mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
593be07ae8
free_fdtable_rc() schedules timer to reschedule fddef->wq if schedule_work() on it returns 0. However, schedule_work() guarantees that the target work is executed at least once after the scheduling regardless of its return value. 0 return simply means that the work was already pending and thus no further action was required. Another problem is that it used contant '5' as @expires argument to mod_timer(). Kill unnecessary fddef->timer. Signed-off-by: Tejun Heo <htejun@gmail.com> Cc: Dipankar Sarma <dipankar@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
344 lines
8.1 KiB
C
344 lines
8.1 KiB
C
/*
|
|
* linux/fs/file.c
|
|
*
|
|
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
|
|
*
|
|
* Manage the dynamic fd arrays in the process files_struct.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/time.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/file.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
struct fdtable_defer {
|
|
spinlock_t lock;
|
|
struct work_struct wq;
|
|
struct fdtable *next;
|
|
};
|
|
|
|
/*
|
|
* We use this list to defer free fdtables that have vmalloced
|
|
* sets/arrays. By keeping a per-cpu list, we avoid having to embed
|
|
* the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
|
|
* this per-task structure.
|
|
*/
|
|
static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
|
|
|
|
|
|
/*
|
|
* Allocate an fd array, using kmalloc or vmalloc.
|
|
* Note: the array isn't cleared at allocation time.
|
|
*/
|
|
struct file ** alloc_fd_array(int num)
|
|
{
|
|
struct file **new_fds;
|
|
int size = num * sizeof(struct file *);
|
|
|
|
if (size <= PAGE_SIZE)
|
|
new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
|
|
else
|
|
new_fds = (struct file **) vmalloc(size);
|
|
return new_fds;
|
|
}
|
|
|
|
void free_fd_array(struct file **array, int num)
|
|
{
|
|
int size = num * sizeof(struct file *);
|
|
|
|
if (!array) {
|
|
printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
|
|
return;
|
|
}
|
|
|
|
if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
|
|
return;
|
|
else if (size <= PAGE_SIZE)
|
|
kfree(array);
|
|
else
|
|
vfree(array);
|
|
}
|
|
|
|
static void __free_fdtable(struct fdtable *fdt)
|
|
{
|
|
free_fdset(fdt->open_fds, fdt->max_fdset);
|
|
free_fdset(fdt->close_on_exec, fdt->max_fdset);
|
|
free_fd_array(fdt->fd, fdt->max_fds);
|
|
kfree(fdt);
|
|
}
|
|
|
|
static void free_fdtable_work(struct work_struct *work)
|
|
{
|
|
struct fdtable_defer *f =
|
|
container_of(work, struct fdtable_defer, wq);
|
|
struct fdtable *fdt;
|
|
|
|
spin_lock_bh(&f->lock);
|
|
fdt = f->next;
|
|
f->next = NULL;
|
|
spin_unlock_bh(&f->lock);
|
|
while(fdt) {
|
|
struct fdtable *next = fdt->next;
|
|
__free_fdtable(fdt);
|
|
fdt = next;
|
|
}
|
|
}
|
|
|
|
static void free_fdtable_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
|
|
int fdset_size, fdarray_size;
|
|
struct fdtable_defer *fddef;
|
|
|
|
BUG_ON(!fdt);
|
|
fdset_size = fdt->max_fdset / 8;
|
|
fdarray_size = fdt->max_fds * sizeof(struct file *);
|
|
|
|
if (fdt->free_files) {
|
|
/*
|
|
* The this fdtable was embedded in the files structure
|
|
* and the files structure itself was getting destroyed.
|
|
* It is now safe to free the files structure.
