linux-next/io_uring/sqpoll.c
Linus Torvalds 8350142a4b for-6.13/io_uring-20241118
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmc7S3kQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpjHVEAC+CITBEcGy+S0IK0BpIAhuA+A621LtqBwy
 0z/4MZKXMqvWxcFGQJ9Zr8MvxUnY4KFcssiaR5zk+I9TczNu7mLMuPYD1Gb0Klgz
 mwuFOylo1CAAC41IABYZZ/0qWbTaW0p8tpaGsTbTNk3tBxuMLB550+APAqC1OE9U
 bb7rP+FHc5+YGI9/7JNWt7NNTSHvVSO6oxjltCxHr1dRg93Jtr2jaY6letY3epFz
 TCFyfJlDtK8fPwtYRyG51M4g2Vdp9/4qsfPqvnXwUr9MdWaVh5/TFkyvqDi5sCKM
 zdK/sjRiimYzvqqKg6bzgYscITUPNk2TG6ZJq5U1L7lrglzVY69c7GIUnNzPrL/y
 AxQsR5Guxz3bRNYWZ4BKJDH+NNB+cgIFEXDsv72qoUy3HTzA6wOPZYxfjhZhKuG/
 DjRwM7NGx5oPiKtpK99IulZttXdmtkH0csuLwKmOzrQskQdTuWyrEtU7UQql7oQ5
 Rt3DhMXouzYZMicB8U5Q9gO2I3WN+2VVxXl4sa00LG8KsT6PzLnz4Q2k/1c83S6J
 rRivRbZAbZ1+BqKvF8T7GgzLCeaLgzbeoxmxj6xr87pf3SYEs2KhQeQ+n/C0HTOt
 GOcG1+bvh7t2aSvlBPKVCExWI4erwG6wXFhfGKsLW9CmwIMqRNxdePpRWe3Cueyp
 M3QRJuvTxQ==
 =bDvp
 -----END PGP SIGNATURE-----

Merge tag 'for-6.13/io_uring-20241118' of git://git.kernel.dk/linux

Pull io_uring updates from Jens Axboe:

 - Cleanups of the eventfd handling code, making it fully private.

 - Support for sending a sync message to another ring, without having a
   ring available to send a normal async message.

 - Get rid of the separate unlocked hash table, unify everything around
   the single locked one.

 - Add support for ring resizing. It can be hard to appropriately size
   the CQ ring upfront, if the application doesn't know how busy it will
   be. This results in applications sizing rings for the most busy case,
   which can be wasteful. With ring resizing, they can start small and
   grow the ring, if needed.

 - Add support for fixed wait regions, rather than needing to copy the
   same wait data tons of times for each wait operation.

 - Rewrite the resource node handling, which before was serialized per
   ring. This caused issues with particularly fixed files, where one
   file waiting on IO could hold up putting and freeing of other
   unrelated files. Now each node is handled separately. New code is
   much simpler too, and was a net 250 line reduction in code.

 - Add support for just doing partial buffer clones, rather than always
   cloning the entire buffer table.

 - Series adding static NAPI support, where a specific NAPI instance is
   used rather than having a list of them available that need lookup.

 - Add support for mapped regions, and also convert the fixed wait
   support mentioned above to that concept. This avoids doing special
   mappings for various planned features, and folds the existing
   registered wait into that too.

 - Add support for hybrid IO polling, which is a variant of strict
   IOPOLL but with an initial sleep delay to avoid spinning too early
   and wasting resources on devices that aren't necessarily in the < 5
   usec category wrt latencies.

 - Various cleanups and little fixes.

* tag 'for-6.13/io_uring-20241118' of git://git.kernel.dk/linux: (79 commits)
  io_uring/region: fix error codes after failed vmap
  io_uring: restore back registered wait arguments
  io_uring: add memory region registration
  io_uring: introduce concept of memory regions
  io_uring: temporarily disable registered waits
  io_uring: disable ENTER_EXT_ARG_REG for IOPOLL
  io_uring: fortify io_pin_pages with a warning
  switch io_msg_ring() to CLASS(fd)
  io_uring: fix invalid hybrid polling ctx leaks
  io_uring/uring_cmd: fix buffer index retrieval
  io_uring/rsrc: add & apply io_req_assign_buf_node()
  io_uring/rsrc: remove '->ctx_ptr' of 'struct io_rsrc_node'
  io_uring/rsrc: pass 'struct io_ring_ctx' reference to rsrc helpers
  io_uring: avoid normal tw intermediate fallback
  io_uring/napi: add static napi tracking strategy
  io_uring/napi: clean up __io_napi_do_busy_loop
  io_uring/napi: Use lock guards
  io_uring/napi: improve __io_napi_add
  io_uring/napi: fix io_napi_entry RCU accesses
  io_uring/napi: protect concurrent io_napi_entry timeout accesses
  ...
2024-11-18 17:02:57 -08:00

