linux-next/fs/btrfs/tree-log.c
Josef Bacik 5dc562c541 Btrfs: turbo charge fsync
At least for the vm workload.  Currently on fsync we will

1) Truncate all items in the log tree for the given inode if they exist

and

2) Copy all items for a given inode into the log

The problem with this is that for things like VMs you can have lots of
extents from the fragmented writing behavior, and worst yet you may have
only modified a few extents, not the entire thing.  This patch fixes this
problem by tracking which transid modified our extent, and then when we do
the tree logging we find all of the extents we've modified in our current
transaction, sort them and commit them.  We also only truncate up to the
xattrs of the inode and copy that stuff in normally, and then just drop any
extents in the range we have that exist in the log already.  Here are some
numbers of a 50 meg fio job that does random writes and fsync()s after every
write

		Original	Patched
SATA drive	82KB/s		140KB/s
Fusion drive	431KB/s		2532KB/s

So around 2-6 times faster depending on your hardware.  There are a few
corner cases, for example if you truncate at all we have to do it the old
way since there is no way to be sure what is in the log is ok.  This
probably could be done smarter, but if you write-fsync-truncate-write-fsync
you deserve what you get.  All this work is in RAM of course so if your
inode gets evicted from cache and you read it in and fsync it we'll do it
the slow way if we are still in the same transaction that we last modified
the inode in.

The biggest cool part of this is that it requires no changes to the recovery
code, so if you fsync with this patch and crash and load an old kernel, it
will run the recovery and be a-ok.  I have tested this pretty thoroughly
with an fsync tester and everything comes back fine, as well as xfstests.
Thanks,

Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-10-01 15:19:03 -04:00

3604 lines
92 KiB
C

/*
* Copyright (C) 2008 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/list_sort.h>
#include "ctree.h"
#include "transaction.h"
#include "disk-io.h"
#include "locking.h"
#include "print-tree.h"
#include "compat.h"
#include "tree-log.h"
/* magic values for the inode_only field in btrfs_log_inode:
*
* LOG_INODE_ALL means to log everything
* LOG_INODE_EXISTS means to log just enough to recreate the inode
* during log replay
*/
#define LOG_INODE_ALL 0
#define LOG_INODE_EXISTS 1
/*
* directory trouble cases
*
* 1) on rename or unlink, if the inode being unlinked isn't in the fsync
* log, we must force a full commit before doing an fsync of the directory
* where the unlink was done.
* ---> record transid of last unlink/rename per directory
*
* mkdir foo/some_dir
* normal commit
* rename foo/some_dir foo2/some_dir
* mkdir foo/some_dir
* fsync foo/some_dir/some_file
*
* The fsync above will unlink the original some_dir without recording
* it in its new location (foo2). After a crash, some_dir will be gone
* unless the fsync of some_file forces a full commit
*
* 2) we must log any new names for any file or dir that is in the fsync
* log. ---> check inode while renaming/linking.
*
* 2a) we must log any new names for any file or dir during rename
* when the directory they are being removed from was logged.
* ---> check inode and old parent dir during rename
*
* 2a is actually the more important variant. With the extra logging
* a crash might unlink the old name without recreating the new one
*
* 3) after a crash, we must go through any directories with a link count
* of zero and redo the rm -rf
*
* mkdir f1/foo
* normal commit
* rm -rf f1/foo
* fsync(f1)
*
* The directory f1 was fully removed from the FS, but fsync was never
* called on f1, only its parent dir. After a crash the rm -rf must
* be replayed. This must be able to recurse down the entire
* directory tree. The inode link count fixup code takes care of the
* ugly details.
*/
/*
* stages for the tree walking. The first
* stage (0) is to only pin down the blocks we find
* the second stage (1) is to make sure that all the inodes
* we find in the log are created in the subvolume.
*
* The last stage is to deal with directories and links and extents
* and all the other fun semantics
*/
#define LOG_WALK_PIN_ONLY 0
#define LOG_WALK_REPLAY_INODES 1
#define LOG_WALK_REPLAY_ALL 2
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only);
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid);
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
u64 dirid, int del_all);
/*
* tree logging is a special write ahead log used to make sure that
* fsyncs and O_SYNCs can happen without doing full tree commits.
*
* Full tree commits are expensive because they require commonly
* modified blocks to be recowed, creating many dirty pages in the
* extent tree an 4x-6x higher write load than ext3.
*
* Instead of doing a tree commit on every fsync, we use the
* key ranges and transaction ids to find items for a given file or directory
* that have changed in this transaction. Those items are copied into
* a special tree (one per subvolume root), that tree is written to disk
* and then the fsync is considered complete.
*
* After a crash, items are copied out of the log-tree back into the
* subvolume tree. Any file data extents found are recorded in the extent
* allocation tree, and the log-tree freed.
*
* The log tree is read three times, once to pin down all the extents it is
* using in ram and once, once to create all the inodes logged in the tree
* and once to do all the other items.
*/
/*
* start a sub transaction and setup the log tree
* this increments the log tree writer count to make the people
* syncing the tree wait for us to finish
*/
static int start_log_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
int err = 0;
mutex_lock(&root->log_mutex);
if (root->log_root) {
if (!root->log_start_pid) {
root->log_start_pid = current->pid;
root->log_multiple_pids = false;
} else if (root->log_start_pid != current->pid) {
root->log_multiple_pids = true;
}
root->log_batch++;
atomic_inc(&root->log_writers);
mutex_unlock(&root->log_mutex);
return 0;
}
root->log_multiple_pids = false;
root->log_start_pid = current->pid;
mutex_lock(&root->fs_info->tree_log_mutex);
if (!root->fs_info->log_root_tree) {
ret = btrfs_init_log_root_tree(trans, root->fs_info);
if (ret)
err = ret;
}
if (err == 0 && !root->log_root) {
ret = btrfs_add_log_tree(trans, root);
if (ret)
err = ret;
}
mutex_unlock(&root->fs_info->tree_log_mutex);
root->log_batch++;
atomic_inc(&root->log_writers);
mutex_unlock(&root->log_mutex);
return err;
}
/*
* returns 0 if there was a log transaction running and we were able
* to join, or returns -ENOENT if there were not transactions
* in progress
*/
static int join_running_log_trans(struct btrfs_root *root)
{
int ret = -ENOENT;
smp_mb();
if (!root->log_root)
return -ENOENT;
mutex_lock(&root->log_mutex);
if (root->log_root) {
ret = 0;
atomic_inc(&root->log_writers);
}
mutex_unlock(&root->log_mutex);
return ret;
}
/*
* This either makes the current running log transaction wait
* until you call btrfs_end_log_trans() or it makes any future
* log transactions wait until you call btrfs_end_log_trans()
*/
int btrfs_pin_log_trans(struct btrfs_root *root)
{
int ret = -ENOENT;
mutex_lock(&root->log_mutex);
atomic_inc(&root->log_writers);
mutex_unlock(&root->log_mutex);
return ret;
}
/*
* indicate we're done making changes to the log tree
* and wake up anyone waiting to do a sync
*/
void btrfs_end_log_trans(struct btrfs_root *root)
{
if (atomic_dec_and_test(&root->log_writers)) {
smp_mb();
if (waitqueue_active(&root->log_writer_wait))
wake_up(&root->log_writer_wait);
}
}
/*
* the walk control struct is used to pass state down the chain when
* processing the log tree. The stage field tells us which part
* of the log tree processing we are currently doing. The others
* are state fields used for that specific part
*/
struct walk_control {
/* should we free the extent on disk when done? This is used
* at transaction commit time while freeing a log tree
*/
int free;
/* should we write out the extent buffer? This is used
* while flushing the log tree to disk during a sync
*/
int write;
/* should we wait for the extent buffer io to finish? Also used
* while flushing the log tree to disk for a sync
*/
int wait;
/* pin only walk, we record which extents on disk belong to the
* log trees
*/
int pin;
/* what stage of the replay code we're currently in */
int stage;
/* the root we are currently replaying */
struct btrfs_root *replay_dest;
/* the trans handle for the current replay */
struct btrfs_trans_handle *trans;
/* the function that gets used to process blocks we find in the
* tree. Note the extent_buffer might not be up to date when it is
* passed in, and it must be checked or read if you need the data
* inside it
*/
int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
struct walk_control *wc, u64 gen);
};
/*
* process_func used to pin down extents, write them or wait on them
*/
static int process_one_buffer(struct btrfs_root *log,
struct extent_buffer *eb,
struct walk_control *wc, u64 gen)
{
if (wc->pin)
btrfs_pin_extent_for_log_replay(wc->trans,
log->fs_info->extent_root,
eb->start, eb->len);
if (btrfs_buffer_uptodate(eb, gen, 0)) {
if (wc->write)
btrfs_write_tree_block(eb);
if (wc->wait)
btrfs_wait_tree_block_writeback(eb);
}
return 0;
}
/*
* Item overwrite used by replay and tree logging. eb, slot and key all refer
* to the src data we are copying out.
*
* root is the tree we are copying into, and path is a scratch
* path for use in this function (it should be released on entry and
* will be released on exit).
*
* If the key is already in the destination tree the existing item is
* overwritten. If the existing item isn't big enough, it is extended.
* If it is too large, it is truncated.
*
* If the key isn't in the destination yet, a new item is inserted.