|
|
*/
|
|
kmem_cache_free(files_cachep, fdt->free_files);
|
|
return;
|
|
}
|
|
if (fdt->max_fdset <= EMBEDDED_FD_SET_SIZE &&
|
|
fdt->max_fds <= NR_OPEN_DEFAULT) {
|
|
/*
|
|
* The fdtable was embedded
|
|
*/
|
|
return;
|
|
}
|
|
if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) {
|
|
kfree(fdt->open_fds);
|
|
kfree(fdt->close_on_exec);
|
|
kfree(fdt->fd);
|
|
kfree(fdt);
|
|
} else {
|
|
fddef = &get_cpu_var(fdtable_defer_list);
|
|
spin_lock(&fddef->lock);
|
|
fdt->next = fddef->next;
|
|
fddef->next = fdt;
|
|
/* vmallocs are handled from the workqueue context */
|
|
schedule_work(&fddef->wq);
|
|
spin_unlock(&fddef->lock);
|
|
put_cpu_var(fdtable_defer_list);
|
|
}
|
|
}
|
|
|
|
void free_fdtable(struct fdtable *fdt)
|
|
{
|
|
if (fdt->free_files ||
|
|
fdt->max_fdset > EMBEDDED_FD_SET_SIZE ||
|
|
fdt->max_fds > NR_OPEN_DEFAULT)
|
|
call_rcu(&fdt->rcu, free_fdtable_rcu);
|
|
}
|
|
|
|
/*
|
|
* Expand the fdset in the files_struct. Called with the files spinlock
|
|
* held for write.
|
|
*/
|
|
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt)
|
|
{
|
|
int i;
|
|
int count;
|
|
|
|
BUG_ON(nfdt->max_fdset < fdt->max_fdset);
|
|
BUG_ON(nfdt->max_fds < fdt->max_fds);
|
|
/* Copy the existing tables and install the new pointers */
|
|
|
|
i = fdt->max_fdset / (sizeof(unsigned long) * 8);
|
|
count = (nfdt->max_fdset - fdt->max_fdset) / 8;
|
|
|
|
/*
|
|
* Don't copy the entire array if the current fdset is
|
|
* not yet initialised.
|
|
*/
|
|
if (i) {
|
|
memcpy (nfdt->open_fds, fdt->open_fds,
|
|
fdt->max_fdset/8);
|
|
memcpy (nfdt->close_on_exec, fdt->close_on_exec,
|
|
fdt->max_fdset/8);
|
|
memset (&nfdt->open_fds->fds_bits[i], 0, count);
|
|
memset (&nfdt->close_on_exec->fds_bits[i], 0, count);
|
|
}
|
|
|
|
/* Don't copy/clear the array if we are creating a new
|
|
fd array for fork() */
|
|
if (fdt->max_fds) {
|
|
memcpy(nfdt->fd, fdt->fd,
|
|
fdt->max_fds * sizeof(struct file *));
|
|
/* clear the remainder of the array */
|
|
memset(&nfdt->fd[fdt->max_fds], 0,
|
|
(nfdt->max_fds - fdt->max_fds) *
|
|
sizeof(struct file *));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate an fdset array, using kmalloc or vmalloc.
|
|
* Note: the array isn't cleared at allocation time.
|
|
*/
|
|
fd_set * alloc_fdset(int num)
|
|
{
|
|
fd_set *new_fdset;
|
|
int size = num / 8;
|
|
|
|
if (size <= PAGE_SIZE)
|
|
new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
|
|
else
|
|
new_fdset = (fd_set *) vmalloc(size);
|
|
return new_fdset;
|
|
}
|
|
|
|
void free_fdset(fd_set *array, int num)
|
|
{
|
|
if (num <= EMBEDDED_FD_SET_SIZE) /* Don't free an embedded fdset */
|
|
return;
|
|
else if (num <= 8 * PAGE_SIZE)
|
|
kfree(array);
|
|
else
|
|
vfree(array);
|
|
}
|
|
|
|
static struct fdtable *alloc_fdtable(int nr)
|
|
{
|
|
struct fdtable *fdt = NULL;
|
|
int nfds = 0;
|
|
fd_set *new_openset = NULL, *new_execset = NULL;
|
|
struct file **new_fds;
|
|
|
|
fdt = kzalloc(sizeof(*fdt), GFP_KERNEL);
|
|
if (!fdt)
|
|
goto out;
|
|
|
|
nfds = max_t(int, 8 * L1_CACHE_BYTES, roundup_pow_of_two(nr + 1));
|
|
if (nfds > NR_OPEN)
|
|
nfds = NR_OPEN;
|
|
|
|
new_openset = alloc_fdset(nfds);
|
|
new_execset = alloc_fdset(nfds);
|
|
if (!new_openset || !new_execset)
|
|
goto out;
|
|
fdt->open_fds = new_openset;
|
|
fdt->close_on_exec = new_execset;
|
|
fdt->max_fdset = nfds;
|
|
|
|
nfds = NR_OPEN_DEFAULT;
|
|
/*
|
|
* Expand to the max in easy steps, and keep expanding it until
|
|
* we have enough for the requested fd array size.
