Yi Liu 89d63875d8 iommufd: Flow user flags for domain allocation to domain_alloc_user()
Extends iommufd_hw_pagetable_alloc() to accept user flags, the uAPI will
provide the flags.

Link: https://lore.kernel.org/r/20230928071528.26258-4-yi.l.liu@intel.com
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2023-10-10 13:31:24 -03:00

1195 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES
*/
#include <linux/iommufd.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <uapi/linux/iommufd.h>
#include "../iommu-priv.h"
#include "io_pagetable.h"
#include "iommufd_private.h"
static bool allow_unsafe_interrupts;
module_param(allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(
allow_unsafe_interrupts,
"Allow IOMMUFD to bind to devices even if the platform cannot isolate "
"the MSI interrupt window. Enabling this is a security weakness.");
static void iommufd_group_release(struct kref *kref)
{
struct iommufd_group *igroup =
container_of(kref, struct iommufd_group, ref);
WARN_ON(igroup->hwpt || !list_empty(&igroup->device_list));
xa_cmpxchg(&igroup->ictx->groups, iommu_group_id(igroup->group), igroup,
NULL, GFP_KERNEL);
iommu_group_put(igroup->group);
mutex_destroy(&igroup->lock);
kfree(igroup);
}
static void iommufd_put_group(struct iommufd_group *group)
{
kref_put(&group->ref, iommufd_group_release);
}
static bool iommufd_group_try_get(struct iommufd_group *igroup,
struct iommu_group *group)
{
if (!igroup)
return false;
/*
* group ID's cannot be re-used until the group is put back which does
* not happen if we could get an igroup pointer under the xa_lock.
*/
if (WARN_ON(igroup->group != group))
return false;
return kref_get_unless_zero(&igroup->ref);
}
/*
* iommufd needs to store some more data for each iommu_group, we keep a
* parallel xarray indexed by iommu_group id to hold this instead of putting it
* in the core structure. To keep things simple the iommufd_group memory is
* unique within the iommufd_ctx. This makes it easy to check there are no
* memory leaks.
*/
static struct iommufd_group *iommufd_get_group(struct iommufd_ctx *ictx,
struct device *dev)
{
struct iommufd_group *new_igroup;
struct iommufd_group *cur_igroup;
struct iommufd_group *igroup;
struct iommu_group *group;
unsigned int id;
group = iommu_group_get(dev);
if (!group)
return ERR_PTR(-ENODEV);
id = iommu_group_id(group);
xa_lock(&ictx->groups);
igroup = xa_load(&ictx->groups, id);
if (iommufd_group_try_get(igroup, group)) {
xa_unlock(&ictx->groups);
iommu_group_put(group);
return igroup;
}
xa_unlock(&ictx->groups);
new_igroup = kzalloc(sizeof(*new_igroup), GFP_KERNEL);
if (!new_igroup) {
iommu_group_put(group);
return ERR_PTR(-ENOMEM);
}
kref_init(&new_igroup->ref);
mutex_init(&new_igroup->lock);
INIT_LIST_HEAD(&new_igroup->device_list);
new_igroup->sw_msi_start = PHYS_ADDR_MAX;
/* group reference moves into new_igroup */
new_igroup->group = group;
/*
* The ictx is not additionally refcounted here becase all objects using
* an igroup must put it before their destroy completes.
*/
new_igroup->ictx = ictx;
/*
* We dropped the lock so igroup is invalid. NULL is a safe and likely
* value to assume for the xa_cmpxchg algorithm.