517 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Contains the core associated with submission side polling of the SQ
* ring, offloading submissions from the application to a kernel thread.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/audit.h>
#include <linux/security.h>
#include <linux/cpuset.h>
#include <linux/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "napi.h"
#include "sqpoll.h"
#define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
#define IORING_TW_CAP_ENTRIES_VALUE 8
enum {
IO_SQ_THREAD_SHOULD_STOP = 0,
IO_SQ_THREAD_SHOULD_PARK,
};
void io_sq_thread_unpark(struct io_sq_data *sqd)
__releases(&sqd->lock)
{
WARN_ON_ONCE(sqd->thread == current);
/*
* Do the dance but not conditional clear_bit() because it'd race with
* other threads incrementing park_pending and setting the bit.
*/
clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
if (atomic_dec_return(&sqd->park_pending))
set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
mutex_unlock(&sqd->lock);
wake_up(&sqd->wait);
}
void io_sq_thread_park(struct io_sq_data *sqd)
__acquires(&sqd->lock)
{
WARN_ON_ONCE(data_race(sqd->thread) == current);
atomic_inc(&sqd->park_pending);
set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
mutex_lock(&sqd->lock);
if (sqd->thread)
wake_up_process(sqd->thread);
}
void io_sq_thread_stop(struct io_sq_data *sqd)
{
WARN_ON_ONCE(sqd->thread == current);
WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
mutex_lock(&sqd->lock);
if (sqd->thread)
wake_up_process(sqd->thread);
mutex_unlock(&sqd->lock);
wait_for_completion(&sqd->exited);
}
void io_put_sq_data(struct io_sq_data *sqd)
{
if (refcount_dec_and_test(&sqd->refs)) {
WARN_ON_ONCE(atomic_read(&sqd->park_pending));
io_sq_thread_stop(sqd);
kfree(sqd);
}
}
static __cold void io_sqd_update_thread_idle(struct io_sq_data *sqd)
{
struct io_ring_ctx *ctx;
unsigned sq_thread_idle = 0;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
sqd->sq_thread_idle = sq_thread_idle;
}
void io_sq_thread_finish(struct io_ring_ctx *ctx)
{
struct io_sq_data *sqd = ctx->sq_data;
if (sqd) {
io_sq_thread_park(sqd);
list_del_init(&ctx->sqd_list);
io_sqd_update_thread_idle(sqd);
io_sq_thread_unpark(sqd);
io_put_sq_data(sqd);
ctx->sq_data = NULL;
}
}
static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
{
struct io_ring_ctx *ctx_attach;
struct io_sq_data *sqd;
CLASS(fd, f)(p->wq_fd);
if (fd_empty(f))
return ERR_PTR(-ENXIO);
if (!io_is_uring_fops(fd_file(f)))
return ERR_PTR(-EINVAL);
ctx_attach = fd_file(f)->private_data;
sqd = ctx_attach->sq_data;
if (!sqd)
return ERR_PTR(-EINVAL);
if (sqd->task_tgid != current->tgid)
return ERR_PTR(-EPERM);
refcount_inc(&sqd->refs);
return sqd;
}
static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
bool *attached)
{
struct io_sq_data *sqd;
*attached = false;
if (p->flags & IORING_SETUP_ATTACH_WQ) {
sqd = io_attach_sq_data(p);
if (!IS_ERR(sqd)) {
*attached = true;
return sqd;
}
/* fall through for EPERM case, setup new sqd/task */
if (PTR_ERR(sqd) != -EPERM)
return sqd;
}
sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
if (!sqd)
return ERR_PTR(-ENOMEM);
atomic_set(&sqd->park_pending, 0);
refcount_set(&sqd->refs, 1);
INIT_LIST_HEAD(&sqd->ctx_list);
mutex_init(&sqd->lock);
init_waitqueue_head(&sqd->wait);
init_completion(&sqd->exited);
return sqd;
}
static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
{
return READ_ONCE(sqd->state);
}
static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
{
unsigned int to_submit;
int ret = 0;
to_submit = io_sqring_entries(ctx);
/* if we're handling multiple rings, cap submit size for fairness */
if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
if (to_submit || !wq_list_empty(&ctx->iopoll_list)) {
const struct cred *creds = NULL;
if (ctx->sq_creds != current_cred())
creds = override_creds(ctx->sq_creds);
mutex_lock(&ctx->uring_lock);
