */
set_inode_flag(inode, FI_OPU_WRITE);
if (f2fs_should_update_inplace(inode, NULL)) {
err = -EINVAL;
goto out;
}
/* writeback all dirty pages in the range */
err = filemap_write_and_wait_range(inode->i_mapping,
pg_start << PAGE_SHIFT,
(pg_end << PAGE_SHIFT) - 1);
if (err)
goto out;
/*
* lookup mapping info in extent cache, skip defragmenting if physical
* block addresses are continuous.
*/
if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
if ((pgoff_t)ei.fofs + ei.len >= pg_end)
goto out;
}
map.m_lblk = pg_start;
map.m_next_pgofs = &next_pgofs;
/*
* lookup mapping info in dnode page cache, skip defragmenting if all
* physical block addresses are continuous even if there are hole(s)
* in logical blocks.
*/
while (map.m_lblk < pg_end) {
map.m_len = pg_end - map.m_lblk;
err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
if (err)
goto out;
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
map.m_lblk = next_pgofs;
continue;
}
if (blk_end && blk_end != map.m_pblk)
fragmented = true;
/* record total count of block that we're going to move */
total += map.m_len;
blk_end = map.m_pblk + map.m_len;
map.m_lblk += map.m_len;
}
if (!fragmented) {
total = 0;
goto out;
}
sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
/*
* make sure there are enough free section for LFS allocation, this can
* avoid defragment running in SSR mode when free section are allocated
* intensively
*/
if (has_not_enough_free_secs(sbi, 0, sec_num)) {
err = -EAGAIN;
goto out;
}
map.m_lblk = pg_start;
map.m_len = pg_end - pg_start;
total = 0;
while (map.m_lblk < pg_end) {
pgoff_t idx;
int cnt = 0;
do_map:
map.m_len = pg_end - map.m_lblk;
err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
if (err)
goto clear_out;
if (!(map.m_flags & F2FS_MAP_FLAGS)) {
map.m_lblk = next_pgofs;
goto check;
}
set_inode_flag(inode, FI_SKIP_WRITES);
idx = map.m_lblk;
while (idx < map.m_lblk + map.m_len &&
cnt < BLKS_PER_SEG(sbi)) {
struct page *page;
page = f2fs_get_lock_data_page(inode, idx, true);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto clear_out;
}
f2fs_wait_on_page_writeback(page, DATA, true, true);
set_page_dirty(page);
set_page_private_gcing(page);
f2fs_put_page(page, 1);
idx++;
cnt++;
total++;
}
map.m_lblk = idx;
check:
if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
goto do_map;
clear_inode_flag(inode, FI_SKIP_WRITES);
err = filemap_fdatawrite(inode->i_mapping);
if (err)
goto out;
}
clear_out:
clear_inode_flag(inode, FI_SKIP_WRITES);
out:
clear_inode_flag(inode, FI_OPU_WRITE);
unlock_out:
inode_unlock(inode);
if (!err)
range->len = (u64)total << PAGE_SHIFT;
return err;
}
static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_defragment range;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
sizeof(range)))
return -EFAULT;
/* verify alignment of offset & size */
if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
return -EINVAL;
if (unlikely((range.start + range.len) >> PAGE_SHIFT >
max_file_blocks(inode)))
return -EINVAL;
err = mnt_want_write_file(filp);
if (err)
return err;
err = f2fs_defragment_range(sbi, filp, &range);
mnt_drop_write_file(filp);
if (range.len)
f2fs_update_time(sbi, REQ_TIME);
if (err < 0)
return err;
if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
sizeof(range)))
return -EFAULT;
return 0;
}
static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out, size_t len)
{
struct inode *src = file_inode(file_in);
struct inode *dst = file_inode(file_out);
struct f2fs_sb_info *sbi = F2FS_I_SB(src);
size_t olen = len, dst_max_i_size = 0;
size_t dst_osize;
int ret;
if (file_in->f_path.mnt != file_out->f_path.mnt ||
src->i_sb != dst->i_sb)
return -EXDEV;
if (unlikely(f2fs_readonly(src->i_sb)))
return -EROFS;
if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
return -EINVAL;
if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
return -EOPNOTSUPP;
if (pos_out < 0 || pos_in < 0)
return -EINVAL;
if (src == dst) {
if (pos_in == pos_out)
return 0;
if (pos_out > pos_in && pos_out < pos_in + len)
return -EINVAL;
}
inode_lock(src);
if (src != dst) {
ret = -EBUSY;
if (!inode_trylock(dst))
goto out;
}
if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
ret = -EOPNOTSUPP;
goto out_unlock;
}
if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
ret = -EINVAL;
goto out_unlock;
}
ret = -EINVAL;
if (pos_in + len > src->i_size || pos_in + len < pos_in)
goto out_unlock;
if (len == 0)
olen = len = src->i_size - pos_in;
if (pos_in + len == src->i_size)
len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
if (len == 0) {
ret = 0;
goto out_unlock;
}
dst_osize = dst->i_size;
if (pos_out + olen > dst->i_size)
dst_max_i_size = pos_out + olen;
/* verify the end result is block aligned */
if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
goto out_unlock;
ret = f2fs_convert_inline_inode(src);
if (ret)
goto out_unlock;
ret = f2fs_convert_inline_inode(dst);
if (ret)
goto out_unlock;
/* write out all dirty pages from offset */
ret = filemap_write_and_wait_range(src->i_mapping,
pos_in, pos_in + len);
if (ret)
goto out_unlock;
ret = filemap_write_and_wait_range(dst->i_mapping,
pos_out, pos_out + len);
if (ret)
goto out_unlock;
f2fs_balance_fs(sbi, true);
f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
if (src != dst) {
ret = -EBUSY;
if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
goto out_src;
}
f2fs_lock_op(sbi);
ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
F2FS_BYTES_TO_BLK(pos_out),
F2FS_BYTES_TO_BLK(len), false);
if (!ret) {
if (dst_max_i_size)
f2fs_i_size_write(dst, dst_max_i_size);
else if (dst_osize != dst->i_size)
f2fs_i_size_write(dst, dst_osize);
}
f2fs_unlock_op(sbi);
if (src != dst)
f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
out_src:
f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
if (ret)
goto out_unlock;
inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
f2fs_mark_inode_dirty_sync(src, false);
if (src != dst) {
inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
f2fs_mark_inode_dirty_sync(dst, false);
}
f2fs_update_time(sbi, REQ_TIME);
out_unlock:
if (src != dst)
inode_unlock(dst);
out:
inode_unlock(src);
return ret;
}
static int __f2fs_ioc_move_range(struct file *filp,
struct f2fs_move_range *range)
{
int err;
if (!(filp->f_mode & FMODE_READ) ||
!(filp->f_mode & FMODE_WRITE))
return -EBADF;
CLASS(fd, dst)(range->dst_fd);
if (fd_empty(dst))
return -EBADF;
if (!(fd_file(dst)->f_mode & FMODE_WRITE))
return -EBADF;
err = mnt_want_write_file(filp);
if (err)
return err;
err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
range->pos_out, range->len);
mnt_drop_write_file(filp);
return err;
}
static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