*/
cur_igroup = NULL;
xa_lock(&ictx->groups);
while (true) {
igroup = __xa_cmpxchg(&ictx->groups, id, cur_igroup, new_igroup,
GFP_KERNEL);
if (xa_is_err(igroup)) {
xa_unlock(&ictx->groups);
iommufd_put_group(new_igroup);
return ERR_PTR(xa_err(igroup));
}
/* new_group was successfully installed */
if (cur_igroup == igroup) {
xa_unlock(&ictx->groups);
return new_igroup;
}
/* Check again if the current group is any good */
if (iommufd_group_try_get(igroup, group)) {
xa_unlock(&ictx->groups);
iommufd_put_group(new_igroup);
return igroup;
}
cur_igroup = igroup;
}
}
void iommufd_device_destroy(struct iommufd_object *obj)
{
struct iommufd_device *idev =
container_of(obj, struct iommufd_device, obj);
iommu_device_release_dma_owner(idev->dev);
iommufd_put_group(idev->igroup);
if (!iommufd_selftest_is_mock_dev(idev->dev))
iommufd_ctx_put(idev->ictx);
}
/**
* iommufd_device_bind - Bind a physical device to an iommu fd
* @ictx: iommufd file descriptor
* @dev: Pointer to a physical device struct
* @id: Output ID number to return to userspace for this device
*
* A successful bind establishes an ownership over the device and returns
* struct iommufd_device pointer, otherwise returns error pointer.
*
* A driver using this API must set driver_managed_dma and must not touch
* the device until this routine succeeds and establishes ownership.
*
* Binding a PCI device places the entire RID under iommufd control.
*
* The caller must undo this with iommufd_device_unbind()
*/
struct iommufd_device *iommufd_device_bind(struct iommufd_ctx *ictx,
struct device *dev, u32 *id)
{
struct iommufd_device *idev;
struct iommufd_group *igroup;
int rc;
/*
* iommufd always sets IOMMU_CACHE because we offer no way for userspace
* to restore cache coherency.
*/
if (!device_iommu_capable(dev, IOMMU_CAP_CACHE_COHERENCY))
return ERR_PTR(-EINVAL);
igroup = iommufd_get_group(ictx, dev);
if (IS_ERR(igroup))
return ERR_CAST(igroup);
/*
* For historical compat with VFIO the insecure interrupt path is
* allowed if the module parameter is set. Secure/Isolated means that a
* MemWr operation from the device (eg a simple DMA) cannot trigger an
* interrupt outside this iommufd context.
*/
if (!iommufd_selftest_is_mock_dev(dev) &&
!iommu_group_has_isolated_msi(igroup->group)) {
if (!allow_unsafe_interrupts) {
rc = -EPERM;
goto out_group_put;
}
dev_warn(
dev,
"MSI interrupts are not secure, they cannot be isolated by the platform. "
"Check that platform features like interrupt remapping are enabled. "
"Use the \"allow_unsafe_interrupts\" module parameter to override\n");
}
rc = iommu_device_claim_dma_owner(dev, ictx);
if (rc)
goto out_group_put;
idev = iommufd_object_alloc(ictx, idev, IOMMUFD_OBJ_DEVICE);
if (IS_ERR(idev)) {
rc = PTR_ERR(idev);
goto out_release_owner;
}
idev->ictx = ictx;
if (!iommufd_selftest_is_mock_dev(dev))
iommufd_ctx_get(ictx);
idev->dev = dev;
idev->enforce_cache_coherency =
device_iommu_capable(dev, IOMMU_CAP_ENFORCE_CACHE_COHERENCY);
/* The calling driver is a user until iommufd_device_unbind() */
refcount_inc(&idev->obj.users);
/* igroup refcount moves into iommufd_device */
idev->igroup = igroup;
/*
* If the caller fails after this success it must call
* iommufd_unbind_device() which is safe since we hold this refcount.
* This also means the device is a leaf in the graph and no other object
* can take a reference on it.
*/
iommufd_object_finalize(ictx, &idev->obj);
*id = idev->obj.id;
return idev;
out_release_owner:
iommu_device_release_dma_owner(dev);
out_group_put:
iommufd_put_group(igroup);
return ERR_PTR(rc);
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_bind, IOMMUFD);
/**
* iommufd_ctx_has_group - True if any device within the group is bound
* to the ictx
* @ictx: iommufd file descriptor
* @group: Pointer to a physical iommu_group struct
*
* True if any device within the group has been bound to this ictx, ex. via
* iommufd_device_bind(), therefore implying ictx ownership of the group.
