mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-13 09:20:17 +00:00
aaf0594829
Export group_cpus_evenly() so that some modules can make use of it to group CPUs evenly according to NUMA and CPU locality. Signed-off-by: Xie Yongji <xieyongji@bytedance.com> Acked-by: Jason Wang <jasowang@redhat.com> Message-Id: <20230323053043.35-2-xieyongji@bytedance.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
430 lines
10 KiB
C
430 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2016 Thomas Gleixner.
|
|
* Copyright (C) 2016-2017 Christoph Hellwig.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/group_cpus.h>
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
|
|
unsigned int cpus_per_grp)
|
|
{
|
|
const struct cpumask *siblmsk;
|
|
int cpu, sibl;
|
|
|
|
for ( ; cpus_per_grp > 0; ) {
|
|
cpu = cpumask_first(nmsk);
|
|
|
|
/* Should not happen, but I'm too lazy to think about it */
|
|
if (cpu >= nr_cpu_ids)
|
|
return;
|
|
|
|
cpumask_clear_cpu(cpu, nmsk);
|
|
cpumask_set_cpu(cpu, irqmsk);
|
|
cpus_per_grp--;
|
|
|
|
/* If the cpu has siblings, use them first */
|
|
siblmsk = topology_sibling_cpumask(cpu);
|
|
for (sibl = -1; cpus_per_grp > 0; ) {
|
|
sibl = cpumask_next(sibl, siblmsk);
|
|
if (sibl >= nr_cpu_ids)
|
|
break;
|
|
if (!cpumask_test_and_clear_cpu(sibl, nmsk))
|
|
continue;
|
|
cpumask_set_cpu(sibl, irqmsk);
|
|
cpus_per_grp--;
|
|
}
|
|
}
|
|
}
|
|
|
|
static cpumask_var_t *alloc_node_to_cpumask(void)
|
|
{
|
|
cpumask_var_t *masks;
|
|
int node;
|
|
|
|
masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
|
|
if (!masks)
|
|
return NULL;
|
|
|
|
for (node = 0; node < nr_node_ids; node++) {
|
|
if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
|
|
goto out_unwind;
|
|
}
|
|
|
|
return masks;
|
|
|
|
out_unwind:
|
|
while (--node >= 0)
|
|
free_cpumask_var(masks[node]);
|
|
kfree(masks);
|
|
return NULL;
|
|
}
|
|
|
|
static void free_node_to_cpumask(cpumask_var_t *masks)
|
|
{
|
|
int node;
|
|
|
|
for (node = 0; node < nr_node_ids; node++)
|
|
free_cpumask_var(masks[node]);
|
|
kfree(masks);
|
|
}
|
|
|
|
static void build_node_to_cpumask(cpumask_var_t *masks)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
|
|
}
|
|
|
|
static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
|
|
const struct cpumask *mask, nodemask_t *nodemsk)
|
|
{
|
|
int n, nodes = 0;
|
|
|
|
/* Calculate the number of nodes in the supplied affinity mask */
|
|
for_each_node(n) {
|
|
if (cpumask_intersects(mask, node_to_cpumask[n])) {
|
|
node_set(n, *nodemsk);
|
|
nodes++;
|
|
}
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
struct node_groups {
|
|
unsigned id;
|
|
|
|
union {
|
|
unsigned ngroups;
|
|
unsigned ncpus;
|
|
};
|
|
};
|
|
|
|
static int ncpus_cmp_func(const void *l, const void *r)
|
|
{
|
|
const struct node_groups *ln = l;
|
|
const struct node_groups *rn = r;
|
|
|
|
return ln->ncpus - rn->ncpus;
|
|
}
|
|
|
|
/*
|
|
* Allocate group number for each node, so that for each node:
|
|
*
|
|
* 1) the allocated number is >= 1
|
|
*
|
|
* 2) the allocated number is <= active CPU number of this node
|
|
*
|
|
* The actual allocated total groups may be less than @numgrps when
|
|
* active total CPU number is less than @numgrps.
|
|
*
|
|
* Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
|
|
* for each node.
|
|
*/
|
|
static void alloc_nodes_groups(unsigned int numgrps,
|
|
cpumask_var_t *node_to_cpumask,
|
|
const struct cpumask *cpu_mask,
|
|
const nodemask_t nodemsk,
|
|
struct cpumask *nmsk,
|
|
struct node_groups *node_groups)
|
|
{
|
|
unsigned n, remaining_ncpus = 0;
|
|
|
|
for (n = 0; n < nr_node_ids; n++) {
|
|
node_groups[n].id = n;
|
|
node_groups[n].ncpus = UINT_MAX;
|
|
}
|
|
|
|
for_each_node_mask(n, nodemsk) {
|
|
unsigned ncpus;
|
|
|
|
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
|
ncpus = cpumask_weight(nmsk);
|
|
|
|
if (!ncpus)
|
|
continue;
|
|
remaining_ncpus += ncpus;
|
|
node_groups[n].ncpus = ncpus;
|
|
}
|
|
|
|
numgrps = min_t(unsigned, remaining_ncpus, numgrps);
|
|
|
|
sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
|
|
ncpus_cmp_func, NULL);
|
|
|
|
/*
|
|
* Allocate groups for each node according to the ratio of this
|
|
* node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
|
|
* bigger than number of active numa nodes. Always start the
|
|
* allocation from the node with minimized nr_cpus.