{
struct f2fs_move_range range;
if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
sizeof(range)))
return -EFAULT;
return __f2fs_ioc_move_range(filp, &range);
}
static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct sit_info *sm = SIT_I(sbi);
unsigned int start_segno = 0, end_segno = 0;
unsigned int dev_start_segno = 0, dev_end_segno = 0;
struct f2fs_flush_device range;
struct f2fs_gc_control gc_control = {
.init_gc_type = FG_GC,
.should_migrate_blocks = true,
.err_gc_skipped = true,
.nr_free_secs = 0 };
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
return -EINVAL;
if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
sizeof(range)))
return -EFAULT;
if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
__is_large_section(sbi)) {
f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
return -EINVAL;
}
ret = mnt_want_write_file(filp);
if (ret)
return ret;
if (range.dev_num != 0)
dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
start_segno = sm->last_victim[FLUSH_DEVICE];
if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
start_segno = dev_start_segno;
end_segno = min(start_segno + range.segments, dev_end_segno);
while (start_segno < end_segno) {
if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
ret = -EBUSY;
goto out;
}
sm->last_victim[GC_CB] = end_segno + 1;
sm->last_victim[GC_GREEDY] = end_segno + 1;
sm->last_victim[ALLOC_NEXT] = end_segno + 1;
gc_control.victim_segno = start_segno;
stat_inc_gc_call_count(sbi, FOREGROUND);
ret = f2fs_gc(sbi, &gc_control);
if (ret == -EAGAIN)
ret = 0;
else if (ret < 0)
break;
start_segno++;
}
out:
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
/* Must validate to set it with SQLite behavior in Android. */
sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
return put_user(sb_feature, (u32 __user *)arg);
}
#ifdef CONFIG_QUOTA
int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
{
struct dquot *transfer_to[MAXQUOTAS] = {};
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct super_block *sb = sbi->sb;
int err;
transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
if (IS_ERR(transfer_to[PRJQUOTA]))
return PTR_ERR(transfer_to[PRJQUOTA]);
err = __dquot_transfer(inode, transfer_to);
if (err)
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
dqput(transfer_to[PRJQUOTA]);
return err;
}
static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode *ri = NULL;
kprojid_t kprojid;
int err;
if (!f2fs_sb_has_project_quota(sbi)) {
if (projid != F2FS_DEF_PROJID)
return -EOPNOTSUPP;
else
return 0;
}
if (!f2fs_has_extra_attr(inode))
return -EOPNOTSUPP;
kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
if (projid_eq(kprojid, fi->i_projid))
return 0;
err = -EPERM;
/* Is it quota file? Do not allow user to mess with it */
if (IS_NOQUOTA(inode))
return err;
if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
return -EOVERFLOW;
err = f2fs_dquot_initialize(inode);
if (err)
return err;
f2fs_lock_op(sbi);
err = f2fs_transfer_project_quota(inode, kprojid);
if (err)
goto out_unlock;
fi->i_projid = kprojid;
inode_set_ctime_current(inode);
f2fs_mark_inode_dirty_sync(inode, true);
out_unlock:
f2fs_unlock_op(sbi);
return err;
}
#else
int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
{
return 0;
}
static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
{
if (projid != F2FS_DEF_PROJID)
return -EOPNOTSUPP;
return 0;
}
#endif
int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
struct f2fs_inode_info *fi = F2FS_I(inode);
u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
if (IS_ENCRYPTED(inode))
fsflags |= FS_ENCRYPT_FL;
if (IS_VERITY(inode))
fsflags |= FS_VERITY_FL;
if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
fsflags |= FS_INLINE_DATA_FL;
if (is_inode_flag_set(inode, FI_PIN_FILE))
fsflags |= FS_NOCOW_FL;
fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
return 0;
}
int f2fs_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
u32 iflags;
int err;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
return -EIO;
if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
return -ENOSPC;
if (fsflags & ~F2FS_GETTABLE_FS_FL)
return -EOPNOTSUPP;
fsflags &= F2FS_SETTABLE_FS_FL;
if (!fa->flags_valid)
mask &= FS_COMMON_FL;
iflags = f2fs_fsflags_to_iflags(fsflags);
if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
return -EOPNOTSUPP;
err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
if (!err)
err = f2fs_ioc_setproject(inode, fa->fsx_projid);
return err;
}
int f2fs_pin_file_control(struct inode *inode, bool inc)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (IS_DEVICE_ALIASING(inode))
return -EINVAL;
if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
__func__, inode->i_ino, fi->i_gc_failures);
clear_inode_flag(inode, FI_PIN_FILE);
return -EAGAIN;
}
/* Use i_gc_failures for normal file as a risk signal. */
if (inc)
f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
return 0;
}
static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
__u32 pin;
int ret = 0;
if (get_user(pin, (__u32 __user *)arg))
return -EFAULT;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (!pin && IS_DEVICE_ALIASING(inode))
return -EOPNOTSUPP;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (f2fs_is_atomic_file(inode)) {
ret = -EINVAL;
goto out;
}
if (!pin) {
clear_inode_flag(inode, FI_PIN_FILE);
f2fs_i_gc_failures_write(inode, 0);
goto done;
} else if (f2fs_is_pinned_file(inode)) {
goto done;
}
if (F2FS_HAS_BLOCKS(inode)) {
ret = -EFBIG;
goto out;
}
/* Let's allow file pinning on zoned device. */
if (!f2fs_sb_has_blkzoned(sbi) &&
f2fs_should_update_outplace(inode, NULL)) {
ret = -EINVAL;
goto out;
}
if (f2fs_pin_file_control(inode, false)) {
ret = -EAGAIN;
goto out;
}
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto out;
if (!f2fs_disable_compressed_file(inode)) {
ret = -EOPNOTSUPP;
goto out;
}
set_inode_flag(inode, FI_PIN_FILE);
ret = F2FS_I(inode)->i_gc_failures;
done:
f2fs_update_time(sbi, REQ_TIME);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
__u32 pin = 0;
if (is_inode_flag_set(inode, FI_PIN_FILE))
pin = F2FS_I(inode)->i_gc_failures;
return put_user(pin, (u32 __user *)arg);
}
static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
{
return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
(u32 __user *)arg);
}
int f2fs_precache_extents(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_map_blocks map;
pgoff_t m_next_extent;
loff_t end;
int err;
if (is_inode_flag_set(inode, FI_NO_EXTENT))
return -EOPNOTSUPP;
map.m_lblk = 0;
map.m_pblk = 0;
map.m_next_pgofs = NULL;
map.m_next_extent = &m_next_extent;
map.m_seg_type = NO_CHECK_TYPE;
map.m_may_create = false;