*/
bool iommufd_ctx_has_group(struct iommufd_ctx *ictx, struct iommu_group *group)
{
struct iommufd_object *obj;
unsigned long index;
if (!ictx || !group)
return false;
xa_lock(&ictx->objects);
xa_for_each(&ictx->objects, index, obj) {
if (obj->type == IOMMUFD_OBJ_DEVICE &&
container_of(obj, struct iommufd_device, obj)
->igroup->group == group) {
xa_unlock(&ictx->objects);
return true;
}
}
xa_unlock(&ictx->objects);
return false;
}
EXPORT_SYMBOL_NS_GPL(iommufd_ctx_has_group, IOMMUFD);
/**
* iommufd_device_unbind - Undo iommufd_device_bind()
* @idev: Device returned by iommufd_device_bind()
*
* Release the device from iommufd control. The DMA ownership will return back
* to unowned with DMA controlled by the DMA API. This invalidates the
* iommufd_device pointer, other APIs that consume it must not be called
* concurrently.
*/
void iommufd_device_unbind(struct iommufd_device *idev)
{
iommufd_object_destroy_user(idev->ictx, &idev->obj);
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_unbind, IOMMUFD);
struct iommufd_ctx *iommufd_device_to_ictx(struct iommufd_device *idev)
{
return idev->ictx;
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_to_ictx, IOMMUFD);
u32 iommufd_device_to_id(struct iommufd_device *idev)
{
return idev->obj.id;
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_to_id, IOMMUFD);
static int iommufd_group_setup_msi(struct iommufd_group *igroup,
struct iommufd_hw_pagetable *hwpt)
{
phys_addr_t sw_msi_start = igroup->sw_msi_start;
int rc;
/*
* If the IOMMU driver gives a IOMMU_RESV_SW_MSI then it is asking us to
* call iommu_get_msi_cookie() on its behalf. This is necessary to setup
* the MSI window so iommu_dma_prepare_msi() can install pages into our
* domain after request_irq(). If it is not done interrupts will not
* work on this domain.
*
* FIXME: This is conceptually broken for iommufd since we want to allow
* userspace to change the domains, eg switch from an identity IOAS to a
* DMA IOAS. There is currently no way to create a MSI window that
* matches what the IRQ layer actually expects in a newly created
* domain.
*/
if (sw_msi_start != PHYS_ADDR_MAX && !hwpt->msi_cookie) {
rc = iommu_get_msi_cookie(hwpt->domain, sw_msi_start);
if (rc)
return rc;
/*
* iommu_get_msi_cookie() can only be called once per domain,
* it returns -EBUSY on later calls.
*/
hwpt->msi_cookie = true;
}
return 0;
}
int iommufd_hw_pagetable_attach(struct iommufd_hw_pagetable *hwpt,
struct iommufd_device *idev)
{
int rc;
mutex_lock(&idev->igroup->lock);
if (idev->igroup->hwpt != NULL && idev->igroup->hwpt != hwpt) {
rc = -EINVAL;
goto err_unlock;
}
/* Try to upgrade the domain we have */
if (idev->enforce_cache_coherency) {
rc = iommufd_hw_pagetable_enforce_cc(hwpt);
if (rc)
goto err_unlock;
}
rc = iopt_table_enforce_dev_resv_regions(&hwpt->ioas->iopt, idev->dev,
&idev->igroup->sw_msi_start);
if (rc)
goto err_unlock;
/*
* Only attach to the group once for the first device that is in the
* group. All the other devices will follow this attachment. The user
* should attach every device individually to the hwpt as the per-device
* reserved regions are only updated during individual device
* attachment.