*/
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret;
u32 item_size;
u64 saved_i_size = 0;
int save_old_i_size = 0;
unsigned long src_ptr;
unsigned long dst_ptr;
int overwrite_root = 0;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
overwrite_root = 1;
item_size = btrfs_item_size_nr(eb, slot);
src_ptr = btrfs_item_ptr_offset(eb, slot);
/* look for the key in the destination tree */
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret == 0) {
char *src_copy;
char *dst_copy;
u32 dst_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
if (dst_size != item_size)
goto insert;
if (item_size == 0) {
btrfs_release_path(path);
return 0;
}
dst_copy = kmalloc(item_size, GFP_NOFS);
src_copy = kmalloc(item_size, GFP_NOFS);
if (!dst_copy || !src_copy) {
btrfs_release_path(path);
kfree(dst_copy);
kfree(src_copy);
return -ENOMEM;
}
read_extent_buffer(eb, src_copy, src_ptr, item_size);
dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
item_size);
ret = memcmp(dst_copy, src_copy, item_size);
kfree(dst_copy);
kfree(src_copy);
/*
* they have the same contents, just return, this saves
* us from cowing blocks in the destination tree and doing
* extra writes that may not have been done by a previous
* sync
*/
if (ret == 0) {
btrfs_release_path(path);
return 0;
}
}
insert:
btrfs_release_path(path);
/* try to insert the key into the destination tree */
ret = btrfs_insert_empty_item(trans, root, path,
key, item_size);
/* make sure any existing item is the correct size */
if (ret == -EEXIST) {
u32 found_size;
found_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
if (found_size > item_size)
btrfs_truncate_item(trans, root, path, item_size, 1);
else if (found_size < item_size)
btrfs_extend_item(trans, root, path,
item_size - found_size);
} else if (ret) {
return ret;
}
dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
path->slots[0]);
/* don't overwrite an existing inode if the generation number
* was logged as zero. This is done when the tree logging code
* is just logging an inode to make sure it exists after recovery.
*
* Also, don't overwrite i_size on directories during replay.
* log replay inserts and removes directory items based on the
* state of the tree found in the subvolume, and i_size is modified
* as it goes
*/
if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
struct btrfs_inode_item *src_item;
struct btrfs_inode_item *dst_item;
src_item = (struct btrfs_inode_item *)src_ptr;
dst_item = (struct btrfs_inode_item *)dst_ptr;
if (btrfs_inode_generation(eb, src_item) == 0)
goto no_copy;
if (overwrite_root &&
S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
save_old_i_size = 1;
saved_i_size = btrfs_inode_size(path->nodes[0],
dst_item);
}
}
copy_extent_buffer(path->nodes[0], eb, dst_ptr,
src_ptr, item_size);
if (save_old_i_size) {
struct btrfs_inode_item *dst_item;
dst_item = (struct btrfs_inode_item *)dst_ptr;
btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
}
/* make sure the generation is filled in */
if (key->type == BTRFS_INODE_ITEM_KEY) {
struct btrfs_inode_item *dst_item;
dst_item = (struct btrfs_inode_item *)dst_ptr;
if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
btrfs_set_inode_generation(path->nodes[0], dst_item,
trans->transid);
}
}
no_copy:
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
return 0;
}
/*
* simple helper to read an inode off the disk from a given root
* This can only be called for subvolume roots and not for the log
*/
static noinline struct inode *read_one_inode(struct btrfs_root *root,
u64 objectid)
{
struct btrfs_key key;
struct inode *inode;
key.objectid = objectid;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
if (IS_ERR(inode)) {
inode = NULL;
} else if (is_bad_inode(inode)) {
iput(inode);
inode = NULL;
}
return inode;
}
/* replays a single extent in 'eb' at 'slot' with 'key' into the
* subvolume 'root'. path is released on entry and should be released
* on exit.
*
* extents in the log tree have not been allocated out of the extent
* tree yet. So, this completes the allocation, taking a reference
* as required if the extent already exists or creating a new extent
* if it isn't in the extent allocation tree yet.
*
* The extent is inserted into the file, dropping any existing extents
* from the file that overlap the new one.
*/
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int found_type;
u64 mask = root->sectorsize - 1;
u64 extent_end;
u64 alloc_hint;
u64 start = key->offset;
u64 saved_nbytes;
struct btrfs_file_extent_item *item;
struct inode *inode = NULL;
unsigned long size;
int ret = 0;
item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
found_type = btrfs_file_extent_type(eb, item);
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC)
extent_end = start + btrfs_file_extent_num_bytes(eb, item);
else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
size = btrfs_file_extent_inline_len(eb, item);
extent_end = (start + size + mask) & ~mask;
} else {
ret = 0;
goto out;
}
inode = read_one_inode(root, key->objectid);
if (!inode) {
ret = -EIO;
goto out;
}
/*
* first check to see if we already have this extent in the
* file. This must be done before the btrfs_drop_extents run
* so we don't try to drop this extent.
*/
ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
start, 0);
if (ret == 0 &&
(found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
struct btrfs_file_extent_item cmp1;
struct btrfs_file_extent_item cmp2;
struct btrfs_file_extent_item *existing;
struct extent_buffer *leaf;
leaf = path->nodes[0];
existing = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
read_extent_buffer(eb, &cmp1, (unsigned long)item,
sizeof(cmp1));
read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
sizeof(cmp2));
/*
* we already have a pointer to this exact extent,
* we don't have to do anything
*/
if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
btrfs_release_path(path);
goto out;
}
}
btrfs_release_path(path);
saved_nbytes = inode_get_bytes(inode);
/* drop any overlapping extents */
ret = btrfs_drop_extents(trans, root, inode, start, extent_end,
&alloc_hint, 1);
BUG_ON(ret);
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
u64 offset;
unsigned long dest_offset;
struct btrfs_key ins;
ret = btrfs_insert_empty_item(trans, root, path, key,
sizeof(*item));
BUG_ON(ret);
dest_offset = btrfs_item_ptr_offset(path->nodes[0],
path->slots[0]);
copy_extent_buffer(path->nodes[0], eb, dest_offset,
(unsigned long)item, sizeof(*item));
ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
ins.type = BTRFS_EXTENT_ITEM_KEY;
offset = key->offset - btrfs_file_extent_offset(eb, item);
if (ins.objectid > 0) {
u64 csum_start;
u64 csum_end;
LIST_HEAD(ordered_sums);
/*
* is this extent already allocated in the extent
* allocation tree? If so, just add a reference
*/
ret = btrfs_lookup_extent(root, ins.objectid,
ins.offset);
if (ret == 0) {
ret = btrfs_inc_extent_ref(trans, root,
ins.objectid, ins.offset,
0, root->root_key.objectid,
key->objectid, offset, 0);
BUG_ON(ret);
} else {
/*
* insert the extent pointer in the extent
* allocation tree
*/
ret = btrfs_alloc_logged_file_extent(trans,
root, root->root_key.objectid,
key->objectid, offset, &ins);
BUG_ON(ret);
}
btrfs_release_path(path);
if (btrfs_file_extent_compression(eb, item)) {
csum_start = ins.objectid;
csum_end = csum_start + ins.offset;
} else {
csum_start = ins.objectid +
btrfs_file_extent_offset(eb, item);
csum_end = csum_start +
btrfs_file_extent_num_bytes(eb, item);
}
ret = btrfs_lookup_csums_range(root->log_root,
csum_start, csum_end - 1,
&ordered_sums, 0);
BUG_ON(ret);
while (!list_empty(&ordered_sums)) {
struct btrfs_ordered_sum *sums;
sums = list_entry(ordered_sums.next,
struct btrfs_ordered_sum,
list);
ret = btrfs_csum_file_blocks(trans,
root->fs_info->csum_root,
sums);
BUG_ON(ret);
list_del(&sums->list);
kfree(sums);
}
} else {
btrfs_release_path(path);
}
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
/* inline extents are easy, we just overwrite them */
ret = overwrite_item(trans, root, path, eb, slot, key);
BUG_ON(ret);
}
inode_set_bytes(inode, saved_nbytes);
ret = btrfs_update_inode(trans, root, inode);
out:
if (inode)
iput(inode);
return ret;
}
/*
* when cleaning up conflicts between the directory names in the
* subvolume, directory names in the log and directory names in the
* inode back references, we may have to unlink inodes from directories.
*
* This is a helper function to do the unlink of a specific directory
* item
*/
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct inode *dir,
struct btrfs_dir_item *di)
{
struct inode *inode;
char *name;
int name_len;
struct extent_buffer *leaf;
struct btrfs_key location;
int ret;
leaf = path->nodes[0];
btrfs_dir_item_key_to_cpu(leaf, di, &location);
name_len = btrfs_dir_name_len(leaf, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name)
return -ENOMEM;
read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
btrfs_release_path(path);
inode = read_one_inode(root, location.objectid);
if (!inode) {
kfree(name);
return -EIO;
}
ret = link_to_fixup_dir(trans, root, path, location.objectid);
BUG_ON(ret);
ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
BUG_ON(ret);
kfree(name);
iput(inode);
btrfs_run_delayed_items(trans, root);
return ret;
}
/*
* helper function to see if a given name and sequence number found
* in an inode back reference are already in a directory and correctly
* point to this inode
*/
static noinline int inode_in_dir(struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, u64 objectid, u64 index,
const char *name, int name_len)
{
struct btrfs_dir_item *di;
struct btrfs_key location;
int match = 0;
di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
index, name, name_len, 0);
if (di && !IS_ERR(di)) {
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
if (location.objectid != objectid)
goto out;
} else
goto out;
btrfs_release_path(path);
di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
if (di && !IS_ERR(di)) {
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
if (location.objectid != objectid)
goto out;
} else
goto out;
match = 1;
out:
btrfs_release_path(path);
return match;
}
/*
* helper function to check a log tree for a named back reference in
* an inode. This is used to decide if a back reference that is
* found in the subvolume conflicts with what we find in the log.
*
* inode backreferences may have multiple refs in a single item,
* during replay we process one reference at a time, and we don't
* want to delete valid links to a file from the subvolume if that
* link is also in the log.
*/
static noinline int backref_in_log(struct btrfs_root *log,
struct btrfs_key *key,
char *name, int namelen)
{
struct btrfs_path *path;
struct btrfs_inode_ref *ref;
unsigned long ptr;
unsigned long ptr_end;
unsigned long name_ptr;
int found_name_len;
int item_size;
int ret;
int match = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
if (ret != 0)
goto out;
item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
ref = (struct btrfs_inode_ref *)ptr;
found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
if (found_name_len == namelen) {
name_ptr = (unsigned long)(ref + 1);
ret = memcmp_extent_buffer(path->nodes[0], name,
name_ptr, namelen);
if (ret == 0) {
match = 1;
goto out;
}
}
ptr = (unsigned long)(ref + 1) + found_name_len;
}
out:
btrfs_free_path(path);
return match;
}
/*
* replay one inode back reference item found in the log tree.
* eb, slot and key refer to the buffer and key found in the log tree.
* root is the destination we are replaying into, and path is for temp
* use by this function. (it should be released on return).