end = F2FS_BLK_ALIGN(i_size_read(inode));
while (map.m_lblk < end) {
map.m_len = end - map.m_lblk;
f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
if (err || !map.m_len)
return err;
map.m_lblk = m_next_extent;
}
return 0;
}
static int f2fs_ioc_precache_extents(struct file *filp)
{
return f2fs_precache_extents(file_inode(filp));
}
static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
__u64 block_count;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (f2fs_readonly(sbi->sb))
return -EROFS;
if (copy_from_user(&block_count, (void __user *)arg,
sizeof(block_count)))
return -EFAULT;
return f2fs_resize_fs(filp, block_count);
}
static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
f2fs_warn(F2FS_I_SB(inode),
"Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
inode->i_ino);
return -EOPNOTSUPP;
}
return fsverity_ioctl_enable(filp, (const void __user *)arg);
}
static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fsverity_ioctl_measure(filp, (void __user *)arg);
}
static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
{
if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
return -EOPNOTSUPP;
return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
}
static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
char *vbuf;
int count;
int err = 0;
vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
if (!vbuf)
return -ENOMEM;
f2fs_down_read(&sbi->sb_lock);
count = utf16s_to_utf8s(sbi->raw_super->volume_name,
ARRAY_SIZE(sbi->raw_super->volume_name),
UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
f2fs_up_read(&sbi->sb_lock);
if (copy_to_user((char __user *)arg, vbuf,
min(FSLABEL_MAX, count)))
err = -EFAULT;
kfree(vbuf);
return err;
}
static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
char *vbuf;
int err = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
if (IS_ERR(vbuf))
return PTR_ERR(vbuf);
err = mnt_want_write_file(filp);
if (err)
goto out;
f2fs_down_write(&sbi->sb_lock);
memset(sbi->raw_super->volume_name, 0,
sizeof(sbi->raw_super->volume_name));
utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
sbi->raw_super->volume_name,
ARRAY_SIZE(sbi->raw_super->volume_name));
err = f2fs_commit_super(sbi, false);
f2fs_up_write(&sbi->sb_lock);
mnt_drop_write_file(filp);
out:
kfree(vbuf);
return err;
}
static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
{
if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
return -EOPNOTSUPP;
if (!f2fs_compressed_file(inode))
return -EINVAL;
*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
return 0;
}
static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
__u64 blocks;
int ret;
ret = f2fs_get_compress_blocks(inode, &blocks);
if (ret < 0)
return ret;
return put_user(blocks, (u64 __user *)arg);
}
static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
unsigned int released_blocks = 0;
int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
block_t blkaddr;
int i;
for (i = 0; i < count; i++) {
blkaddr = data_blkaddr(dn->inode, dn->node_page,
dn->ofs_in_node + i);
if (!__is_valid_data_blkaddr(blkaddr))
continue;
if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
DATA_GENERIC_ENHANCE)))
return -EFSCORRUPTED;
}
while (count) {
int compr_blocks = 0;
for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
blkaddr = f2fs_data_blkaddr(dn);
if (i == 0) {
if (blkaddr == COMPRESS_ADDR)
continue;
dn->ofs_in_node += cluster_size;
goto next;
}
if (__is_valid_data_blkaddr(blkaddr))
compr_blocks++;
if (blkaddr != NEW_ADDR)
continue;
f2fs_set_data_blkaddr(dn, NULL_ADDR);
}
f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
dec_valid_block_count(sbi, dn->inode,
cluster_size - compr_blocks);
released_blocks += cluster_size - compr_blocks;
next:
count -= cluster_size;
}
return released_blocks;
}
static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
pgoff_t page_idx = 0, last_idx;
unsigned int released_blocks = 0;
int ret;
int writecount;
if (!f2fs_sb_has_compression(sbi))
return -EOPNOTSUPP;
if (f2fs_readonly(sbi->sb))
return -EROFS;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
f2fs_balance_fs(sbi, true);
inode_lock(inode);
writecount = atomic_read(&inode->i_writecount);
if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
(!(filp->f_mode & FMODE_WRITE) && writecount)) {
ret = -EBUSY;
goto out;
}
if (!f2fs_compressed_file(inode) ||
is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
ret = -EINVAL;
goto out;
}
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (ret)
goto out;
if (!atomic_read(&fi->i_compr_blocks)) {
ret = -EPERM;
goto out;
}
set_inode_flag(inode, FI_COMPRESS_RELEASED);
inode_set_ctime_current(inode);
f2fs_mark_inode_dirty_sync(inode, true);
f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
while (page_idx < last_idx) {
struct dnode_of_data dn;
pgoff_t end_offset, count;
f2fs_lock_op(sbi);
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
if (ret) {
f2fs_unlock_op(sbi);
if (ret == -ENOENT) {
page_idx = f2fs_get_next_page_offset(&dn,
page_idx);
ret = 0;
continue;
}
break;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
count = round_up(count, fi->i_cluster_size);
ret = release_compress_blocks(&dn, count);
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
if (ret < 0)
break;
page_idx += count;
released_blocks += ret;
}
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
out:
if (released_blocks)
f2fs_update_time(sbi, REQ_TIME);
inode_unlock(inode);
mnt_drop_write_file(filp);
if (ret >= 0) {
ret = put_user(released_blocks, (u64 __user *)arg);
} else if (released_blocks &&
atomic_read(&fi->i_compr_blocks)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
"iblocks=%llu, released=%u, compr_blocks=%u, "
"run fsck to fix.",
__func__, inode->i_ino, inode->i_blocks,
released_blocks,
atomic_read(&fi->i_compr_blocks));
}
return ret;
}
static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
unsigned int *reserved_blocks)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
block_t blkaddr;
int i;
for (i = 0; i < count; i++) {
blkaddr = data_blkaddr(dn->inode, dn->node_page,
dn->ofs_in_node + i);
if (!__is_valid_data_blkaddr(blkaddr))
continue;
if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
DATA_GENERIC_ENHANCE)))
return -EFSCORRUPTED;
}
while (count) {
int compr_blocks = 0;
blkcnt_t reserved = 0;
blkcnt_t to_reserved;
int ret;
for (i = 0; i < cluster_size; i++) {
blkaddr = data_blkaddr(dn->inode, dn->node_page,
dn->ofs_in_node + i);
if (i == 0) {
if (blkaddr != COMPRESS_ADDR) {
dn->ofs_in_node += cluster_size;
goto next;
}
continue;
}
/*
* compressed cluster was not released due to it
* fails in release_compress_blocks(), so NEW_ADDR
* is a possible case.