*/
if (list_empty(&idev->igroup->device_list)) {
rc = iommufd_group_setup_msi(idev->igroup, hwpt);
if (rc)
goto err_unresv;
rc = iommu_attach_group(hwpt->domain, idev->igroup->group);
if (rc)
goto err_unresv;
idev->igroup->hwpt = hwpt;
}
refcount_inc(&hwpt->obj.users);
list_add_tail(&idev->group_item, &idev->igroup->device_list);
mutex_unlock(&idev->igroup->lock);
return 0;
err_unresv:
iopt_remove_reserved_iova(&hwpt->ioas->iopt, idev->dev);
err_unlock:
mutex_unlock(&idev->igroup->lock);
return rc;
}
struct iommufd_hw_pagetable *
iommufd_hw_pagetable_detach(struct iommufd_device *idev)
{
struct iommufd_hw_pagetable *hwpt = idev->igroup->hwpt;
mutex_lock(&idev->igroup->lock);
list_del(&idev->group_item);
if (list_empty(&idev->igroup->device_list)) {
iommu_detach_group(hwpt->domain, idev->igroup->group);
idev->igroup->hwpt = NULL;
}
iopt_remove_reserved_iova(&hwpt->ioas->iopt, idev->dev);
mutex_unlock(&idev->igroup->lock);
/* Caller must destroy hwpt */
return hwpt;
}
static struct iommufd_hw_pagetable *
iommufd_device_do_attach(struct iommufd_device *idev,
struct iommufd_hw_pagetable *hwpt)
{
int rc;
rc = iommufd_hw_pagetable_attach(hwpt, idev);
if (rc)
return ERR_PTR(rc);
return NULL;
}
static struct iommufd_hw_pagetable *
iommufd_device_do_replace(struct iommufd_device *idev,
struct iommufd_hw_pagetable *hwpt)
{
struct iommufd_group *igroup = idev->igroup;
struct iommufd_hw_pagetable *old_hwpt;
unsigned int num_devices = 0;
struct iommufd_device *cur;
int rc;
mutex_lock(&idev->igroup->lock);
if (igroup->hwpt == NULL) {
rc = -EINVAL;
goto err_unlock;
}
if (hwpt == igroup->hwpt) {
mutex_unlock(&idev->igroup->lock);
return NULL;
}
/* Try to upgrade the domain we have */
list_for_each_entry(cur, &igroup->device_list, group_item) {
num_devices++;
if (cur->enforce_cache_coherency) {
rc = iommufd_hw_pagetable_enforce_cc(hwpt);
if (rc)
goto err_unlock;
}
}
old_hwpt = igroup->hwpt;
if (hwpt->ioas != old_hwpt->ioas) {
list_for_each_entry(cur, &igroup->device_list, group_item) {
rc = iopt_table_enforce_dev_resv_regions(
&hwpt->ioas->iopt, cur->dev, NULL);
if (rc)
goto err_unresv;
}
}
rc = iommufd_group_setup_msi(idev->igroup, hwpt);
if (rc)
goto err_unresv;
rc = iommu_group_replace_domain(igroup->group, hwpt->domain);
if (rc)
goto err_unresv;
if (hwpt->ioas != old_hwpt->ioas) {
list_for_each_entry(cur, &igroup->device_list, group_item)
iopt_remove_reserved_iova(&old_hwpt->ioas->iopt,
cur->dev);
}
igroup->hwpt = hwpt;
/*
* Move the refcounts held by the device_list to the new hwpt. Retain a
* refcount for this thread as the caller will free it.
*/
refcount_add(num_devices, &hwpt->obj.users);
if (num_devices > 1)
WARN_ON(refcount_sub_and_test(num_devices - 1,
&old_hwpt->obj.users));
mutex_unlock(&idev->igroup->lock);
/* Caller must destroy old_hwpt */
return old_hwpt;
err_unresv:
list_for_each_entry(cur, &igroup->device_list, group_item)
iopt_remove_reserved_iova(&hwpt->ioas->iopt, cur->dev);
err_unlock:
mutex_unlock(&idev->igroup->lock);
return ERR_PTR(rc);
}
typedef struct iommufd_hw_pagetable *(*attach_fn)(
struct iommufd_device *idev, struct iommufd_hw_pagetable *hwpt);
/*
* When automatically managing the domains we search for a compatible domain in
* the iopt and if one is found use it, otherwise create a new domain.