*/
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
struct btrfs_inode_ref *ref;
struct btrfs_dir_item *di;
struct inode *dir;
struct inode *inode;
unsigned long ref_ptr;
unsigned long ref_end;
char *name;
int namelen;
int ret;
int search_done = 0;
/*
* it is possible that we didn't log all the parent directories
* for a given inode. If we don't find the dir, just don't
* copy the back ref in. The link count fixup code will take
* care of the rest
*/
dir = read_one_inode(root, key->offset);
if (!dir)
return -ENOENT;
inode = read_one_inode(root, key->objectid);
if (!inode) {
iput(dir);
return -EIO;
}
ref_ptr = btrfs_item_ptr_offset(eb, slot);
ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
again:
ref = (struct btrfs_inode_ref *)ref_ptr;
namelen = btrfs_inode_ref_name_len(eb, ref);
name = kmalloc(namelen, GFP_NOFS);
BUG_ON(!name);
read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
/* if we already have a perfect match, we're done */
if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
btrfs_inode_ref_index(eb, ref),
name, namelen)) {
goto out;
}
/*
* look for a conflicting back reference in the metadata.
* if we find one we have to unlink that name of the file
* before we add our new link. Later on, we overwrite any
* existing back reference, and we don't want to create
* dangling pointers in the directory.
*/
if (search_done)
goto insert;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret == 0) {
char *victim_name;
int victim_name_len;
struct btrfs_inode_ref *victim_ref;
unsigned long ptr;
unsigned long ptr_end;
struct extent_buffer *leaf = path->nodes[0];
/* are we trying to overwrite a back ref for the root directory
* if so, just jump out, we're done
*/
if (key->objectid == key->offset)
goto out_nowrite;
/* check all the names in this back reference to see
* if they are in the log. if so, we allow them to stay
* otherwise they must be unlinked as a conflict
*/
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
while (ptr < ptr_end) {
victim_ref = (struct btrfs_inode_ref *)ptr;
victim_name_len = btrfs_inode_ref_name_len(leaf,
victim_ref);
victim_name = kmalloc(victim_name_len, GFP_NOFS);
BUG_ON(!victim_name);
read_extent_buffer(leaf, victim_name,
(unsigned long)(victim_ref + 1),
victim_name_len);
if (!backref_in_log(log, key, victim_name,
victim_name_len)) {
btrfs_inc_nlink(inode);
btrfs_release_path(path);
ret = btrfs_unlink_inode(trans, root, dir,
inode, victim_name,
victim_name_len);
btrfs_run_delayed_items(trans, root);
}
kfree(victim_name);
ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
}
BUG_ON(ret);
/*
* NOTE: we have searched root tree and checked the
* coresponding ref, it does not need to check again.
*/
search_done = 1;
}
btrfs_release_path(path);
/* look for a conflicting sequence number */
di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
btrfs_inode_ref_index(eb, ref),
name, namelen, 0);
if (di && !IS_ERR(di)) {
ret = drop_one_dir_item(trans, root, path, dir, di);
BUG_ON(ret);
}
btrfs_release_path(path);
/* look for a conflicing name */
di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
name, namelen, 0);
if (di && !IS_ERR(di)) {
ret = drop_one_dir_item(trans, root, path, dir, di);
BUG_ON(ret);
}
btrfs_release_path(path);
insert:
/* insert our name */
ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
btrfs_inode_ref_index(eb, ref));
BUG_ON(ret);
btrfs_update_inode(trans, root, inode);
out:
ref_ptr = (unsigned long)(ref + 1) + namelen;
kfree(name);
if (ref_ptr < ref_end)
goto again;
/* finally write the back reference in the inode */
ret = overwrite_item(trans, root, path, eb, slot, key);
BUG_ON(ret);
out_nowrite:
btrfs_release_path(path);
iput(dir);
iput(inode);
return 0;
}
static int insert_orphan_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 offset)
{
int ret;
ret = btrfs_find_orphan_item(root, offset);
if (ret > 0)
ret = btrfs_insert_orphan_item(trans, root, offset);
return ret;
}
/*
* There are a few corners where the link count of the file can't
* be properly maintained during replay. So, instead of adding
* lots of complexity to the log code, we just scan the backrefs
* for any file that has been through replay.
*
* The scan will update the link count on the inode to reflect the
* number of back refs found. If it goes down to zero, the iput
* will free the inode.
*/
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
u64 nlink = 0;
unsigned long ptr;
unsigned long ptr_end;
int name_len;
u64 ino = btrfs_ino(inode);
key.objectid = ino;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
break;
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0]);
if (key.objectid != ino ||
key.type != BTRFS_INODE_REF_KEY)
break;
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
while (ptr < ptr_end) {
struct btrfs_inode_ref *ref;
ref = (struct btrfs_inode_ref *)ptr;
name_len = btrfs_inode_ref_name_len(path->nodes[0],
ref);
ptr = (unsigned long)(ref + 1) + name_len;
nlink++;
}
if (key.offset == 0)
break;
key.offset--;
btrfs_release_path(path);
}
btrfs_release_path(path);
if (nlink != inode->i_nlink) {
set_nlink(inode, nlink);
btrfs_update_inode(trans, root, inode);
}
BTRFS_I(inode)->index_cnt = (u64)-1;
if (inode->i_nlink == 0) {
if (S_ISDIR(inode->i_mode)) {
ret = replay_dir_deletes(trans, root, NULL, path,
ino, 1);
BUG_ON(ret);
}
ret = insert_orphan_item(trans, root, ino);
BUG_ON(ret);
}
btrfs_free_path(path);
return 0;
}
static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
int ret;
struct btrfs_key key;
struct inode *inode;
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
break;
if (ret == 1) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
key.type != BTRFS_ORPHAN_ITEM_KEY)
break;
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
btrfs_release_path(path);
inode = read_one_inode(root, key.offset);
if (!inode)
return -EIO;
ret = fixup_inode_link_count(trans, root, inode);
BUG_ON(ret);
iput(inode);
/*
* fixup on a directory may create new entries,
* make sure we always look for the highset possible
* offset
*/
key.offset = (u64)-1;
}
ret = 0;
out:
btrfs_release_path(path);
return ret;
}
/*
* record a given inode in the fixup dir so we can check its link
* count when replay is done. The link count is incremented here
* so the inode won't go away until we check it
*/
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid)
{
struct btrfs_key key;
int ret = 0;
struct inode *inode;
inode = read_one_inode(root, objectid);
if (!inode)
return -EIO;
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
key.offset = objectid;
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
btrfs_release_path(path);
if (ret == 0) {
btrfs_inc_nlink(inode);
ret = btrfs_update_inode(trans, root, inode);
} else if (ret == -EEXIST) {
ret = 0;
} else {
BUG();
}
iput(inode);
return ret;
}
/*
* when replaying the log for a directory, we only insert names
* for inodes that actually exist. This means an fsync on a directory
* does not implicitly fsync all the new files in it
*/
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, u64 index,
char *name, int name_len, u8 type,
struct btrfs_key *location)
{
struct inode *inode;
struct inode *dir;
int ret;
inode = read_one_inode(root, location->objectid);
if (!inode)
return -ENOENT;
dir = read_one_inode(root, dirid);
if (!dir) {
iput(inode);
return -EIO;
}
ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
/* FIXME, put inode into FIXUP list */
iput(inode);
iput(dir);
return ret;
}
/*
* take a single entry in a log directory item and replay it into
* the subvolume.
*
* if a conflicting item exists in the subdirectory already,
* the inode it points to is unlinked and put into the link count
* fix up tree.
*
* If a name from the log points to a file or directory that does
* not exist in the FS, it is skipped. fsyncs on directories
* do not force down inodes inside that directory, just changes to the
* names or unlinks in a directory.
*/
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb,
struct btrfs_dir_item *di,
struct btrfs_key *key)
{
char *name;
int name_len;
struct btrfs_dir_item *dst_di;
struct btrfs_key found_key;
struct btrfs_key log_key;
struct inode *dir;
u8 log_type;
int exists;
int ret;
dir = read_one_inode(root, key->objectid);
if (!dir)
return -EIO;
name_len = btrfs_dir_name_len(eb, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name)
return -ENOMEM;
log_type = btrfs_dir_type(eb, di);
read_extent_buffer(eb, name, (unsigned long)(di + 1),
name_len);
btrfs_dir_item_key_to_cpu(eb, di, &log_key);
exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
if (exists == 0)
exists = 1;
else
exists = 0;
btrfs_release_path(path);
if (key->type == BTRFS_DIR_ITEM_KEY) {
dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
name, name_len, 1);
} else if (key->type == BTRFS_DIR_INDEX_KEY) {
dst_di = btrfs_lookup_dir_index_item(trans, root, path,
key->objectid,
key->offset, name,
name_len, 1);
} else {
BUG();
}
if (IS_ERR_OR_NULL(dst_di)) {
/* we need a sequence number to insert, so we only
* do inserts for the BTRFS_DIR_INDEX_KEY types
*/
if (key->type != BTRFS_DIR_INDEX_KEY)
goto out;
goto insert;
}
btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
/* the existing item matches the logged item */
if (found_key.objectid == log_key.objectid &&
found_key.type == log_key.type &&
found_key.offset == log_key.offset &&
btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
goto out;
}
/*
* don't drop the conflicting directory entry if the inode
* for the new entry doesn't exist
*/
if (!exists)
goto out;
ret = drop_one_dir_item(trans, root, path, dir, dst_di);
BUG_ON(ret);
if (key->type == BTRFS_DIR_INDEX_KEY)
goto insert;
out:
btrfs_release_path(path);
kfree(name);
iput(dir);
return 0;
insert:
btrfs_release_path(path);
ret = insert_one_name(trans, root, path, key->objectid, key->offset,
name, name_len, log_type, &log_key);
BUG_ON(ret && ret != -ENOENT);
goto out;
}
/*
* find all the names in a directory item and reconcile them into
* the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
* one name in a directory item, but the same code gets used for
* both directory index types
*/
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret;
u32 item_size = btrfs_item_size_nr(eb, slot);
struct btrfs_dir_item *di;
int name_len;
unsigned long ptr;
unsigned long ptr_end;
ptr = btrfs_item_ptr_offset(eb, slot);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
di = (struct btrfs_dir_item *)ptr;
if (verify_dir_item(root, eb, di))
return -EIO;
name_len = btrfs_dir_name_len(eb, di);
ret = replay_one_name(trans, root, path, eb, di, key);
BUG_ON(ret);
ptr = (unsigned long)(di + 1);
ptr += name_len;
}
return 0;
}
/*
* directory replay has two parts. There are the standard directory
* items in the log copied from the subvolume, and range items
* created in the log while the subvolume was logged.