*/
if (blkaddr == NEW_ADDR) {
reserved++;
continue;
}
if (__is_valid_data_blkaddr(blkaddr)) {
compr_blocks++;
continue;
}
}
to_reserved = cluster_size - compr_blocks - reserved;
/* for the case all blocks in cluster were reserved */
if (reserved && to_reserved == 1) {
dn->ofs_in_node += cluster_size;
goto next;
}
ret = inc_valid_block_count(sbi, dn->inode,
&to_reserved, false);
if (unlikely(ret))
return ret;
for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
if (f2fs_data_blkaddr(dn) == NULL_ADDR)
f2fs_set_data_blkaddr(dn, NEW_ADDR);
}
f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
*reserved_blocks += to_reserved;
next:
count -= cluster_size;
}
return 0;
}
static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
pgoff_t page_idx = 0, last_idx;
unsigned int reserved_blocks = 0;
int ret;
if (!f2fs_sb_has_compression(sbi))
return -EOPNOTSUPP;
if (f2fs_readonly(sbi->sb))
return -EROFS;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
f2fs_balance_fs(sbi, true);
inode_lock(inode);
if (!f2fs_compressed_file(inode) ||
!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
ret = -EINVAL;
goto unlock_inode;
}
if (atomic_read(&fi->i_compr_blocks))
goto unlock_inode;
f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
while (page_idx < last_idx) {
struct dnode_of_data dn;
pgoff_t end_offset, count;
f2fs_lock_op(sbi);
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
if (ret) {
f2fs_unlock_op(sbi);
if (ret == -ENOENT) {
page_idx = f2fs_get_next_page_offset(&dn,
page_idx);
ret = 0;
continue;
}
break;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
count = round_up(count, fi->i_cluster_size);
ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
if (ret < 0)
break;
page_idx += count;
}
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
if (!ret) {
clear_inode_flag(inode, FI_COMPRESS_RELEASED);
inode_set_ctime_current(inode);
f2fs_mark_inode_dirty_sync(inode, true);
}
unlock_inode:
if (reserved_blocks)
f2fs_update_time(sbi, REQ_TIME);
inode_unlock(inode);
mnt_drop_write_file(filp);
if (!ret) {
ret = put_user(reserved_blocks, (u64 __user *)arg);
} else if (reserved_blocks &&
atomic_read(&fi->i_compr_blocks)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
"iblocks=%llu, reserved=%u, compr_blocks=%u, "
"run fsck to fix.",
__func__, inode->i_ino, inode->i_blocks,
reserved_blocks,
atomic_read(&fi->i_compr_blocks));
}
return ret;
}
static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
pgoff_t off, block_t block, block_t len, u32 flags)
{
sector_t sector = SECTOR_FROM_BLOCK(block);
sector_t nr_sects = SECTOR_FROM_BLOCK(len);
int ret = 0;
if (flags & F2FS_TRIM_FILE_DISCARD) {
if (bdev_max_secure_erase_sectors(bdev))
ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
GFP_NOFS);
else
ret = blkdev_issue_discard(bdev, sector, nr_sects,
GFP_NOFS);
}
if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
if (IS_ENCRYPTED(inode))
ret = fscrypt_zeroout_range(inode, off, block, len);
else
ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
GFP_NOFS, 0);
}
return ret;
}
static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct address_space *mapping = inode->i_mapping;
struct block_device *prev_bdev = NULL;
struct f2fs_sectrim_range range;
pgoff_t index, pg_end, prev_index = 0;
block_t prev_block = 0, len = 0;
loff_t end_addr;
bool to_end = false;
int ret = 0;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
sizeof(range)))
return -EFAULT;
if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
!S_ISREG(inode->i_mode))
return -EINVAL;
if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
!f2fs_hw_support_discard(sbi)) ||
((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
return -EOPNOTSUPP;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
range.start >= inode->i_size) {
ret = -EINVAL;
goto err;
}
if (range.len == 0)
goto err;
if (inode->i_size - range.start > range.len) {
end_addr = range.start + range.len;
} else {
end_addr = range.len == (u64)-1 ?
sbi->sb->s_maxbytes : inode->i_size;
to_end = true;
}
if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
ret = -EINVAL;
goto err;
}
index = F2FS_BYTES_TO_BLK(range.start);
pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto err;
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(mapping);
ret = filemap_write_and_wait_range(mapping, range.start,
to_end ? LLONG_MAX : end_addr - 1);
if (ret)
goto out;
truncate_inode_pages_range(mapping, range.start,
to_end ? -1 : end_addr - 1);
while (index < pg_end) {
struct dnode_of_data dn;
pgoff_t end_offset, count;
int i;
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (ret) {
if (ret == -ENOENT) {
index = f2fs_get_next_page_offset(&dn, index);
continue;
}
goto out;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
count = min(end_offset - dn.ofs_in_node, pg_end - index);
for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
struct block_device *cur_bdev;
block_t blkaddr = f2fs_data_blkaddr(&dn);
if (!__is_valid_data_blkaddr(blkaddr))
continue;
if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
DATA_GENERIC_ENHANCE)) {
ret = -EFSCORRUPTED;
f2fs_put_dnode(&dn);
goto out;
}
cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
if (f2fs_is_multi_device(sbi)) {
int di = f2fs_target_device_index(sbi, blkaddr);
blkaddr -= FDEV(di).start_blk;
}
if (len) {
if (prev_bdev == cur_bdev &&
index == prev_index + len &&
blkaddr == prev_block + len) {
len++;
} else {
ret = f2fs_secure_erase(prev_bdev,
inode, prev_index, prev_block,
len, range.flags);
if (ret) {
f2fs_put_dnode(&dn);
goto out;
}
len = 0;
}
}
if (!len) {
prev_bdev = cur_bdev;
prev_index = index;
prev_block = blkaddr;
len = 1;
}
}
f2fs_put_dnode(&dn);
if (fatal_signal_pending(current)) {
ret = -EINTR;
goto out;
}
cond_resched();
}
if (len)
ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
prev_block, len, range.flags);
f2fs_update_time(sbi, REQ_TIME);
out:
filemap_invalidate_unlock(mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
err:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_comp_option option;
if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
return -EOPNOTSUPP;
inode_lock_shared(inode);
if (!f2fs_compressed_file(inode)) {
inode_unlock_shared(inode);
return -ENODATA;
}
option.algorithm = F2FS_I(inode)->i_compress_algorithm;
option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
inode_unlock_shared(inode);
if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
sizeof(option)))
return -EFAULT;
return 0;
}
static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_comp_option option;
int ret = 0;
if (!f2fs_sb_has_compression(sbi))
return -EOPNOTSUPP;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
sizeof(option)))