if (!wq_list_empty(&ctx->iopoll_list))
io_do_iopoll(ctx, true);
/*
* Don't submit if refs are dying, good for io_uring_register(),
* but also it is relied upon by io_ring_exit_work()
*/
if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
!(ctx->flags & IORING_SETUP_R_DISABLED))
ret = io_submit_sqes(ctx, to_submit);
mutex_unlock(&ctx->uring_lock);
if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
wake_up(&ctx->sqo_sq_wait);
if (creds)
revert_creds(creds);
}
return ret;
}
static bool io_sqd_handle_event(struct io_sq_data *sqd)
{
bool did_sig = false;
struct ksignal ksig;
if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
signal_pending(current)) {
mutex_unlock(&sqd->lock);
if (signal_pending(current))
did_sig = get_signal(&ksig);
wait_event(sqd->wait, !atomic_read(&sqd->park_pending));
mutex_lock(&sqd->lock);
sqd->sq_cpu = raw_smp_processor_id();
}
return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
}
/*
* Run task_work, processing the retry_list first. The retry_list holds
* entries that we passed on in the previous run, if we had more task_work
* than we were asked to process. Newly queued task_work isn't run until the
* retry list has been fully processed.
*/
static unsigned int io_sq_tw(struct llist_node **retry_list, int max_entries)
{
struct io_uring_task *tctx = current->io_uring;
unsigned int count = 0;
if (*retry_list) {
*retry_list = io_handle_tw_list(*retry_list, &count, max_entries);
if (count >= max_entries)
goto out;
max_entries -= count;
}
*retry_list = tctx_task_work_run(tctx, max_entries, &count);
out:
if (task_work_pending(current))
task_work_run();
return count;
}
static bool io_sq_tw_pending(struct llist_node *retry_list)
{
struct io_uring_task *tctx = current->io_uring;
return retry_list || !llist_empty(&tctx->task_list);
}
static void io_sq_update_worktime(struct io_sq_data *sqd, struct rusage *start)
{
struct rusage end;
getrusage(current, RUSAGE_SELF, &end);
end.ru_stime.tv_sec -= start->ru_stime.tv_sec;
end.ru_stime.tv_usec -= start->ru_stime.tv_usec;
sqd->work_time += end.ru_stime.tv_usec + end.ru_stime.tv_sec * 1000000;
}
static int io_sq_thread(void *data)
{
struct llist_node *retry_list = NULL;
struct io_sq_data *sqd = data;
struct io_ring_ctx *ctx;
struct rusage start;
unsigned long timeout = 0;
char buf[TASK_COMM_LEN];
DEFINE_WAIT(wait);
/* offload context creation failed, just exit */
if (!current->io_uring)
goto err_out;
snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
set_task_comm(current, buf);
/* reset to our pid after we've set task_comm, for fdinfo */
sqd->task_pid = current->pid;
if (sqd->sq_cpu != -1) {
set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
} else {
set_cpus_allowed_ptr(current, cpu_online_mask);
sqd->sq_cpu = raw_smp_processor_id();
}
/*
* Force audit context to get setup, in case we do prep side async
* operations that would trigger an audit call before any issue side
* audit has been done.
*/
audit_uring_entry(IORING_OP_NOP);
audit_uring_exit(true, 0);
mutex_lock(&sqd->lock);
while (1) {
bool cap_entries, sqt_spin = false;
if (io_sqd_events_pending(sqd) || signal_pending(current)) {
if (io_sqd_handle_event(sqd))
break;
timeout = jiffies + sqd->sq_thread_idle;
}
cap_entries = !list_is_singular(&sqd->ctx_list);
getrusage(current, RUSAGE_SELF, &start);
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
int ret = __io_sq_thread(ctx, cap_entries);
if (!sqt_spin && (ret > 0 || !wq_list_empty(&ctx->iopoll_list)))
sqt_spin = true;
}
if (io_sq_tw(&retry_list, IORING_TW_CAP_ENTRIES_VALUE))
sqt_spin = true;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
if (io_napi(ctx))
io_napi_sqpoll_busy_poll(ctx);
if (sqt_spin || !time_after(jiffies, timeout)) {
if (sqt_spin) {
io_sq_update_worktime(sqd, &start);
timeout = jiffies + sqd->sq_thread_idle;
}
if (unlikely(need_resched())) {
mutex_unlock(&sqd->lock);
cond_resched();
mutex_lock(&sqd->lock);