*
* The range items tell us which parts of the key space the log
* is authoritative for. During replay, if a key in the subvolume
* directory is in a logged range item, but not actually in the log
* that means it was deleted from the directory before the fsync
* and should be removed.
*/
static noinline int find_dir_range(struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, int key_type,
u64 *start_ret, u64 *end_ret)
{
struct btrfs_key key;
u64 found_end;
struct btrfs_dir_log_item *item;
int ret;
int nritems;
if (*start_ret == (u64)-1)
return 1;
key.objectid = dirid;
key.type = key_type;
key.offset = *start_ret;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (ret > 0) {
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
}
if (ret != 0)
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != key_type || key.objectid != dirid) {
ret = 1;
goto next;
}
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
found_end = btrfs_dir_log_end(path->nodes[0], item);
if (*start_ret >= key.offset && *start_ret <= found_end) {
ret = 0;
*start_ret = key.offset;
*end_ret = found_end;
goto out;
}
ret = 1;
next:
/* check the next slot in the tree to see if it is a valid item */
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret)
goto out;
} else {
path->slots[0]++;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != key_type || key.objectid != dirid) {
ret = 1;
goto out;
}
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
found_end = btrfs_dir_log_end(path->nodes[0], item);
*start_ret = key.offset;
*end_ret = found_end;
ret = 0;
out:
btrfs_release_path(path);
return ret;
}
/*
* this looks for a given directory item in the log. If the directory
* item is not in the log, the item is removed and the inode it points
* to is unlinked
*/
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
struct btrfs_path *log_path,
struct inode *dir,
struct btrfs_key *dir_key)
{
int ret;
struct extent_buffer *eb;
int slot;
u32 item_size;
struct btrfs_dir_item *di;
struct btrfs_dir_item *log_di;
int name_len;
unsigned long ptr;
unsigned long ptr_end;
char *name;
struct inode *inode;
struct btrfs_key location;
again:
eb = path->nodes[0];
slot = path->slots[0];
item_size = btrfs_item_size_nr(eb, slot);
ptr = btrfs_item_ptr_offset(eb, slot);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
di = (struct btrfs_dir_item *)ptr;
if (verify_dir_item(root, eb, di)) {
ret = -EIO;
goto out;
}
name_len = btrfs_dir_name_len(eb, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name) {
ret = -ENOMEM;
goto out;
}
read_extent_buffer(eb, name, (unsigned long)(di + 1),
name_len);
log_di = NULL;
if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
log_di = btrfs_lookup_dir_item(trans, log, log_path,
dir_key->objectid,
name, name_len, 0);
} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
log_di = btrfs_lookup_dir_index_item(trans, log,
log_path,
dir_key->objectid,
dir_key->offset,
name, name_len, 0);
}
if (IS_ERR_OR_NULL(log_di)) {
btrfs_dir_item_key_to_cpu(eb, di, &location);
btrfs_release_path(path);
btrfs_release_path(log_path);
inode = read_one_inode(root, location.objectid);
if (!inode) {
kfree(name);
return -EIO;
}
ret = link_to_fixup_dir(trans, root,
path, location.objectid);
BUG_ON(ret);
btrfs_inc_nlink(inode);
ret = btrfs_unlink_inode(trans, root, dir, inode,
name, name_len);
BUG_ON(ret);
btrfs_run_delayed_items(trans, root);
kfree(name);
iput(inode);
/* there might still be more names under this key
* check and repeat if required
*/
ret = btrfs_search_slot(NULL, root, dir_key, path,
0, 0);
if (ret == 0)
goto again;
ret = 0;
goto out;
}
btrfs_release_path(log_path);
kfree(name);
ptr = (unsigned long)(di + 1);
ptr += name_len;
}
ret = 0;
out:
btrfs_release_path(path);
btrfs_release_path(log_path);
return ret;
}
/*
* deletion replay happens before we copy any new directory items
* out of the log or out of backreferences from inodes. It
* scans the log to find ranges of keys that log is authoritative for,
* and then scans the directory to find items in those ranges that are
* not present in the log.
*
* Anything we don't find in the log is unlinked and removed from the
* directory.
*/
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
u64 dirid, int del_all)
{
u64 range_start;
u64 range_end;
int key_type = BTRFS_DIR_LOG_ITEM_KEY;
int ret = 0;
struct btrfs_key dir_key;
struct btrfs_key found_key;
struct btrfs_path *log_path;
struct inode *dir;
dir_key.objectid = dirid;
dir_key.type = BTRFS_DIR_ITEM_KEY;
log_path = btrfs_alloc_path();
if (!log_path)
return -ENOMEM;
dir = read_one_inode(root, dirid);
/* it isn't an error if the inode isn't there, that can happen
* because we replay the deletes before we copy in the inode item
* from the log
*/
if (!dir) {
btrfs_free_path(log_path);
return 0;
}
again:
range_start = 0;
range_end = 0;
while (1) {
if (del_all)
range_end = (u64)-1;
else {
ret = find_dir_range(log, path, dirid, key_type,
&range_start, &range_end);
if (ret != 0)
break;
}
dir_key.offset = range_start;
while (1) {
int nritems;
ret = btrfs_search_slot(NULL, root, &dir_key, path,
0, 0);
if (ret < 0)
goto out;
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret)
break;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != dirid ||
found_key.type != dir_key.type)
goto next_type;
if (found_key.offset > range_end)
break;
ret = check_item_in_log(trans, root, log, path,
log_path, dir,
&found_key);
BUG_ON(ret);
if (found_key.offset == (u64)-1)
break;
dir_key.offset = found_key.offset + 1;
}
btrfs_release_path(path);
if (range_end == (u64)-1)
break;
range_start = range_end + 1;
}
next_type:
ret = 0;
if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
key_type = BTRFS_DIR_LOG_INDEX_KEY;
dir_key.type = BTRFS_DIR_INDEX_KEY;
btrfs_release_path(path);
goto again;
}
out:
btrfs_release_path(path);
btrfs_free_path(log_path);
iput(dir);
return ret;
}
/*
* the process_func used to replay items from the log tree. This
* gets called in two different stages. The first stage just looks
* for inodes and makes sure they are all copied into the subvolume.
*
* The second stage copies all the other item types from the log into
* the subvolume. The two stage approach is slower, but gets rid of
* lots of complexity around inodes referencing other inodes that exist
* only in the log (references come from either directory items or inode
* back refs).
*/
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
struct walk_control *wc, u64 gen)
{
int nritems;
struct btrfs_path *path;
struct btrfs_root *root = wc->replay_dest;
struct btrfs_key key;
int level;
int i;
int ret;
ret = btrfs_read_buffer(eb, gen);
if (ret)
return ret;
level = btrfs_header_level(eb);
if (level != 0)
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
nritems = btrfs_header_nritems(eb);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(eb, &key, i);
/* inode keys are done during the first stage */
if (key.type == BTRFS_INODE_ITEM_KEY &&
wc->stage == LOG_WALK_REPLAY_INODES) {
struct btrfs_inode_item *inode_item;
u32 mode;
inode_item = btrfs_item_ptr(eb, i,
struct btrfs_inode_item);
mode = btrfs_inode_mode(eb, inode_item);
if (S_ISDIR(mode)) {
ret = replay_dir_deletes(wc->trans,
root, log, path, key.objectid, 0);
BUG_ON(ret);
}
ret = overwrite_item(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
/* for regular files, make sure corresponding
* orhpan item exist. extents past the new EOF
* will be truncated later by orphan cleanup.