* Automatic domain selection will never pick a manually created domain.
*/
static struct iommufd_hw_pagetable *
iommufd_device_auto_get_domain(struct iommufd_device *idev,
struct iommufd_ioas *ioas, u32 *pt_id,
attach_fn do_attach)
{
/*
* iommufd_hw_pagetable_attach() is called by
* iommufd_hw_pagetable_alloc() in immediate attachment mode, same as
* iommufd_device_do_attach(). So if we are in this mode then we prefer
* to use the immediate_attach path as it supports drivers that can't
* directly allocate a domain.
*/
bool immediate_attach = do_attach == iommufd_device_do_attach;
struct iommufd_hw_pagetable *destroy_hwpt;
struct iommufd_hw_pagetable *hwpt;
/*
* There is no differentiation when domains are allocated, so any domain
* that is willing to attach to the device is interchangeable with any
* other.
*/
mutex_lock(&ioas->mutex);
list_for_each_entry(hwpt, &ioas->hwpt_list, hwpt_item) {
if (!hwpt->auto_domain)
continue;
if (!iommufd_lock_obj(&hwpt->obj))
continue;
destroy_hwpt = (*do_attach)(idev, hwpt);
if (IS_ERR(destroy_hwpt)) {
iommufd_put_object(&hwpt->obj);
/*
* -EINVAL means the domain is incompatible with the
* device. Other error codes should propagate to
* userspace as failure. Success means the domain is
* attached.
*/
if (PTR_ERR(destroy_hwpt) == -EINVAL)
continue;
goto out_unlock;
}
*pt_id = hwpt->obj.id;
iommufd_put_object(&hwpt->obj);
goto out_unlock;
}
hwpt = iommufd_hw_pagetable_alloc(idev->ictx, ioas, idev,
0, immediate_attach);
if (IS_ERR(hwpt)) {
destroy_hwpt = ERR_CAST(hwpt);
goto out_unlock;
}
if (!immediate_attach) {
destroy_hwpt = (*do_attach)(idev, hwpt);
if (IS_ERR(destroy_hwpt))
goto out_abort;
} else {
destroy_hwpt = NULL;
}
hwpt->auto_domain = true;
*pt_id = hwpt->obj.id;
iommufd_object_finalize(idev->ictx, &hwpt->obj);
mutex_unlock(&ioas->mutex);
return destroy_hwpt;
out_abort:
iommufd_object_abort_and_destroy(idev->ictx, &hwpt->obj);
out_unlock:
mutex_unlock(&ioas->mutex);
return destroy_hwpt;
}
static int iommufd_device_change_pt(struct iommufd_device *idev, u32 *pt_id,
attach_fn do_attach)
{
struct iommufd_hw_pagetable *destroy_hwpt;
struct iommufd_object *pt_obj;
pt_obj = iommufd_get_object(idev->ictx, *pt_id, IOMMUFD_OBJ_ANY);
if (IS_ERR(pt_obj))
return PTR_ERR(pt_obj);
switch (pt_obj->type) {
case IOMMUFD_OBJ_HW_PAGETABLE: {
struct iommufd_hw_pagetable *hwpt =
container_of(pt_obj, struct iommufd_hw_pagetable, obj);
destroy_hwpt = (*do_attach)(idev, hwpt);
if (IS_ERR(destroy_hwpt))
goto out_put_pt_obj;
break;
}
case IOMMUFD_OBJ_IOAS: {
struct iommufd_ioas *ioas =
container_of(pt_obj, struct iommufd_ioas, obj);
destroy_hwpt = iommufd_device_auto_get_domain(idev, ioas, pt_id,
do_attach);
if (IS_ERR(destroy_hwpt))
goto out_put_pt_obj;
break;
}
default:
destroy_hwpt = ERR_PTR(-EINVAL);
goto out_put_pt_obj;
}
iommufd_put_object(pt_obj);
/* This destruction has to be after we unlock everything */
if (destroy_hwpt)
iommufd_hw_pagetable_put(idev->ictx, destroy_hwpt);
return 0;
out_put_pt_obj:
iommufd_put_object(pt_obj);
return PTR_ERR(destroy_hwpt);
}
/**
* iommufd_device_attach - Connect a device to an iommu_domain
* @idev: device to attach
* @pt_id: Input a IOMMUFD_OBJ_IOAS, or IOMMUFD_OBJ_HW_PAGETABLE
* Output the IOMMUFD_OBJ_HW_PAGETABLE ID
*
* This connects the device to an iommu_domain, either automatically or manually
* selected. Once this completes the device could do DMA.