sqd->sq_cpu = raw_smp_processor_id();
}
continue;
}
prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
if (!io_sqd_events_pending(sqd) && !io_sq_tw_pending(retry_list)) {
bool needs_sched = true;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
atomic_or(IORING_SQ_NEED_WAKEUP,
&ctx->rings->sq_flags);
if ((ctx->flags & IORING_SETUP_IOPOLL) &&
!wq_list_empty(&ctx->iopoll_list)) {
needs_sched = false;
break;
}
/*
* Ensure the store of the wakeup flag is not
* reordered with the load of the SQ tail
*/
smp_mb__after_atomic();
if (io_sqring_entries(ctx)) {
needs_sched = false;
break;
}
}
if (needs_sched) {
mutex_unlock(&sqd->lock);
schedule();
mutex_lock(&sqd->lock);
sqd->sq_cpu = raw_smp_processor_id();
}
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
atomic_andnot(IORING_SQ_NEED_WAKEUP,
&ctx->rings->sq_flags);
}
finish_wait(&sqd->wait, &wait);
timeout = jiffies + sqd->sq_thread_idle;
}
if (retry_list)
io_sq_tw(&retry_list, UINT_MAX);
io_uring_cancel_generic(true, sqd);
sqd->thread = NULL;
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
atomic_or(IORING_SQ_NEED_WAKEUP, &ctx->rings->sq_flags);
io_run_task_work();
mutex_unlock(&sqd->lock);
err_out:
complete(&sqd->exited);
do_exit(0);
}
void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
{
DEFINE_WAIT(wait);
do {
if (!io_sqring_full(ctx))
break;
prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
if (!io_sqring_full(ctx))
break;
schedule();
} while (!signal_pending(current));
finish_wait(&ctx->sqo_sq_wait, &wait);
}
__cold int io_sq_offload_create(struct io_ring_ctx *ctx,
struct io_uring_params *p)
{
int ret;
/* Retain compatibility with failing for an invalid attach attempt */
if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
IORING_SETUP_ATTACH_WQ) {
CLASS(fd, f)(p->wq_fd);
if (fd_empty(f))
return -ENXIO;
if (!io_is_uring_fops(fd_file(f)))
return -EINVAL;
}
if (ctx->flags & IORING_SETUP_SQPOLL) {
struct task_struct *tsk;
struct io_sq_data *sqd;
bool attached;
ret = security_uring_sqpoll();
if (ret)
return ret;
sqd = io_get_sq_data(p, &attached);
if (IS_ERR(sqd)) {
ret = PTR_ERR(sqd);
goto err;
}
ctx->sq_creds = get_current_cred();
ctx->sq_data = sqd;
ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
if (!ctx->sq_thread_idle)
ctx->sq_thread_idle = HZ;
io_sq_thread_park(sqd);
list_add(&ctx->sqd_list, &sqd->ctx_list);
io_sqd_update_thread_idle(sqd);
/* don't attach to a dying SQPOLL thread, would be racy */
ret = (attached && !sqd->thread) ? -ENXIO : 0;
io_sq_thread_unpark(sqd);
if (ret < 0)
goto err;
if (attached)
return 0;
if (p->flags & IORING_SETUP_SQ_AFF) {
cpumask_var_t allowed_mask;
int cpu = p->sq_thread_cpu;
ret = -EINVAL;
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
goto err_sqpoll;
ret = -ENOMEM;
if (!alloc_cpumask_var(&allowed_mask, GFP_KERNEL))
goto err_sqpoll;
ret = -EINVAL;
cpuset_cpus_allowed(current, allowed_mask);
if (!cpumask_test_cpu(cpu, allowed_mask)) {
free_cpumask_var(allowed_mask);
goto err_sqpoll;
}
free_cpumask_var(allowed_mask);
sqd->sq_cpu = cpu;
} else {
sqd->sq_cpu = -1;
}
sqd->task_pid = current->pid;
sqd->task_tgid = current->tgid;
tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
if (IS_ERR(tsk)) {
ret = PTR_ERR(tsk);
goto err_sqpoll;
}
sqd->thread = tsk;
ret = io_uring_alloc_task_context(tsk, ctx);
wake_up_new_task(tsk);
if (ret)
goto err;
} else if (p->flags & IORING_SETUP_SQ_AFF) {
/* Can't have SQ_AFF without SQPOLL */
ret = -EINVAL;
goto err;
}
return 0;
err_sqpoll:
complete(&ctx->sq_data->exited);
err:
io_sq_thread_finish(ctx);
return ret;
}
__cold int io_sqpoll_wq_cpu_affinity(struct io_ring_ctx *ctx,
cpumask_var_t mask)
{
struct io_sq_data *sqd = ctx->sq_data;
int ret = -EINVAL;
if (sqd) {
io_sq_thread_park(sqd);
/* Don't set affinity for a dying thread */
if (sqd->thread)
ret = io_wq_cpu_affinity(sqd->thread->io_uring, mask);
io_sq_thread_unpark(sqd);
}
return ret;
}