|
|
*
|
|
* This way guarantees that each active node gets allocated at
|
|
* least one group, and the theory is simple: over-allocation
|
|
* is only done when this node is assigned by one group, so
|
|
* other nodes will be allocated >= 1 groups, since 'numgrps' is
|
|
* bigger than number of numa nodes.
|
|
*
|
|
* One perfect invariant is that number of allocated groups for
|
|
* each node is <= CPU count of this node:
|
|
*
|
|
* 1) suppose there are two nodes: A and B
|
|
* ncpu(X) is CPU count of node X
|
|
* grps(X) is the group count allocated to node X via this
|
|
* algorithm
|
|
*
|
|
* ncpu(A) <= ncpu(B)
|
|
* ncpu(A) + ncpu(B) = N
|
|
* grps(A) + grps(B) = G
|
|
*
|
|
* grps(A) = max(1, round_down(G * ncpu(A) / N))
|
|
* grps(B) = G - grps(A)
|
|
*
|
|
* both N and G are integer, and 2 <= G <= N, suppose
|
|
* G = N - delta, and 0 <= delta <= N - 2
|
|
*
|
|
* 2) obviously grps(A) <= ncpu(A) because:
|
|
*
|
|
* if grps(A) is 1, then grps(A) <= ncpu(A) given
|
|
* ncpu(A) >= 1
|
|
*
|
|
* otherwise,
|
|
* grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
|
|
*
|
|
* 3) prove how grps(B) <= ncpu(B):
|
|
*
|
|
* if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
|
|
* over-allocated, so grps(B) <= ncpu(B),
|
|
*
|
|
* otherwise:
|
|
*
|
|
* grps(A) =
|
|
* round_down(G * ncpu(A) / N) =
|
|
* round_down((N - delta) * ncpu(A) / N) =
|
|
* round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
|
|
* round_down((N * ncpu(A) - delta * N) / N) =
|
|
* cpu(A) - delta
|
|
*
|
|
* then:
|
|
*
|
|
* grps(A) - G >= ncpu(A) - delta - G
|
|
* =>
|
|
* G - grps(A) <= G + delta - ncpu(A)
|
|
* =>
|
|
* grps(B) <= N - ncpu(A)
|
|
* =>
|
|
* grps(B) <= cpu(B)
|
|
*
|
|
* For nodes >= 3, it can be thought as one node and another big
|
|
* node given that is exactly what this algorithm is implemented,
|
|
* and we always re-calculate 'remaining_ncpus' & 'numgrps', and
|
|
* finally for each node X: grps(X) <= ncpu(X).
|
|
*
|
|
*/
|
|
for (n = 0; n < nr_node_ids; n++) {
|
|
unsigned ngroups, ncpus;
|
|
|
|
if (node_groups[n].ncpus == UINT_MAX)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(numgrps == 0);
|
|
|
|
ncpus = node_groups[n].ncpus;
|
|
ngroups = max_t(unsigned, 1,
|
|
numgrps * ncpus / remaining_ncpus);
|
|
WARN_ON_ONCE(ngroups > ncpus);
|
|
|
|
node_groups[n].ngroups = ngroups;
|
|
|
|
remaining_ncpus -= ncpus;
|
|
numgrps -= ngroups;
|
|
}
|
|
}
|
|
|
|
static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
|
|
cpumask_var_t *node_to_cpumask,
|
|
const struct cpumask *cpu_mask,
|
|
struct cpumask *nmsk, struct cpumask *masks)
|
|
{
|
|
unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
|
|
unsigned int last_grp = numgrps;
|
|
unsigned int curgrp = startgrp;
|
|
nodemask_t nodemsk = NODE_MASK_NONE;
|
|
struct node_groups *node_groups;
|
|
|
|
if (cpumask_empty(cpu_mask))
|
|
return 0;
|
|
|
|
nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
|
|
|
|
/*
|
|
* If the number of nodes in the mask is greater than or equal the
|
|
* number of groups we just spread the groups across the nodes.