*/
if (S_ISREG(mode)) {
ret = insert_orphan_item(wc->trans, root,
key.objectid);
BUG_ON(ret);
}
ret = link_to_fixup_dir(wc->trans, root,
path, key.objectid);
BUG_ON(ret);
}
if (wc->stage < LOG_WALK_REPLAY_ALL)
continue;
/* these keys are simply copied */
if (key.type == BTRFS_XATTR_ITEM_KEY) {
ret = overwrite_item(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
} else if (key.type == BTRFS_INODE_REF_KEY) {
ret = add_inode_ref(wc->trans, root, log, path,
eb, i, &key);
BUG_ON(ret && ret != -ENOENT);
} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
ret = replay_one_extent(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
} else if (key.type == BTRFS_DIR_ITEM_KEY ||
key.type == BTRFS_DIR_INDEX_KEY) {
ret = replay_one_dir_item(wc->trans, root, path,
eb, i, &key);
BUG_ON(ret);
}
}
btrfs_free_path(path);
return 0;
}
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level,
struct walk_control *wc)
{
u64 root_owner;
u64 bytenr;
u64 ptr_gen;
struct extent_buffer *next;
struct extent_buffer *cur;
struct extent_buffer *parent;
u32 blocksize;
int ret = 0;
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
while (*level > 0) {
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
cur = path->nodes[*level];
if (btrfs_header_level(cur) != *level)
WARN_ON(1);
if (path->slots[*level] >=
btrfs_header_nritems(cur))
break;
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
blocksize = btrfs_level_size(root, *level - 1);
parent = path->nodes[*level];
root_owner = btrfs_header_owner(parent);
next = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!next)
return -ENOMEM;
if (*level == 1) {
ret = wc->process_func(root, next, wc, ptr_gen);
if (ret)
return ret;
path->slots[*level]++;
if (wc->free) {
ret = btrfs_read_buffer(next, ptr_gen);
if (ret) {
free_extent_buffer(next);
return ret;
}
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
clean_tree_block(trans, root, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
WARN_ON(root_owner !=
BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_and_pin_reserved_extent(root,
bytenr, blocksize);
BUG_ON(ret); /* -ENOMEM or logic errors */
}
free_extent_buffer(next);
continue;
}
ret = btrfs_read_buffer(next, ptr_gen);
if (ret) {
free_extent_buffer(next);
return ret;
}
WARN_ON(*level <= 0);
if (path->nodes[*level-1])
free_extent_buffer(path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(next);
path->slots[*level] = 0;
cond_resched();
}
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
cond_resched();
return 0;
}
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level,
struct walk_control *wc)
{
u64 root_owner;
int i;
int slot;
int ret;
for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
path->slots[i]++;
*level = i;
WARN_ON(*level == 0);
return 0;
} else {
struct extent_buffer *parent;
if (path->nodes[*level] == root->node)
parent = path->nodes[*level];
else
parent = path->nodes[*level + 1];
root_owner = btrfs_header_owner(parent);
ret = wc->process_func(root, path->nodes[*level], wc,
btrfs_header_generation(path->nodes[*level]));
if (ret)
return ret;
if (wc->free) {
struct extent_buffer *next;
next = path->nodes[*level];
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
clean_tree_block(trans, root, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_and_pin_reserved_extent(root,
path->nodes[*level]->start,
path->nodes[*level]->len);
BUG_ON(ret);
}
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
static int walk_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *log, struct walk_control *wc)
{
int ret = 0;
int wret;
int level;
struct btrfs_path *path;
int i;
int orig_level;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
level = btrfs_header_level(log->node);
orig_level = level;
path->nodes[level] = log->node;
extent_buffer_get(log->node);
path->slots[level] = 0;
while (1) {
wret = walk_down_log_tree(trans, log, path, &level, wc);
if (wret > 0)
break;
if (wret < 0) {
ret = wret;
goto out;
}
wret = walk_up_log_tree(trans, log, path, &level, wc);
if (wret > 0)
break;
if (wret < 0) {
ret = wret;
goto out;
}
}
/* was the root node processed? if not, catch it here */
if (path->nodes[orig_level]) {
ret = wc->process_func(log, path->nodes[orig_level], wc,
btrfs_header_generation(path->nodes[orig_level]));
if (ret)
goto out;
if (wc->free) {
struct extent_buffer *next;
next = path->nodes[orig_level];
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
clean_tree_block(trans, log, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
WARN_ON(log->root_key.objectid !=
BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_and_pin_reserved_extent(log, next->start,
next->len);
BUG_ON(ret); /* -ENOMEM or logic errors */
}
}
out:
for (i = 0; i <= orig_level; i++) {
if (path->nodes[i]) {
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
}
btrfs_free_path(path);
return ret;
}
/*
* helper function to update the item for a given subvolumes log root
* in the tree of log roots
*/
static int update_log_root(struct btrfs_trans_handle *trans,
struct btrfs_root *log)
{
int ret;
if (log->log_transid == 1) {
/* insert root item on the first sync */
ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
&log->root_key, &log->root_item);
} else {
ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
&log->root_key, &log->root_item);
}
return ret;
}
static int wait_log_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long transid)
{
DEFINE_WAIT(wait);
int index = transid % 2;
/*
* we only allow two pending log transactions at a time,
* so we know that if ours is more than 2 older than the
* current transaction, we're done
*/
do {
prepare_to_wait(&root->log_commit_wait[index],
&wait, TASK_UNINTERRUPTIBLE);
mutex_unlock(&root->log_mutex);
if (root->fs_info->last_trans_log_full_commit !=
trans->transid && root->log_transid < transid + 2 &&
atomic_read(&root->log_commit[index]))
schedule();
finish_wait(&root->log_commit_wait[index], &wait);
mutex_lock(&root->log_mutex);
} while (root->fs_info->last_trans_log_full_commit !=
trans->transid && root->log_transid < transid + 2 &&
atomic_read(&root->log_commit[index]));
return 0;
}
static void wait_for_writer(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
DEFINE_WAIT(wait);
while (root->fs_info->last_trans_log_full_commit !=
trans->transid && atomic_read(&root->log_writers)) {
prepare_to_wait(&root->log_writer_wait,
&wait, TASK_UNINTERRUPTIBLE);
mutex_unlock(&root->log_mutex);
if (root->fs_info->last_trans_log_full_commit !=
trans->transid && atomic_read(&root->log_writers))
schedule();
mutex_lock(&root->log_mutex);
finish_wait(&root->log_writer_wait, &wait);
}
}
/*
* btrfs_sync_log does sends a given tree log down to the disk and
* updates the super blocks to record it. When this call is done,
* you know that any inodes previously logged are safely on disk only
* if it returns 0.
*
* Any other return value means you need to call btrfs_commit_transaction.
* Some of the edge cases for fsyncing directories that have had unlinks
* or renames done in the past mean that sometimes the only safe
* fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
* that has happened.
*/
int btrfs_sync_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int index1;
int index2;
int mark;
int ret;
struct btrfs_root *log = root->log_root;
struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
unsigned long log_transid = 0;
mutex_lock(&root->log_mutex);
index1 = root->log_transid % 2;
if (atomic_read(&root->log_commit[index1])) {
wait_log_commit(trans, root, root->log_transid);
mutex_unlock(&root->log_mutex);
return 0;
}
atomic_set(&root->log_commit[index1], 1);
/* wait for previous tree log sync to complete */
if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
wait_log_commit(trans, root, root->log_transid - 1);
while (1) {
unsigned long batch = root->log_batch;
/* when we're on an ssd, just kick the log commit out */
if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
mutex_unlock(&root->log_mutex);
schedule_timeout_uninterruptible(1);
mutex_lock(&root->log_mutex);
}
wait_for_writer(trans, root);
if (batch == root->log_batch)
break;
}
/* bail out if we need to do a full commit */
if (root->fs_info->last_trans_log_full_commit == trans->transid) {
ret = -EAGAIN;
mutex_unlock(&root->log_mutex);
goto out;
}
log_transid = root->log_transid;
if (log_transid % 2 == 0)
mark = EXTENT_DIRTY;
else
mark = EXTENT_NEW;
/* we start IO on all the marked extents here, but we don't actually
* wait for them until later.
*/
ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
mutex_unlock(&root->log_mutex);
goto out;
}
btrfs_set_root_node(&log->root_item, log->node);
root->log_batch = 0;
root->log_transid++;
log->log_transid = root->log_transid;
root->log_start_pid = 0;
smp_mb();
/*
* IO has been started, blocks of the log tree have WRITTEN flag set
* in their headers. new modifications of the log will be written to
* new positions. so it's safe to allow log writers to go in.
*/
mutex_unlock(&root->log_mutex);
mutex_lock(&log_root_tree->log_mutex);
log_root_tree->log_batch++;
atomic_inc(&log_root_tree->log_writers);
mutex_unlock(&log_root_tree->log_mutex);
ret = update_log_root(trans, log);
mutex_lock(&log_root_tree->log_mutex);
if (atomic_dec_and_test(&log_root_tree->log_writers)) {
smp_mb();
if (waitqueue_active(&log_root_tree->log_writer_wait))
wake_up(&log_root_tree->log_writer_wait);
}
if (ret) {
if (ret != -ENOSPC) {
btrfs_abort_transaction(trans, root, ret);
mutex_unlock(&log_root_tree->log_mutex);
goto out;
}
root->fs_info->last_trans_log_full_commit = trans->transid;
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
mutex_unlock(&log_root_tree->log_mutex);
ret = -EAGAIN;
goto out;
}
index2 = log_root_tree->log_transid % 2;
if (atomic_read(&log_root_tree->log_commit[index2])) {
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
wait_log_commit(trans, log_root_tree,
log_root_tree->log_transid);
mutex_unlock(&log_root_tree->log_mutex);
ret = 0;
goto out;
}
atomic_set(&log_root_tree->log_commit[index2], 1);
if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
wait_log_commit(trans, log_root_tree,
log_root_tree->log_transid - 1);
}
wait_for_writer(trans, log_root_tree);
/*
* now that we've moved on to the tree of log tree roots,
* check the full commit flag again
*/
if (root->fs_info->last_trans_log_full_commit == trans->transid) {
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
mutex_unlock(&log_root_tree->log_mutex);
ret = -EAGAIN;
goto out_wake_log_root;
}
ret = btrfs_write_and_wait_marked_extents(log_root_tree,
&log_root_tree->dirty_log_pages,
EXTENT_DIRTY | EXTENT_NEW);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
mutex_unlock(&log_root_tree->log_mutex);
goto out_wake_log_root;
}
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
btrfs_set_super_log_root(root->fs_info->super_for_commit,
log_root_tree->node->start);
btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
btrfs_header_level(log_root_tree->node));
log_root_tree->log_batch = 0;
log_root_tree->log_transid++;
smp_mb();
mutex_unlock(&log_root_tree->log_mutex);
/*
* nobody else is going to jump in and write the the ctree
* super here because the log_commit atomic below is protecting
* us. We must be called with a transaction handle pinning
* the running transaction open, so a full commit can't hop
* in and cause problems either.
*/
btrfs_scrub_pause_super(root);
write_ctree_super(trans, root->fs_info->tree_root, 1);
btrfs_scrub_continue_super(root);
ret = 0;
mutex_lock(&root->log_mutex);
if (root->last_log_commit < log_transid)
root->last_log_commit = log_transid;
mutex_unlock(&root->log_mutex);
out_wake_log_root:
atomic_set(&log_root_tree->log_commit[index2], 0);
smp_mb();
if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
wake_up(&log_root_tree->log_commit_wait[index2]);
out:
atomic_set(&root->log_commit[index1], 0);
smp_mb();
if (waitqueue_active(&root->log_commit_wait[index1]))
wake_up(&root->log_commit_wait[index1]);
return ret;
}
static void free_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *log)
{
int ret;
u64 start;
u64 end;
struct walk_control wc = {
.free = 1,
.process_func = process_one_buffer
};
ret = walk_log_tree(trans, log, &wc);
BUG_ON(ret);
while (1) {
ret = find_first_extent_bit(&log->dirty_log_pages,
0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
if (ret)
break;
clear_extent_bits(&log->dirty_log_pages, start, end,
EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
}
free_extent_buffer(log->node);
kfree(log);
}
/*
* free all the extents used by the tree log. This should be called
* at commit time of the full transaction
*/
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
{
if (root->log_root) {
free_log_tree(trans, root->log_root);
root->log_root = NULL;
}
return 0;
}
int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
if (fs_info->log_root_tree) {
free_log_tree(trans, fs_info->log_root_tree);
fs_info->log_root_tree = NULL;
}
return 0;
}
/*
* If both a file and directory are logged, and unlinks or renames are
* mixed in, we have a few interesting corners:
*
* create file X in dir Y
* link file X to X.link in dir Y
* fsync file X
* unlink file X but leave X.link
* fsync dir Y
*
* After a crash we would expect only X.link to exist. But file X
* didn't get fsync'd again so the log has back refs for X and X.link.