*
* The caller should return the resulting pt_id back to userspace.
* This function is undone by calling iommufd_device_detach().
*/
int iommufd_device_attach(struct iommufd_device *idev, u32 *pt_id)
{
int rc;
rc = iommufd_device_change_pt(idev, pt_id, &iommufd_device_do_attach);
if (rc)
return rc;
/*
* Pairs with iommufd_device_detach() - catches caller bugs attempting
* to destroy a device with an attachment.
*/
refcount_inc(&idev->obj.users);
return 0;
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_attach, IOMMUFD);
/**
* iommufd_device_replace - Change the device's iommu_domain
* @idev: device to change
* @pt_id: Input a IOMMUFD_OBJ_IOAS, or IOMMUFD_OBJ_HW_PAGETABLE
* Output the IOMMUFD_OBJ_HW_PAGETABLE ID
*
* This is the same as::
*
* iommufd_device_detach();
* iommufd_device_attach();
*
* If it fails then no change is made to the attachment. The iommu driver may
* implement this so there is no disruption in translation. This can only be
* called if iommufd_device_attach() has already succeeded.
*/
int iommufd_device_replace(struct iommufd_device *idev, u32 *pt_id)
{
return iommufd_device_change_pt(idev, pt_id,
&iommufd_device_do_replace);
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_replace, IOMMUFD);
/**
* iommufd_device_detach - Disconnect a device to an iommu_domain
* @idev: device to detach
*
* Undo iommufd_device_attach(). This disconnects the idev from the previously
* attached pt_id. The device returns back to a blocked DMA translation.
*/
void iommufd_device_detach(struct iommufd_device *idev)
{
struct iommufd_hw_pagetable *hwpt;
hwpt = iommufd_hw_pagetable_detach(idev);
iommufd_hw_pagetable_put(idev->ictx, hwpt);
refcount_dec(&idev->obj.users);
}
EXPORT_SYMBOL_NS_GPL(iommufd_device_detach, IOMMUFD);
/*
* On success, it will refcount_inc() at a valid new_ioas and refcount_dec() at
* a valid cur_ioas (access->ioas). A caller passing in a valid new_ioas should
* call iommufd_put_object() if it does an iommufd_get_object() for a new_ioas.
*/
static int iommufd_access_change_ioas(struct iommufd_access *access,
struct iommufd_ioas *new_ioas)
{
u32 iopt_access_list_id = access->iopt_access_list_id;
struct iommufd_ioas *cur_ioas = access->ioas;
int rc;
lockdep_assert_held(&access->ioas_lock);
/* We are racing with a concurrent detach, bail */
if (cur_ioas != access->ioas_unpin)
return -EBUSY;
if (cur_ioas == new_ioas)
return 0;
/*
* Set ioas to NULL to block any further iommufd_access_pin_pages().
* iommufd_access_unpin_pages() can continue using access->ioas_unpin.