return -EFAULT;
if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
option.algorithm >= COMPRESS_MAX)
return -EINVAL;
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
f2fs_down_write(&F2FS_I(inode)->i_sem);
if (!f2fs_compressed_file(inode)) {
ret = -EINVAL;
goto out;
}
if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
ret = -EBUSY;
goto out;
}
if (F2FS_HAS_BLOCKS(inode)) {
ret = -EFBIG;
goto out;
}
fi->i_compress_algorithm = option.algorithm;
fi->i_log_cluster_size = option.log_cluster_size;
fi->i_cluster_size = BIT(option.log_cluster_size);
/* Set default level */
if (fi->i_compress_algorithm == COMPRESS_ZSTD)
fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
else
fi->i_compress_level = 0;
/* Adjust mount option level */
if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
F2FS_OPTION(sbi).compress_level)
fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
f2fs_mark_inode_dirty_sync(inode, true);
if (!f2fs_is_compress_backend_ready(inode))
f2fs_warn(sbi, "compression algorithm is successfully set, "
"but current kernel doesn't support this algorithm.");
out:
f2fs_up_write(&fi->i_sem);
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
{
DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
struct address_space *mapping = inode->i_mapping;
struct page *page;
pgoff_t redirty_idx = page_idx;
int i, page_len = 0, ret = 0;
page_cache_ra_unbounded(&ractl, len, 0);
for (i = 0; i < len; i++, page_idx++) {
page = read_cache_page(mapping, page_idx, NULL, NULL);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
break;
}
page_len++;
}
for (i = 0; i < page_len; i++, redirty_idx++) {
page = find_lock_page(mapping, redirty_idx);
/* It will never fail, when page has pinned above */
f2fs_bug_on(F2FS_I_SB(inode), !page);
f2fs_wait_on_page_writeback(page, DATA, true, true);
set_page_dirty(page);
set_page_private_gcing(page);
f2fs_put_page(page, 1);
f2fs_put_page(page, 0);
}
return ret;
}
static int f2fs_ioc_decompress_file(struct file *filp)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
pgoff_t page_idx = 0, last_idx, cluster_idx;
int ret;
if (!f2fs_sb_has_compression(sbi) ||
F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
return -EOPNOTSUPP;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
f2fs_balance_fs(sbi, true);
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (!f2fs_is_compress_backend_ready(inode)) {
ret = -EOPNOTSUPP;
goto out;
}
if (!f2fs_compressed_file(inode) ||
is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
ret = -EINVAL;
goto out;
}
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (ret)
goto out;
if (!atomic_read(&fi->i_compr_blocks))
goto out;
last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
last_idx >>= fi->i_log_cluster_size;
for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
page_idx = cluster_idx << fi->i_log_cluster_size;
if (!f2fs_is_compressed_cluster(inode, page_idx))
continue;
ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
if (ret < 0)
break;
if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
ret = filemap_fdatawrite(inode->i_mapping);
if (ret < 0)
break;
}
cond_resched();
if (fatal_signal_pending(current)) {
ret = -EINTR;
break;
}
}
if (!ret)
ret = filemap_write_and_wait_range(inode->i_mapping, 0,
LLONG_MAX);
if (ret)
f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
__func__, ret);
f2fs_update_time(sbi, REQ_TIME);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static int f2fs_ioc_compress_file(struct file *filp)
{
struct inode *inode = file_inode(filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
pgoff_t page_idx = 0, last_idx, cluster_idx;
int ret;
if (!f2fs_sb_has_compression(sbi) ||
F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
return -EOPNOTSUPP;
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
f2fs_balance_fs(sbi, true);
ret = mnt_want_write_file(filp);
if (ret)
return ret;
inode_lock(inode);
if (!f2fs_is_compress_backend_ready(inode)) {
ret = -EOPNOTSUPP;
goto out;
}
if (!f2fs_compressed_file(inode) ||
is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
ret = -EINVAL;
goto out;
}
ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (ret)
goto out;
set_inode_flag(inode, FI_ENABLE_COMPRESS);
last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
last_idx >>= fi->i_log_cluster_size;
for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
page_idx = cluster_idx << fi->i_log_cluster_size;
if (f2fs_is_sparse_cluster(inode, page_idx))
continue;
ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
if (ret < 0)
break;
if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
ret = filemap_fdatawrite(inode->i_mapping);
if (ret < 0)
break;
}
cond_resched();
if (fatal_signal_pending(current)) {
ret = -EINTR;
break;
}
}
if (!ret)
ret = filemap_write_and_wait_range(inode->i_mapping, 0,
LLONG_MAX);
clear_inode_flag(inode, FI_ENABLE_COMPRESS);
if (ret)
f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
__func__, ret);
f2fs_update_time(sbi, REQ_TIME);
out:
inode_unlock(inode);
mnt_drop_write_file(filp);
return ret;
}
static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case FS_IOC_GETVERSION:
return f2fs_ioc_getversion(filp, arg);
case F2FS_IOC_START_ATOMIC_WRITE:
return f2fs_ioc_start_atomic_write(filp, false);
case F2FS_IOC_START_ATOMIC_REPLACE:
return f2fs_ioc_start_atomic_write(filp, true);
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
return f2fs_ioc_commit_atomic_write(filp);
case F2FS_IOC_ABORT_ATOMIC_WRITE:
return f2fs_ioc_abort_atomic_write(filp);
case F2FS_IOC_START_VOLATILE_WRITE:
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
return -EOPNOTSUPP;
case F2FS_IOC_SHUTDOWN:
return f2fs_ioc_shutdown(filp, arg);
case FITRIM:
return f2fs_ioc_fitrim(filp, arg);
case FS_IOC_SET_ENCRYPTION_POLICY:
return f2fs_ioc_set_encryption_policy(filp, arg);
case FS_IOC_GET_ENCRYPTION_POLICY:
return f2fs_ioc_get_encryption_policy(filp, arg);
case FS_IOC_GET_ENCRYPTION_PWSALT:
return f2fs_ioc_get_encryption_pwsalt(filp, arg);
case FS_IOC_GET_ENCRYPTION_POLICY_EX:
return f2fs_ioc_get_encryption_policy_ex(filp, arg);
case FS_IOC_ADD_ENCRYPTION_KEY:
return f2fs_ioc_add_encryption_key(filp, arg);
case FS_IOC_REMOVE_ENCRYPTION_KEY:
return f2fs_ioc_remove_encryption_key(filp, arg);
case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
return f2fs_ioc_get_encryption_key_status(filp, arg);
case FS_IOC_GET_ENCRYPTION_NONCE:
return f2fs_ioc_get_encryption_nonce(filp, arg);
case F2FS_IOC_GARBAGE_COLLECT:
return f2fs_ioc_gc(filp, arg);
case F2FS_IOC_GARBAGE_COLLECT_RANGE:
return f2fs_ioc_gc_range(filp, arg);
case F2FS_IOC_WRITE_CHECKPOINT:
return f2fs_ioc_write_checkpoint(filp);
case F2FS_IOC_DEFRAGMENT:
return f2fs_ioc_defragment(filp, arg);
case F2FS_IOC_MOVE_RANGE:
return f2fs_ioc_move_range(filp, arg);
case F2FS_IOC_FLUSH_DEVICE:
return f2fs_ioc_flush_device(filp, arg);
case F2FS_IOC_GET_FEATURES:
return f2fs_ioc_get_features(filp, arg);
case F2FS_IOC_GET_PIN_FILE:
return f2fs_ioc_get_pin_file(filp, arg);
case F2FS_IOC_SET_PIN_FILE:
return f2fs_ioc_set_pin_file(filp, arg);
case F2FS_IOC_PRECACHE_EXTENTS:
return f2fs_ioc_precache_extents(filp);
case F2FS_IOC_RESIZE_FS:
return f2fs_ioc_resize_fs(filp, arg);
case FS_IOC_ENABLE_VERITY:
return f2fs_ioc_enable_verity(filp, arg);
case FS_IOC_MEASURE_VERITY:
return f2fs_ioc_measure_verity(filp, arg);
case FS_IOC_READ_VERITY_METADATA:
return f2fs_ioc_read_verity_metadata(filp, arg);
case FS_IOC_GETFSLABEL:
return f2fs_ioc_getfslabel(filp, arg);
case FS_IOC_SETFSLABEL:
return f2fs_ioc_setfslabel(filp, arg);
case F2FS_IOC_GET_COMPRESS_BLOCKS:
return f2fs_ioc_get_compress_blocks(filp, arg);
case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
return f2fs_release_compress_blocks(filp, arg);
case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
return f2fs_reserve_compress_blocks(filp, arg);
case F2FS_IOC_SEC_TRIM_FILE:
return f2fs_sec_trim_file(filp, arg);
case F2FS_IOC_GET_COMPRESS_OPTION:
return f2fs_ioc_get_compress_option(filp, arg);
case F2FS_IOC_SET_COMPRESS_OPTION:
return f2fs_ioc_set_compress_option(filp, arg);
case F2FS_IOC_DECOMPRESS_FILE:
return f2fs_ioc_decompress_file(filp);
case F2FS_IOC_COMPRESS_FILE:
return f2fs_ioc_compress_file(filp);
case F2FS_IOC_GET_DEV_ALIAS_FILE:
return f2fs_ioc_get_dev_alias_file(filp, arg);
default:
return -ENOTTY;
}
}
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
return -EIO;
if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
return -ENOSPC;
return __f2fs_ioctl(filp, cmd, arg);
}
/*
* Return %true if the given read or write request should use direct I/O, or
* %false if it should use buffered I/O.
*/
static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
struct iov_iter *iter)
{
unsigned int align;
if (!(iocb->ki_flags & IOCB_DIRECT))
return false;
if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
return false;
/*
* Direct I/O not aligned to the disk's logical_block_size will be
* attempted, but will fail with -EINVAL.
*
* f2fs additionally requires that direct I/O be aligned to the
* filesystem block size, which is often a stricter requirement.
* However, f2fs traditionally falls back to buffered I/O on requests
* that are logical_block_size-aligned but not fs-block aligned.
*
* The below logic implements this behavior.
*/
align = iocb->ki_pos | iov_iter_alignment(iter);
if (!IS_ALIGNED(align, i_blocksize(inode)) &&
IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
return false;
return true;
}
static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
unsigned int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
dec_page_count(sbi, F2FS_DIO_READ);
if (error)
return error;
f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
return 0;
}
static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
.end_io = f2fs_dio_read_end_io,
};
static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
const loff_t pos = iocb->ki_pos;
const size_t count = iov_iter_count(to);
struct iomap_dio *dio;
ssize_t ret;
if (count == 0)
return 0; /* skip atime update */
trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
ret = -EAGAIN;
goto out;
}
} else {
f2fs_down_read(&fi->i_gc_rwsem[READ]);
}
/* dio is not compatible w/ atomic file */
if (f2fs_is_atomic_file(inode)) {
f2fs_up_read(&fi->i_gc_rwsem[READ]);
ret = -EOPNOTSUPP;
goto out;
}
/*
* We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
* the higher-level function iomap_dio_rw() in order to ensure that the
* F2FS_DIO_READ counter will be decremented correctly in all cases.
*/
inc_page_count(sbi, F2FS_DIO_READ);
dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
&f2fs_iomap_dio_read_ops, 0, NULL, 0);
if (IS_ERR_OR_NULL(dio)) {
ret = PTR_ERR_OR_ZERO(dio);
if (ret != -EIOCBQUEUED)
dec_page_count(sbi, F2FS_DIO_READ);
} else {
ret = iomap_dio_complete(dio);
}
f2fs_up_read(&fi->i_gc_rwsem[READ]);
file_accessed(file);
out:
trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
return ret;
}
static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
int rw)
{
struct inode *inode = file_inode(file);
char *buf, *path;
buf = f2fs_getname(F2FS_I_SB(inode));
if (!buf)
return;
path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
if (IS_ERR(path))
goto free_buf;
if (rw == WRITE)
trace_f2fs_datawrite_start(inode, pos, count,
current->pid, path, current->comm);
else
trace_f2fs_dataread_start(inode, pos, count,
current->pid, path, current->comm);
free_buf:
f2fs_putname(buf);
}
static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
const loff_t pos = iocb->ki_pos;
ssize_t ret;
if (!f2fs_is_compress_backend_ready(inode))
return -EOPNOTSUPP;
if (trace_f2fs_dataread_start_enabled())
f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
iov_iter_count(to), READ);
/* In LFS mode, if there is inflight dio, wait for its completion */
if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE))
inode_dio_wait(inode);
if (f2fs_should_use_dio(inode, iocb, to)) {
ret = f2fs_dio_read_iter(iocb, to);
} else {
ret = filemap_read(iocb, to, 0);
if (ret > 0)
f2fs_update_iostat(F2FS_I_SB(inode), inode,
APP_BUFFERED_READ_IO, ret);
}
if (trace_f2fs_dataread_end_enabled())
trace_f2fs_dataread_end(inode, pos, ret);
return ret;
}
static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags)
{
struct inode *inode = file_inode(in);
const loff_t pos = *ppos;
ssize_t ret;
if (!f2fs_is_compress_backend_ready(inode))
return -EOPNOTSUPP;
if (trace_f2fs_dataread_start_enabled())
f2fs_trace_rw_file_path(in, pos, len, READ);
ret = filemap_splice_read(in, ppos, pipe, len, flags);
if (ret > 0)
f2fs_update_iostat(F2FS_I_SB(inode), inode,
APP_BUFFERED_READ_IO, ret);
if (trace_f2fs_dataread_end_enabled())
trace_f2fs_dataread_end(inode, pos, ret);
return ret;
}
static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
ssize_t count;
int err;
if (IS_IMMUTABLE(inode))
return -EPERM;
if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
return -EPERM;
count = generic_write_checks(iocb, from);
if (count <= 0)
return count;
err = file_modified(file);
if (err)
return err;
return count;
}
/*
* Preallocate blocks for a write request, if it is possible and helpful to do
* so. Returns a positive number if blocks may have been preallocated, 0 if no
* blocks were preallocated, or a negative errno value if something went
* seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
* requested blocks (not just some of them) have been allocated.