*
* We solve this by removing directory entries and inode backrefs from the
* log when a file that was logged in the current transaction is
* unlinked. Any later fsync will include the updated log entries, and
* we'll be able to reconstruct the proper directory items from backrefs.
*
* This optimizations allows us to avoid relogging the entire inode
* or the entire directory.
*/
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
struct inode *dir, u64 index)
{
struct btrfs_root *log;
struct btrfs_dir_item *di;
struct btrfs_path *path;
int ret;
int err = 0;
int bytes_del = 0;
u64 dir_ino = btrfs_ino(dir);
if (BTRFS_I(dir)->logged_trans < trans->transid)
return 0;
ret = join_running_log_trans(root);
if (ret)
return 0;
mutex_lock(&BTRFS_I(dir)->log_mutex);
log = root->log_root;
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
goto out_unlock;
}
di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
name, name_len, -1);
if (IS_ERR(di)) {
err = PTR_ERR(di);
goto fail;
}
if (di) {
ret = btrfs_delete_one_dir_name(trans, log, path, di);
bytes_del += name_len;
BUG_ON(ret);
}
btrfs_release_path(path);
di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
index, name, name_len, -1);
if (IS_ERR(di)) {
err = PTR_ERR(di);
goto fail;
}
if (di) {
ret = btrfs_delete_one_dir_name(trans, log, path, di);
bytes_del += name_len;
BUG_ON(ret);
}
/* update the directory size in the log to reflect the names
* we have removed
*/
if (bytes_del) {
struct btrfs_key key;
key.objectid = dir_ino;
key.offset = 0;
key.type = BTRFS_INODE_ITEM_KEY;
btrfs_release_path(path);
ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (ret == 0) {
struct btrfs_inode_item *item;
u64 i_size;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
i_size = btrfs_inode_size(path->nodes[0], item);
if (i_size > bytes_del)
i_size -= bytes_del;
else
i_size = 0;
btrfs_set_inode_size(path->nodes[0], item, i_size);
btrfs_mark_buffer_dirty(path->nodes[0]);
} else
ret = 0;
btrfs_release_path(path);
}
fail:
btrfs_free_path(path);
out_unlock:
mutex_unlock(&BTRFS_I(dir)->log_mutex);
if (ret == -ENOSPC) {
root->fs_info->last_trans_log_full_commit = trans->transid;
ret = 0;
} else if (ret < 0)
btrfs_abort_transaction(trans, root, ret);
btrfs_end_log_trans(root);
return err;
}
/* see comments for btrfs_del_dir_entries_in_log */
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
struct inode *inode, u64 dirid)
{
struct btrfs_root *log;
u64 index;
int ret;
if (BTRFS_I(inode)->logged_trans < trans->transid)
return 0;
ret = join_running_log_trans(root);
if (ret)
return 0;
log = root->log_root;
mutex_lock(&BTRFS_I(inode)->log_mutex);
ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
dirid, &index);
mutex_unlock(&BTRFS_I(inode)->log_mutex);
if (ret == -ENOSPC) {
root->fs_info->last_trans_log_full_commit = trans->transid;
ret = 0;
} else if (ret < 0 && ret != -ENOENT)
btrfs_abort_transaction(trans, root, ret);
btrfs_end_log_trans(root);
return ret;
}
/*
* creates a range item in the log for 'dirid'. first_offset and
* last_offset tell us which parts of the key space the log should
* be considered authoritative for.
*/
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *path,
int key_type, u64 dirid,
u64 first_offset, u64 last_offset)
{
int ret;
struct btrfs_key key;
struct btrfs_dir_log_item *item;
key.objectid = dirid;
key.offset = first_offset;
if (key_type == BTRFS_DIR_ITEM_KEY)
key.type = BTRFS_DIR_LOG_ITEM_KEY;
else
key.type = BTRFS_DIR_LOG_INDEX_KEY;
ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
if (ret)
return ret;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
return 0;
}
/*
* log all the items included in the current transaction for a given
* directory. This also creates the range items in the log tree required
* to replay anything deleted before the fsync
*/
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path, int key_type,
u64 min_offset, u64 *last_offset_ret)
{
struct btrfs_key min_key;
struct btrfs_key max_key;
struct btrfs_root *log = root->log_root;
struct extent_buffer *src;
int err = 0;
int ret;
int i;
int nritems;
u64 first_offset = min_offset;
u64 last_offset = (u64)-1;
u64 ino = btrfs_ino(inode);
log = root->log_root;
max_key.objectid = ino;
max_key.offset = (u64)-1;
max_key.type = key_type;
min_key.objectid = ino;
min_key.type = key_type;
min_key.offset = min_offset;
path->keep_locks = 1;
ret = btrfs_search_forward(root, &min_key, &max_key,
path, 0, trans->transid);
/*
* we didn't find anything from this transaction, see if there
* is anything at all
*/
if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
min_key.objectid = ino;
min_key.type = key_type;
min_key.offset = (u64)-1;
btrfs_release_path(path);
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
if (ret < 0) {
btrfs_release_path(path);
return ret;
}
ret = btrfs_previous_item(root, path, ino, key_type);
/* if ret == 0 there are items for this type,
* create a range to tell us the last key of this type.
* otherwise, there are no items in this directory after
* *min_offset, and we create a range to indicate that.
*/
if (ret == 0) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(path->nodes[0], &tmp,
path->slots[0]);
if (key_type == tmp.type)
first_offset = max(min_offset, tmp.offset) + 1;
}
goto done;
}
/* go backward to find any previous key */
ret = btrfs_previous_item(root, path, ino, key_type);
if (ret == 0) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
if (key_type == tmp.type) {
first_offset = tmp.offset;
ret = overwrite_item(trans, log, dst_path,
path->nodes[0], path->slots[0],
&tmp);
if (ret) {
err = ret;
goto done;
}
}
}
btrfs_release_path(path);
/* find the first key from this transaction again */
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
if (ret != 0) {
WARN_ON(1);
goto done;
}
/*
* we have a block from this transaction, log every item in it
* from our directory
*/
while (1) {
struct btrfs_key tmp;
src = path->nodes[0];
nritems = btrfs_header_nritems(src);
for (i = path->slots[0]; i < nritems; i++) {
btrfs_item_key_to_cpu(src, &min_key, i);
if (min_key.objectid != ino || min_key.type != key_type)
goto done;
ret = overwrite_item(trans, log, dst_path, src, i,
&min_key);
if (ret) {
err = ret;
goto done;
}
}
path->slots[0] = nritems;
/*
* look ahead to the next item and see if it is also
* from this directory and from this transaction
*/
ret = btrfs_next_leaf(root, path);
if (ret == 1) {
last_offset = (u64)-1;
goto done;
}
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
if (tmp.objectid != ino || tmp.type != key_type) {
last_offset = (u64)-1;
goto done;
}
if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
ret = overwrite_item(trans, log, dst_path,
path->nodes[0], path->slots[0],
&tmp);
if (ret)
err = ret;
else
last_offset = tmp.offset;
goto done;
}
}
done:
btrfs_release_path(path);
btrfs_release_path(dst_path);
if (err == 0) {
*last_offset_ret = last_offset;
/*
* insert the log range keys to indicate where the log
* is valid
*/
ret = insert_dir_log_key(trans, log, path, key_type,
ino, first_offset, last_offset);
if (ret)
err = ret;
}
return err;
}
/*
* logging directories is very similar to logging inodes, We find all the items
* from the current transaction and write them to the log.
*
* The recovery code scans the directory in the subvolume, and if it finds a
* key in the range logged that is not present in the log tree, then it means
* that dir entry was unlinked during the transaction.
*
* In order for that scan to work, we must include one key smaller than
* the smallest logged by this transaction and one key larger than the largest
* key logged by this transaction.
*/
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path)
{
u64 min_key;
u64 max_key;
int ret;
int key_type = BTRFS_DIR_ITEM_KEY;
again:
min_key = 0;
max_key = 0;
while (1) {
ret = log_dir_items(trans, root, inode, path,
dst_path, key_type, min_key,
&max_key);
if (ret)
return ret;
if (max_key == (u64)-1)
break;
min_key = max_key + 1;
}
if (key_type == BTRFS_DIR_ITEM_KEY) {
key_type = BTRFS_DIR_INDEX_KEY;
goto again;
}
return 0;
}
/*
* a helper function to drop items from the log before we relog an
* inode. max_key_type indicates the highest item type to remove.
* This cannot be run for file data extents because it does not
* free the extents they point to.