|
|
*/
|
|
do {
|
|
#if NR_OPEN_DEFAULT < 256
|
|
if (nfds < 256)
|
|
nfds = 256;
|
|
else
|
|
#endif
|
|
if (nfds < (PAGE_SIZE / sizeof(struct file *)))
|
|
nfds = PAGE_SIZE / sizeof(struct file *);
|
|
else {
|
|
nfds = nfds * 2;
|
|
if (nfds > NR_OPEN)
|
|
nfds = NR_OPEN;
|
|
}
|
|
} while (nfds <= nr);
|
|
new_fds = alloc_fd_array(nfds);
|
|
if (!new_fds)
|
|
goto out2;
|
|
fdt->fd = new_fds;
|
|
fdt->max_fds = nfds;
|
|
fdt->free_files = NULL;
|
|
return fdt;
|
|
out2:
|
|
nfds = fdt->max_fdset;
|
|
out:
|
|
free_fdset(new_openset, nfds);
|
|
free_fdset(new_execset, nfds);
|
|
kfree(fdt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Expand the file descriptor table.
|
|
* This function will allocate a new fdtable and both fd array and fdset, of
|
|
* the given size.
|
|
* Return <0 error code on error; 1 on successful completion.
|
|
* The files->file_lock should be held on entry, and will be held on exit.
|
|
*/
|
|
static int expand_fdtable(struct files_struct *files, int nr)
|
|
__releases(files->file_lock)
|
|
__acquires(files->file_lock)
|
|
{
|
|
struct fdtable *new_fdt, *cur_fdt;
|
|
|
|
spin_unlock(&files->file_lock);
|
|
new_fdt = alloc_fdtable(nr);
|
|
spin_lock(&files->file_lock);
|
|
if (!new_fdt)
|
|
return -ENOMEM;
|
|
/*
|
|
* Check again since another task may have expanded the fd table while
|
|
* we dropped the lock
|
|
*/
|
|
cur_fdt = files_fdtable(files);
|
|
if (nr >= cur_fdt->max_fds || nr >= cur_fdt->max_fdset) {
|
|
/* Continue as planned */
|
|
copy_fdtable(new_fdt, cur_fdt);
|
|
rcu_assign_pointer(files->fdt, new_fdt);
|
|
free_fdtable(cur_fdt);
|
|
} else {
|
|
/* Somebody else expanded, so undo our attempt */
|
|
__free_fdtable(new_fdt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Expand files.
|
|
* This function will expand the file structures, if the requested size exceeds
|
|
* the current capacity and there is room for expansion.
|
|
* Return <0 error code on error; 0 when nothing done; 1 when files were
|
|
* expanded and execution may have blocked.
|
|
* The files->file_lock should be held on entry, and will be held on exit.
|
|
*/
|
|
int expand_files(struct files_struct *files, int nr)
|
|
{
|
|
struct fdtable *fdt;
|
|
|
|
fdt = files_fdtable(files);
|
|
/* Do we need to expand? */
|
|
if (nr < fdt->max_fdset && nr < fdt->max_fds)
|
|
return 0;
|
|
/* Can we expand? */
|
|
if (fdt->max_fdset >= NR_OPEN || fdt->max_fds >= NR_OPEN ||
|
|
nr >= NR_OPEN)
|
|
return -EMFILE;
|
|
|
|
/* All good, so we try */
|
|
return expand_fdtable(files, nr);
|
|
}
|
|
|
|
static void __devinit fdtable_defer_list_init(int cpu)
|
|
{
|
|
struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
|
|
spin_lock_init(&fddef->lock);
|
|
INIT_WORK(&fddef->wq, free_fdtable_work);
|
|
fddef->next = NULL;
|
|
}
|
|
|
|
void __init files_defer_init(void)
|
|
{
|
|
int i;
|
|
for_each_possible_cpu(i)
|
|
fdtable_defer_list_init(i);
|
|
}
|