|
|
*/
|
|
if (numgrps <= nodes) {
|
|
for_each_node_mask(n, nodemsk) {
|
|
/* Ensure that only CPUs which are in both masks are set */
|
|
cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
|
|
cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
|
|
if (++curgrp == last_grp)
|
|
curgrp = 0;
|
|
}
|
|
return numgrps;
|
|
}
|
|
|
|
node_groups = kcalloc(nr_node_ids,
|
|
sizeof(struct node_groups),
|
|
GFP_KERNEL);
|
|
if (!node_groups)
|
|
return -ENOMEM;
|
|
|
|
/* allocate group number for each node */
|
|
alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
|
|
nodemsk, nmsk, node_groups);
|
|
for (i = 0; i < nr_node_ids; i++) {
|
|
unsigned int ncpus, v;
|
|
struct node_groups *nv = &node_groups[i];
|
|
|
|
if (nv->ngroups == UINT_MAX)
|
|
continue;
|
|
|
|
/* Get the cpus on this node which are in the mask */
|
|
cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
|
|
ncpus = cpumask_weight(nmsk);
|
|
if (!ncpus)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(nv->ngroups > ncpus);
|
|
|
|
/* Account for rounding errors */
|
|
extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
|
|
|
|
/* Spread allocated groups on CPUs of the current node */
|
|
for (v = 0; v < nv->ngroups; v++, curgrp++) {
|
|
cpus_per_grp = ncpus / nv->ngroups;
|
|
|
|
/* Account for extra groups to compensate rounding errors */
|
|
if (extra_grps) {
|
|
cpus_per_grp++;
|
|
--extra_grps;
|
|
}
|
|
|
|
/*
|
|
* wrapping has to be considered given 'startgrp'
|
|
* may start anywhere
|
|
*/
|
|
if (curgrp >= last_grp)
|
|
curgrp = 0;
|
|
grp_spread_init_one(&masks[curgrp], nmsk,
|
|
cpus_per_grp);
|
|
}
|
|
done += nv->ngroups;
|
|
}
|
|
kfree(node_groups);
|
|
return done;
|
|
}
|
|
|
|
/**
|
|
* group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality
|
|
* @numgrps: number of groups
|
|
*
|
|
* Return: cpumask array if successful, NULL otherwise. And each element
|
|
* includes CPUs assigned to this group
|
|
*
|
|
* Try to put close CPUs from viewpoint of CPU and NUMA locality into
|
|
* same group, and run two-stage grouping:
|
|
* 1) allocate present CPUs on these groups evenly first
|
|
* 2) allocate other possible CPUs on these groups evenly
|
|
*
|
|
* We guarantee in the resulted grouping that all CPUs are covered, and
|
|
* no same CPU is assigned to multiple groups
|
|
*/
|
|
struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
|
{
|
|
unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
|
|
cpumask_var_t *node_to_cpumask;
|
|
cpumask_var_t nmsk, npresmsk;
|
|
int ret = -ENOMEM;
|
|
struct cpumask *masks = NULL;
|
|
|
|
if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
|
|
return NULL;
|
|
|
|
if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
|
|
goto fail_nmsk;
|
|
|
|
node_to_cpumask = alloc_node_to_cpumask();
|
|
if (!node_to_cpumask)
|
|
goto fail_npresmsk;
|
|
|
|
masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
|
if (!masks)
|
|
goto fail_node_to_cpumask;
|
|
|
|
/* Stabilize the cpumasks */
|
|
cpus_read_lock();
|
|
build_node_to_cpumask(node_to_cpumask);
|
|
|
|
/* grouping present CPUs first */
|
|
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
|
cpu_present_mask, nmsk, masks);
|
|
if (ret < 0)
|
|
goto fail_build_affinity;
|
|
nr_present = ret;
|
|
|
|
/*
|
|
* Allocate non present CPUs starting from the next group to be
|
|
* handled. If the grouping of present CPUs already exhausted the
|
|
* group space, assign the non present CPUs to the already
|
|
* allocated out groups.
|
|
*/
|
|
if (nr_present >= numgrps)
|
|
curgrp = 0;
|
|
else
|
|
curgrp = nr_present;
|
|
cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
|
|
ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
|
|
npresmsk, nmsk, masks);
|
|
if (ret >= 0)
|
|
nr_others = ret;
|
|
|
|
fail_build_affinity:
|
|
cpus_read_unlock();
|
|
|
|
if (ret >= 0)
|
|
WARN_ON(nr_present + nr_others < numgrps);
|
|
|
|
fail_node_to_cpumask:
|
|
free_node_to_cpumask(node_to_cpumask);
|
|
|
|
fail_npresmsk:
|
|
free_cpumask_var(npresmsk);
|
|
|
|
fail_nmsk:
|
|
free_cpumask_var(nmsk);
|
|
if (ret < 0) {
|
|
kfree(masks);
|
|
return NULL;
|
|
}
|
|
return masks;
|
|
}
|
|
#else /* CONFIG_SMP */
|
|
struct cpumask *group_cpus_evenly(unsigned int numgrps)
|
|
{
|
|
struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
|
|
|
|
if (!masks)
|
|
return NULL;
|
|
|
|
/* assign all CPUs(cpu 0) to the 1st group only */
|
|
cpumask_copy(&masks[0], cpu_possible_mask);
|
|
return masks;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
EXPORT_SYMBOL_GPL(group_cpus_evenly);
|