*/
static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
bool dio)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
const loff_t pos = iocb->ki_pos;
const size_t count = iov_iter_count(iter);
struct f2fs_map_blocks map = {};
int flag;
int ret;
/* If it will be an out-of-place direct write, don't bother. */
if (dio && f2fs_lfs_mode(sbi))
return 0;
/*
* Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
* buffered IO, if DIO meets any holes.
*/
if (dio && i_size_read(inode) &&
(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
return 0;
/* No-wait I/O can't allocate blocks. */
if (iocb->ki_flags & IOCB_NOWAIT)
return 0;
/* If it will be a short write, don't bother. */
if (fault_in_iov_iter_readable(iter, count))
return 0;
if (f2fs_has_inline_data(inode)) {
/* If the data will fit inline, don't bother. */
if (pos + count <= MAX_INLINE_DATA(inode))
return 0;
ret = f2fs_convert_inline_inode(inode);
if (ret)
return ret;
}
/* Do not preallocate blocks that will be written partially in 4KB. */
map.m_lblk = F2FS_BLK_ALIGN(pos);
map.m_len = F2FS_BYTES_TO_BLK(pos + count);
if (map.m_len > map.m_lblk)
map.m_len -= map.m_lblk;
else
return 0;
if (!IS_DEVICE_ALIASING(inode))
map.m_may_create = true;
if (dio) {
map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
inode->i_write_hint);
flag = F2FS_GET_BLOCK_PRE_DIO;
} else {
map.m_seg_type = NO_CHECK_TYPE;
flag = F2FS_GET_BLOCK_PRE_AIO;
}
ret = f2fs_map_blocks(inode, &map, flag);
/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
return ret;
if (ret == 0)
set_inode_flag(inode, FI_PREALLOCATED_ALL);
return map.m_len;
}
static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
ssize_t ret;
if (iocb->ki_flags & IOCB_NOWAIT)
return -EOPNOTSUPP;
ret = generic_perform_write(iocb, from);
if (ret > 0) {
f2fs_update_iostat(F2FS_I_SB(inode), inode,
APP_BUFFERED_IO, ret);
}
return ret;
}
static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
unsigned int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
dec_page_count(sbi, F2FS_DIO_WRITE);
if (error)
return error;
f2fs_update_time(sbi, REQ_TIME);
f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
return 0;
}
static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
struct bio *bio, loff_t file_offset)
{
struct inode *inode = iter->inode;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
enum temp_type temp = f2fs_get_segment_temp(sbi, type);
bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
submit_bio(bio);
}
static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
.end_io = f2fs_dio_write_end_io,
.submit_io = f2fs_dio_write_submit_io,
};
static void f2fs_flush_buffered_write(struct address_space *mapping,
loff_t start_pos, loff_t end_pos)
{
int ret;
ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
if (ret < 0)
return;
invalidate_mapping_pages(mapping,
start_pos >> PAGE_SHIFT,
end_pos >> PAGE_SHIFT);
}
static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
bool *may_need_sync)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
const bool do_opu = f2fs_lfs_mode(sbi);
const loff_t pos = iocb->ki_pos;
const ssize_t count = iov_iter_count(from);
unsigned int dio_flags;
struct iomap_dio *dio;
ssize_t ret;
trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
if (iocb->ki_flags & IOCB_NOWAIT) {
/* f2fs_convert_inline_inode() and block allocation can block */
if (f2fs_has_inline_data(inode) ||
!f2fs_overwrite_io(inode, pos, count)) {
ret = -EAGAIN;
goto out;
}
if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
ret = -EAGAIN;
goto out;
}
if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
ret = -EAGAIN;
goto out;
}
} else {
ret = f2fs_convert_inline_inode(inode);
if (ret)
goto out;
f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
if (do_opu)
f2fs_down_read(&fi->i_gc_rwsem[READ]);
}
/*
* We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
* the higher-level function iomap_dio_rw() in order to ensure that the
* F2FS_DIO_WRITE counter will be decremented correctly in all cases.
*/
inc_page_count(sbi, F2FS_DIO_WRITE);
dio_flags = 0;
if (pos + count > inode->i_size)
dio_flags |= IOMAP_DIO_FORCE_WAIT;
dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
&f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
if (IS_ERR_OR_NULL(dio)) {
ret = PTR_ERR_OR_ZERO(dio);
if (ret == -ENOTBLK)
ret = 0;
if (ret != -EIOCBQUEUED)
dec_page_count(sbi, F2FS_DIO_WRITE);
} else {
ret = iomap_dio_complete(dio);
}
if (do_opu)
f2fs_up_read(&fi->i_gc_rwsem[READ]);
f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
if (ret < 0)
goto out;
if (pos + ret > inode->i_size)
f2fs_i_size_write(inode, pos + ret);
if (!do_opu)
set_inode_flag(inode, FI_UPDATE_WRITE);
if (iov_iter_count(from)) {
ssize_t ret2;
loff_t bufio_start_pos = iocb->ki_pos;
/*
* The direct write was partial, so we need to fall back to a
* buffered write for the remainder.
*/
ret2 = f2fs_buffered_write_iter(iocb, from);
if (iov_iter_count(from))
f2fs_write_failed(inode, iocb->ki_pos);
if (ret2 < 0)
goto out;
/*
* Ensure that the pagecache pages are written to disk and
* invalidated to preserve the expected O_DIRECT semantics.
*/
if (ret2 > 0) {
loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
ret += ret2;
f2fs_flush_buffered_write(file->f_mapping,
bufio_start_pos,
bufio_end_pos);
}
} else {
/* iomap_dio_rw() already handled the generic_write_sync(). */
*may_need_sync = false;
}
out:
trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
return ret;
}
static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct inode *inode = file_inode(iocb->ki_filp);
const loff_t orig_pos = iocb->ki_pos;
const size_t orig_count = iov_iter_count(from);
loff_t target_size;
bool dio;
bool may_need_sync = true;
int preallocated;
const loff_t pos = iocb->ki_pos;
const ssize_t count = iov_iter_count(from);
ssize_t ret;
if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
ret = -EIO;
goto out;
}
if (!f2fs_is_compress_backend_ready(inode)) {
ret = -EOPNOTSUPP;
goto out;
}
if (iocb->ki_flags & IOCB_NOWAIT) {
if (!inode_trylock(inode)) {
ret = -EAGAIN;
goto out;
}
} else {
inode_lock(inode);
}
if (f2fs_is_pinned_file(inode) &&
!f2fs_overwrite_io(inode, pos, count)) {
ret = -EIO;
goto out_unlock;
}
ret = f2fs_write_checks(iocb, from);
if (ret <= 0)
goto out_unlock;
/* Determine whether we will do a direct write or a buffered write. */
dio = f2fs_should_use_dio(inode, iocb, from);
/* dio is not compatible w/ atomic write */
if (dio && f2fs_is_atomic_file(inode)) {
ret = -EOPNOTSUPP;
goto out_unlock;
}
/* Possibly preallocate the blocks for the write. */
target_size = iocb->ki_pos + iov_iter_count(from);
preallocated = f2fs_preallocate_blocks(iocb, from, dio);
if (preallocated < 0) {
ret = preallocated;
} else {
if (trace_f2fs_datawrite_start_enabled())
f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
orig_count, WRITE);
/* Do the actual write. */
ret = dio ?