*/
static int drop_objectid_items(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *path,
u64 objectid, int max_key_type)
{
int ret;
struct btrfs_key key;
struct btrfs_key found_key;
key.objectid = objectid;
key.type = max_key_type;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
BUG_ON(ret == 0);
if (ret < 0)
break;
if (path->slots[0] == 0)
break;
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != objectid)
break;
ret = btrfs_del_item(trans, log, path);
if (ret)
break;
btrfs_release_path(path);
}
btrfs_release_path(path);
if (ret > 0)
ret = 0;
return ret;
}
static noinline int copy_items(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *dst_path,
struct extent_buffer *src,
int start_slot, int nr, int inode_only)
{
unsigned long src_offset;
unsigned long dst_offset;
struct btrfs_file_extent_item *extent;
struct btrfs_inode_item *inode_item;
int ret;
struct btrfs_key *ins_keys;
u32 *ins_sizes;
char *ins_data;
int i;
struct list_head ordered_sums;
INIT_LIST_HEAD(&ordered_sums);
ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
nr * sizeof(u32), GFP_NOFS);
if (!ins_data)
return -ENOMEM;
ins_sizes = (u32 *)ins_data;
ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
for (i = 0; i < nr; i++) {
ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
}
ret = btrfs_insert_empty_items(trans, log, dst_path,
ins_keys, ins_sizes, nr);
if (ret) {
kfree(ins_data);
return ret;
}
for (i = 0; i < nr; i++, dst_path->slots[0]++) {
dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
dst_path->slots[0]);
src_offset = btrfs_item_ptr_offset(src, start_slot + i);
copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
src_offset, ins_sizes[i]);
if (inode_only == LOG_INODE_EXISTS &&
ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
inode_item = btrfs_item_ptr(dst_path->nodes[0],
dst_path->slots[0],
struct btrfs_inode_item);
btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
/* set the generation to zero so the recover code
* can tell the difference between an logging
* just to say 'this inode exists' and a logging
* to say 'update this inode with these values'
*/
btrfs_set_inode_generation(dst_path->nodes[0],
inode_item, 0);
}
/* take a reference on file data extents so that truncates
* or deletes of this inode don't have to relog the inode
* again
*/
if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
int found_type;
extent = btrfs_item_ptr(src, start_slot + i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_generation(src, extent) < trans->transid)
continue;
found_type = btrfs_file_extent_type(src, extent);
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
u64 ds, dl, cs, cl;
ds = btrfs_file_extent_disk_bytenr(src,
extent);
/* ds == 0 is a hole */
if (ds == 0)
continue;
dl = btrfs_file_extent_disk_num_bytes(src,
extent);
cs = btrfs_file_extent_offset(src, extent);
cl = btrfs_file_extent_num_bytes(src,
extent);
if (btrfs_file_extent_compression(src,
extent)) {
cs = 0;
cl = dl;
}
ret = btrfs_lookup_csums_range(
log->fs_info->csum_root,
ds + cs, ds + cs + cl - 1,
&ordered_sums, 0);
BUG_ON(ret);
}
}
}
btrfs_mark_buffer_dirty(dst_path->nodes[0]);
btrfs_release_path(dst_path);
kfree(ins_data);
/*
* we have to do this after the loop above to avoid changing the
* log tree while trying to change the log tree.
*/
ret = 0;
while (!list_empty(&ordered_sums)) {
struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
struct btrfs_ordered_sum,
list);
if (!ret)
ret = btrfs_csum_file_blocks(trans, log, sums);
list_del(&sums->list);
kfree(sums);
}
return ret;
}
static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct extent_map *em1, *em2;
em1 = list_entry(a, struct extent_map, list);
em2 = list_entry(b, struct extent_map, list);
if (em1->start < em2->start)
return -1;
else if (em1->start > em2->start)
return 1;
return 0;
}
struct log_args {
struct extent_buffer *src;
u64 next_offset;
int start_slot;
int nr;
};
static int log_one_extent(struct btrfs_trans_handle *trans,
struct inode *inode, struct btrfs_root *root,
struct extent_map *em, struct btrfs_path *path,
struct btrfs_path *dst_path, struct log_args *args)
{
struct btrfs_root *log = root->log_root;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 start = em->start;
u64 len = em->len;
u64 num_bytes;
int nritems;
int ret;
if (BTRFS_I(inode)->logged_trans == trans->transid) {
u64 tmp;
ret = __btrfs_drop_extents(trans, log, inode, dst_path, start,
start + len, &tmp, 0);
if (ret)
return ret;
}
while (len) {
if (args->nr)
goto next_slot;
key.objectid = btrfs_ino(inode);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = start;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return ret;
if (ret) {
/*
* This shouldn't happen, but it might so warn and
* return an error.
*/
WARN_ON(1);
return -ENOENT;
}
args->src = path->nodes[0];
next_slot:
fi = btrfs_item_ptr(args->src, path->slots[0],
struct btrfs_file_extent_item);
if (args->nr &&
args->start_slot + args->nr == path->slots[0]) {
args->nr++;
} else if (args->nr) {
ret = copy_items(trans, log, dst_path, args->src,
args->start_slot, args->nr,
LOG_INODE_ALL);
if (ret)
return ret;
args->nr = 1;
args->start_slot = path->slots[0];
} else if (!args->nr) {
args->nr = 1;
args->start_slot = path->slots[0];
}
nritems = btrfs_header_nritems(path->nodes[0]);
path->slots[0]++;
num_bytes = btrfs_file_extent_num_bytes(args->src, fi);
if (len < num_bytes) {
/* I _think_ this is ok, envision we write to a
* preallocated space that is adjacent to a previously
* written preallocated space that gets merged when we
* mark this preallocated space written. If we do not
* have the adjacent extent in cache then when we copy
* this extent it could end up being larger than our EM
* thinks it is, which is a-ok, so just set len to 0.
*/
len = 0;
} else {
len -= num_bytes;
}
start += btrfs_file_extent_num_bytes(args->src, fi);
args->next_offset = start;
if (path->slots[0] < nritems) {
if (len)
goto next_slot;
break;
}
if (args->nr) {
ret = copy_items(trans, log, dst_path, args->src,
args->start_slot, args->nr,
LOG_INODE_ALL);
if (ret)
return ret;
args->nr = 0;
btrfs_release_path(path);
}
}
return 0;
}
static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path)
{
struct log_args args;
struct btrfs_root *log = root->log_root;
struct extent_map *em, *n;
struct list_head extents;
struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
u64 test_gen;
int ret = 0;
INIT_LIST_HEAD(&extents);
memset(&args, 0, sizeof(args));
write_lock(&tree->lock);
test_gen = root->fs_info->last_trans_committed;
list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
list_del_init(&em->list);
if (em->generation <= test_gen)
continue;
list_add_tail(&em->list, &extents);
}
list_sort(NULL, &extents, extent_cmp);
while (!list_empty(&extents)) {
em = list_entry(extents.next, struct extent_map, list);
list_del_init(&em->list);
/*
* If we had an error we just need to delete everybody from our
* private list.
*/
if (ret)
continue;
/*
* If the previous EM and the last extent we left off on aren't
* sequential then we need to copy the items we have and redo
* our search
*/
if (args.nr && em->start != args.next_offset) {
ret = copy_items(trans, log, dst_path, args.src,
args.start_slot, args.nr,
LOG_INODE_ALL);
if (ret)
continue;
btrfs_release_path(path);
args.nr = 0;
}
ret = log_one_extent(trans, inode, root, em, path, dst_path, &args);
}
if (!ret && args.nr)
ret = copy_items(trans, log, dst_path, args.src,
args.start_slot, args.nr, LOG_INODE_ALL);
btrfs_release_path(path);
WARN_ON(!list_empty(&extents));
write_unlock(&tree->lock);
return ret;
}
/* log a single inode in the tree log.
* At least one parent directory for this inode must exist in the tree
* or be logged already.
*
* Any items from this inode changed by the current transaction are copied
* to the log tree. An extra reference is taken on any extents in this
* file, allowing us to avoid a whole pile of corner cases around logging
* blocks that have been removed from the tree.
*
* See LOG_INODE_ALL and related defines for a description of what inode_only
* does.
*
* This handles both files and directories.
*/
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only)
{
struct btrfs_path *path;
struct btrfs_path *dst_path;
struct btrfs_key min_key;
struct btrfs_key max_key;
struct btrfs_root *log = root->log_root;
struct extent_buffer *src = NULL;
int err = 0;
int ret;
int nritems;
int ins_start_slot = 0;
int ins_nr;
bool fast_search = false;
u64 ino = btrfs_ino(inode);
log = root->log_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
dst_path = btrfs_alloc_path();
if (!dst_path) {
btrfs_free_path(path);
return -ENOMEM;
}
min_key.objectid = ino;
min_key.type = BTRFS_INODE_ITEM_KEY;
min_key.offset = 0;
max_key.objectid = ino;
/* today the code can only do partial logging of directories */
if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
max_key.type = BTRFS_XATTR_ITEM_KEY;
else
max_key.type = (u8)-1;
max_key.offset = (u64)-1;
ret = btrfs_commit_inode_delayed_items(trans, inode);
if (ret) {
btrfs_free_path(path);
btrfs_free_path(dst_path);
return ret;
}
mutex_lock(&BTRFS_I(inode)->log_mutex);
/*
* a brute force approach to making sure we get the most uptodate
* copies of everything.
*/
if (S_ISDIR(inode->i_mode)) {
int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
if (inode_only == LOG_INODE_EXISTS)
max_key_type = BTRFS_XATTR_ITEM_KEY;
ret = drop_objectid_items(trans, log, path, ino, max_key_type);
} else {
if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags)) {
ret = btrfs_truncate_inode_items(trans, log,
inode, 0, 0);
} else {
fast_search = true;
max_key.type = BTRFS_XATTR_ITEM_KEY;
ret = drop_objectid_items(trans, log, path, ino,
BTRFS_XATTR_ITEM_KEY);
}
}
if (ret) {
err = ret;
goto out_unlock;
}
path->keep_locks = 1;
while (1) {
ins_nr = 0;
ret = btrfs_search_forward(root, &min_key, &max_key,
path, 0, trans->transid);
if (ret != 0)
break;
again:
/* note, ins_nr might be > 0 here, cleanup outside the loop */
if (min_key.objectid != ino)
break;
if (min_key.type > max_key.type)
break;
src = path->nodes[0];
if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
ins_nr++;
goto next_slot;
} else if (!ins_nr) {
ins_start_slot = path->slots[0];
ins_nr = 1;
goto next_slot;
}
ret = copy_items(trans, log, dst_path, src, ins_start_slot,
ins_nr, inode_only);
if (ret) {
err = ret;
goto out_unlock;
}
ins_nr = 1;
ins_start_slot = path->slots[0];
next_slot:
nritems = btrfs_header_nritems(path->nodes[0]);
path->slots[0]++;
if (path->slots[0] < nritems) {
btrfs_item_key_to_cpu(path->nodes[0], &min_key,
path->slots[0]);
goto again;
}
if (ins_nr) {
ret = copy_items(trans, log, dst_path, src,
ins_start_slot,
ins_nr, inode_only);
if (ret) {
err = ret;
goto out_unlock;
}
ins_nr = 0;
}
btrfs_release_path(path);
if (min_key.offset < (u64)-1)
min_key.offset++;
else if (min_key.type < (u8)-1)
min_key.type++;
else if (min_key.objectid < (u64)-1)
min_key.objectid++;
else
break;
}
if (ins_nr) {
ret = copy_items(trans, log, dst_path, src,
ins_start_slot,
ins_nr, inode_only);
if (ret) {
err = ret;
goto out_unlock;
}
ins_nr = 0;
}
if (fast_search) {
btrfs_release_path(path);
btrfs_release_path(dst_path);
ret = btrfs_log_changed_extents(trans, root, inode, path,
dst_path);
if (ret) {
err = ret;
goto out_unlock;
}
}
if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
btrfs_release_path(path);
btrfs_release_path(dst_path);
ret = log_directory_changes(trans, root, inode, path, dst_path);
if (ret) {
err = ret;
goto out_unlock;
}
}
BTRFS_I(inode)->logged_trans = trans->transid;
out_unlock:
mutex_unlock(&BTRFS_I(inode)->log_mutex);
btrfs_free_path(path);
btrfs_free_path(dst_path);
return err;
}
/*
* follow the dentry parent pointers up the chain and see if any
* of the directories in it require a full commit before they can
* be logged. Returns zero if nothing special needs to be done or 1 if
* a full commit is required.