f2fs_dio_write_iter(iocb, from, &may_need_sync) :
f2fs_buffered_write_iter(iocb, from);
if (trace_f2fs_datawrite_end_enabled())
trace_f2fs_datawrite_end(inode, orig_pos, ret);
}
/* Don't leave any preallocated blocks around past i_size. */
if (preallocated && i_size_read(inode) < target_size) {
f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
filemap_invalidate_lock(inode->i_mapping);
if (!f2fs_truncate(inode))
file_dont_truncate(inode);
filemap_invalidate_unlock(inode->i_mapping);
f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
} else {
file_dont_truncate(inode);
}
clear_inode_flag(inode, FI_PREALLOCATED_ALL);
out_unlock:
inode_unlock(inode);
out:
trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
if (ret > 0 && may_need_sync)
ret = generic_write_sync(iocb, ret);
/* If buffered IO was forced, flush and drop the data from
* the page cache to preserve O_DIRECT semantics
*/
if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
orig_pos,
orig_pos + ret - 1);
return ret;
}
static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
int advice)
{
struct address_space *mapping;
struct backing_dev_info *bdi;
struct inode *inode = file_inode(filp);
int err;
if (advice == POSIX_FADV_SEQUENTIAL) {
if (S_ISFIFO(inode->i_mode))
return -ESPIPE;
mapping = filp->f_mapping;
if (!mapping || len < 0)
return -EINVAL;
bdi = inode_to_bdi(mapping->host);
filp->f_ra.ra_pages = bdi->ra_pages *
F2FS_I_SB(inode)->seq_file_ra_mul;
spin_lock(&filp->f_lock);
filp->f_mode &= ~FMODE_RANDOM;
spin_unlock(&filp->f_lock);
return 0;
} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
/* Load extent cache at the first readahead. */
f2fs_precache_extents(inode);
}
err = generic_fadvise(filp, offset, len, advice);
if (!err && advice == POSIX_FADV_DONTNEED &&
test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
f2fs_compressed_file(inode))
f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
return err;
}
#ifdef CONFIG_COMPAT
struct compat_f2fs_gc_range {
u32 sync;
compat_u64 start;
compat_u64 len;
};
#define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
struct compat_f2fs_gc_range)
static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
{
struct compat_f2fs_gc_range __user *urange;
struct f2fs_gc_range range;
int err;
urange = compat_ptr(arg);
err = get_user(range.sync, &urange->sync);
err |= get_user(range.start, &urange->start);
err |= get_user(range.len, &urange->len);
if (err)
return -EFAULT;
return __f2fs_ioc_gc_range(file, &range);
}
struct compat_f2fs_move_range {
u32 dst_fd;
compat_u64 pos_in;
compat_u64 pos_out;
compat_u64 len;
};
#define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
struct compat_f2fs_move_range)
static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
{
struct compat_f2fs_move_range __user *urange;
struct f2fs_move_range range;
int err;
urange = compat_ptr(arg);
err = get_user(range.dst_fd, &urange->dst_fd);
err |= get_user(range.pos_in, &urange->pos_in);
err |= get_user(range.pos_out, &urange->pos_out);
err |= get_user(range.len, &urange->len);
if (err)
return -EFAULT;
return __f2fs_ioc_move_range(file, &range);
}
long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
return -EIO;
if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
return -ENOSPC;
switch (cmd) {
case FS_IOC32_GETVERSION:
cmd = FS_IOC_GETVERSION;
break;
case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
return f2fs_compat_ioc_gc_range(file, arg);
case F2FS_IOC32_MOVE_RANGE:
return f2fs_compat_ioc_move_range(file, arg);
case F2FS_IOC_START_ATOMIC_WRITE:
case F2FS_IOC_START_ATOMIC_REPLACE:
case F2FS_IOC_COMMIT_ATOMIC_WRITE:
case F2FS_IOC_START_VOLATILE_WRITE:
case F2FS_IOC_RELEASE_VOLATILE_WRITE:
case F2FS_IOC_ABORT_ATOMIC_WRITE:
case F2FS_IOC_SHUTDOWN:
case FITRIM:
case FS_IOC_SET_ENCRYPTION_POLICY:
case FS_IOC_GET_ENCRYPTION_PWSALT:
case FS_IOC_GET_ENCRYPTION_POLICY:
case FS_IOC_GET_ENCRYPTION_POLICY_EX:
case FS_IOC_ADD_ENCRYPTION_KEY:
case FS_IOC_REMOVE_ENCRYPTION_KEY:
case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
case FS_IOC_GET_ENCRYPTION_NONCE:
case F2FS_IOC_GARBAGE_COLLECT:
case F2FS_IOC_WRITE_CHECKPOINT:
case F2FS_IOC_DEFRAGMENT:
case F2FS_IOC_FLUSH_DEVICE:
case F2FS_IOC_GET_FEATURES:
case F2FS_IOC_GET_PIN_FILE:
case F2FS_IOC_SET_PIN_FILE:
case F2FS_IOC_PRECACHE_EXTENTS:
case F2FS_IOC_RESIZE_FS:
case FS_IOC_ENABLE_VERITY:
case FS_IOC_MEASURE_VERITY:
case FS_IOC_READ_VERITY_METADATA:
case FS_IOC_GETFSLABEL:
case FS_IOC_SETFSLABEL:
case F2FS_IOC_GET_COMPRESS_BLOCKS:
case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
case F2FS_IOC_SEC_TRIM_FILE:
case F2FS_IOC_GET_COMPRESS_OPTION:
case F2FS_IOC_SET_COMPRESS_OPTION:
case F2FS_IOC_DECOMPRESS_FILE:
case F2FS_IOC_COMPRESS_FILE:
case F2FS_IOC_GET_DEV_ALIAS_FILE:
break;
default:
return -ENOIOCTLCMD;
}
return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
}
#endif
const struct file_operations f2fs_file_operations = {
.llseek = f2fs_llseek,
.read_iter = f2fs_file_read_iter,
.write_iter = f2fs_file_write_iter,
.iopoll = iocb_bio_iopoll,
.open = f2fs_file_open,
.release = f2fs_release_file,
.mmap = f2fs_file_mmap,
.flush = f2fs_file_flush,
.fsync = f2fs_sync_file,
.fallocate = f2fs_fallocate,
.unlocked_ioctl = f2fs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = f2fs_compat_ioctl,
#endif
.splice_read = f2fs_file_splice_read,
.splice_write = iter_file_splice_write,
.fadvise = f2fs_file_fadvise,
.fop_flags = FOP_BUFFER_RASYNC,
};