*/
static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
struct inode *inode,
struct dentry *parent,
struct super_block *sb,
u64 last_committed)
{
int ret = 0;
struct btrfs_root *root;
struct dentry *old_parent = NULL;
/*
* for regular files, if its inode is already on disk, we don't
* have to worry about the parents at all. This is because
* we can use the last_unlink_trans field to record renames
* and other fun in this file.
*/
if (S_ISREG(inode->i_mode) &&
BTRFS_I(inode)->generation <= last_committed &&
BTRFS_I(inode)->last_unlink_trans <= last_committed)
goto out;
if (!S_ISDIR(inode->i_mode)) {
if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
goto out;
inode = parent->d_inode;
}
while (1) {
BTRFS_I(inode)->logged_trans = trans->transid;
smp_mb();
if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
root = BTRFS_I(inode)->root;
/*
* make sure any commits to the log are forced
* to be full commits
*/
root->fs_info->last_trans_log_full_commit =
trans->transid;
ret = 1;
break;
}
if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
break;
if (IS_ROOT(parent))
break;
parent = dget_parent(parent);
dput(old_parent);
old_parent = parent;
inode = parent->d_inode;
}
dput(old_parent);
out:
return ret;
}
/*
* helper function around btrfs_log_inode to make sure newly created
* parent directories also end up in the log. A minimal inode and backref
* only logging is done of any parent directories that are older than
* the last committed transaction
*/
int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct dentry *parent, int exists_only)
{
int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
struct super_block *sb;
struct dentry *old_parent = NULL;
int ret = 0;
u64 last_committed = root->fs_info->last_trans_committed;
sb = inode->i_sb;
if (btrfs_test_opt(root, NOTREELOG)) {
ret = 1;
goto end_no_trans;
}
if (root->fs_info->last_trans_log_full_commit >
root->fs_info->last_trans_committed) {
ret = 1;
goto end_no_trans;
}
if (root != BTRFS_I(inode)->root ||
btrfs_root_refs(&root->root_item) == 0) {
ret = 1;
goto end_no_trans;
}
ret = check_parent_dirs_for_sync(trans, inode, parent,
sb, last_committed);
if (ret)
goto end_no_trans;
if (btrfs_inode_in_log(inode, trans->transid)) {
ret = BTRFS_NO_LOG_SYNC;
goto end_no_trans;
}
ret = start_log_trans(trans, root);
if (ret)
goto end_trans;
ret = btrfs_log_inode(trans, root, inode, inode_only);
if (ret)
goto end_trans;
/*
* for regular files, if its inode is already on disk, we don't
* have to worry about the parents at all. This is because
* we can use the last_unlink_trans field to record renames
* and other fun in this file.
*/
if (S_ISREG(inode->i_mode) &&
BTRFS_I(inode)->generation <= last_committed &&
BTRFS_I(inode)->last_unlink_trans <= last_committed) {
ret = 0;
goto end_trans;
}
inode_only = LOG_INODE_EXISTS;
while (1) {
if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
break;
inode = parent->d_inode;
if (root != BTRFS_I(inode)->root)
break;
if (BTRFS_I(inode)->generation >
root->fs_info->last_trans_committed) {
ret = btrfs_log_inode(trans, root, inode, inode_only);
if (ret)
goto end_trans;
}
if (IS_ROOT(parent))
break;
parent = dget_parent(parent);
dput(old_parent);
old_parent = parent;
}
ret = 0;
end_trans:
dput(old_parent);
if (ret < 0) {
BUG_ON(ret != -ENOSPC);
root->fs_info->last_trans_log_full_commit = trans->transid;
ret = 1;
}
btrfs_end_log_trans(root);
end_no_trans:
return ret;
}
/*
* it is not safe to log dentry if the chunk root has added new
* chunks. This returns 0 if the dentry was logged, and 1 otherwise.
* If this returns 1, you must commit the transaction to safely get your
* data on disk.
*/
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct dentry *dentry)
{
struct dentry *parent = dget_parent(dentry);
int ret;
ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
dput(parent);
return ret;
}
/*
* should be called during mount to recover any replay any log trees
* from the FS
*/
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
{
int ret;
struct btrfs_path *path;
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_key tmp_key;
struct btrfs_root *log;
struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
struct walk_control wc = {
.process_func = process_one_buffer,
.stage = 0,
};
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
fs_info->log_root_recovering = 1;
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto error;
}
wc.trans = trans;
wc.pin = 1;
ret = walk_log_tree(trans, log_root_tree, &wc);
if (ret) {
btrfs_error(fs_info, ret, "Failed to pin buffers while "
"recovering log root tree.");
goto error;
}
again:
key.objectid = BTRFS_TREE_LOG_OBJECTID;
key.offset = (u64)-1;
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
while (1) {
ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
if (ret < 0) {
btrfs_error(fs_info, ret,
"Couldn't find tree log root.");
goto error;
}
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
btrfs_release_path(path);
if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
break;
log = btrfs_read_fs_root_no_radix(log_root_tree,
&found_key);
if (IS_ERR(log)) {
ret = PTR_ERR(log);
btrfs_error(fs_info, ret,
"Couldn't read tree log root.");
goto error;
}
tmp_key.objectid = found_key.offset;
tmp_key.type = BTRFS_ROOT_ITEM_KEY;
tmp_key.offset = (u64)-1;
wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
if (IS_ERR(wc.replay_dest)) {
ret = PTR_ERR(wc.replay_dest);
btrfs_error(fs_info, ret, "Couldn't read target root "
"for tree log recovery.");
goto error;
}
wc.replay_dest->log_root = log;
btrfs_record_root_in_trans(trans, wc.replay_dest);
ret = walk_log_tree(trans, log, &wc);
BUG_ON(ret);
if (wc.stage == LOG_WALK_REPLAY_ALL) {
ret = fixup_inode_link_counts(trans, wc.replay_dest,
path);
BUG_ON(ret);
}
key.offset = found_key.offset - 1;
wc.replay_dest->log_root = NULL;
free_extent_buffer(log->node);
free_extent_buffer(log->commit_root);
kfree(log);
if (found_key.offset == 0)
break;
}
btrfs_release_path(path);
/* step one is to pin it all, step two is to replay just inodes */
if (wc.pin) {
wc.pin = 0;
wc.process_func = replay_one_buffer;
wc.stage = LOG_WALK_REPLAY_INODES;
goto again;
}
/* step three is to replay everything */
if (wc.stage < LOG_WALK_REPLAY_ALL) {
wc.stage++;
goto again;
}
btrfs_free_path(path);
free_extent_buffer(log_root_tree->node);
log_root_tree->log_root = NULL;
fs_info->log_root_recovering = 0;
/* step 4: commit the transaction, which also unpins the blocks */
btrfs_commit_transaction(trans, fs_info->tree_root);
kfree(log_root_tree);
return 0;
error:
btrfs_free_path(path);
return ret;
}
/*
* there are some corner cases where we want to force a full
* commit instead of allowing a directory to be logged.
*
* They revolve around files there were unlinked from the directory, and
* this function updates the parent directory so that a full commit is
* properly done if it is fsync'd later after the unlinks are done.
*/
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
struct inode *dir, struct inode *inode,
int for_rename)
{
/*
* when we're logging a file, if it hasn't been renamed
* or unlinked, and its inode is fully committed on disk,
* we don't have to worry about walking up the directory chain
* to log its parents.
*
* So, we use the last_unlink_trans field to put this transid
* into the file. When the file is logged we check it and
* don't log the parents if the file is fully on disk.
*/
if (S_ISREG(inode->i_mode))
BTRFS_I(inode)->last_unlink_trans = trans->transid;
/*
* if this directory was already logged any new
* names for this file/dir will get recorded
*/
smp_mb();
if (BTRFS_I(dir)->logged_trans == trans->transid)
return;
/*
* if the inode we're about to unlink was logged,
* the log will be properly updated for any new names
*/
if (BTRFS_I(inode)->logged_trans == trans->transid)
return;
/*
* when renaming files across directories, if the directory
* there we're unlinking from gets fsync'd later on, there's
* no way to find the destination directory later and fsync it
* properly. So, we have to be conservative and force commits
* so the new name gets discovered.
*/
if (for_rename)
goto record;
/* we can safely do the unlink without any special recording */
return;
record:
BTRFS_I(dir)->last_unlink_trans = trans->transid;
}
/*
* Call this after adding a new name for a file and it will properly
* update the log to reflect the new name.
*
* It will return zero if all goes well, and it will return 1 if a
* full transaction commit is required.
*/
int btrfs_log_new_name(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *old_dir,
struct dentry *parent)
{
struct btrfs_root * root = BTRFS_I(inode)->root;
/*
* this will force the logging code to walk the dentry chain
* up for the file
*/
if (S_ISREG(inode->i_mode))
BTRFS_I(inode)->last_unlink_trans = trans->transid;
/*
* if this inode hasn't been logged and directory we're renaming it
* from hasn't been logged, we don't need to log it
*/
if (BTRFS_I(inode)->logged_trans <=
root->fs_info->last_trans_committed &&
(!old_dir || BTRFS_I(old_dir)->logged_trans <=
root->fs_info->last_trans_committed))
return 0;
return btrfs_log_inode_parent(trans, root, inode, parent, 1);
}