*/
access->ioas = NULL;
if (new_ioas) {
rc = iopt_add_access(&new_ioas->iopt, access);
if (rc) {
access->ioas = cur_ioas;
return rc;
}
refcount_inc(&new_ioas->obj.users);
}
if (cur_ioas) {
if (access->ops->unmap) {
mutex_unlock(&access->ioas_lock);
access->ops->unmap(access->data, 0, ULONG_MAX);
mutex_lock(&access->ioas_lock);
}
iopt_remove_access(&cur_ioas->iopt, access, iopt_access_list_id);
refcount_dec(&cur_ioas->obj.users);
}
access->ioas = new_ioas;
access->ioas_unpin = new_ioas;
return 0;
}
static int iommufd_access_change_ioas_id(struct iommufd_access *access, u32 id)
{
struct iommufd_ioas *ioas = iommufd_get_ioas(access->ictx, id);
int rc;
if (IS_ERR(ioas))
return PTR_ERR(ioas);
rc = iommufd_access_change_ioas(access, ioas);
iommufd_put_object(&ioas->obj);
return rc;
}
void iommufd_access_destroy_object(struct iommufd_object *obj)
{
struct iommufd_access *access =
container_of(obj, struct iommufd_access, obj);
mutex_lock(&access->ioas_lock);
if (access->ioas)
WARN_ON(iommufd_access_change_ioas(access, NULL));
mutex_unlock(&access->ioas_lock);
iommufd_ctx_put(access->ictx);
}
/**
* iommufd_access_create - Create an iommufd_access
* @ictx: iommufd file descriptor
* @ops: Driver's ops to associate with the access
* @data: Opaque data to pass into ops functions
* @id: Output ID number to return to userspace for this access
*
* An iommufd_access allows a driver to read/write to the IOAS without using
* DMA. The underlying CPU memory can be accessed using the
* iommufd_access_pin_pages() or iommufd_access_rw() functions.
*
* The provided ops are required to use iommufd_access_pin_pages().
*/
struct iommufd_access *
iommufd_access_create(struct iommufd_ctx *ictx,
const struct iommufd_access_ops *ops, void *data, u32 *id)
{
struct iommufd_access *access;
/*
* There is no uAPI for the access object, but to keep things symmetric
* use the object infrastructure anyhow.
*/
access = iommufd_object_alloc(ictx, access, IOMMUFD_OBJ_ACCESS);
if (IS_ERR(access))
return access;
access->data = data;
access->ops = ops;
if (ops->needs_pin_pages)
access->iova_alignment = PAGE_SIZE;
else
access->iova_alignment = 1;
/* The calling driver is a user until iommufd_access_destroy() */
refcount_inc(&access->obj.users);
access->ictx = ictx;
iommufd_ctx_get(ictx);
iommufd_object_finalize(ictx, &access->obj);
*id = access->obj.id;
mutex_init(&access->ioas_lock);
return access;
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_create, IOMMUFD);
/**
* iommufd_access_destroy - Destroy an iommufd_access
* @access: The access to destroy
*
* The caller must stop using the access before destroying it.
*/
void iommufd_access_destroy(struct iommufd_access *access)
{
iommufd_object_destroy_user(access->ictx, &access->obj);
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_destroy, IOMMUFD);
void iommufd_access_detach(struct iommufd_access *access)
{
mutex_lock(&access->ioas_lock);
if (WARN_ON(!access->ioas)) {
mutex_unlock(&access->ioas_lock);
return;
}
WARN_ON(iommufd_access_change_ioas(access, NULL));
mutex_unlock(&access->ioas_lock);
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_detach, IOMMUFD);
int iommufd_access_attach(struct iommufd_access *access, u32 ioas_id)
{
int rc;
mutex_lock(&access->ioas_lock);
if (WARN_ON(access->ioas)) {
mutex_unlock(&access->ioas_lock);
return -EINVAL;
}
rc = iommufd_access_change_ioas_id(access, ioas_id);
mutex_unlock(&access->ioas_lock);
return rc;
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_attach, IOMMUFD);
int iommufd_access_replace(struct iommufd_access *access, u32 ioas_id)
{
int rc;
mutex_lock(&access->ioas_lock);
if (!access->ioas) {
mutex_unlock(&access->ioas_lock);
return -ENOENT;
}
rc = iommufd_access_change_ioas_id(access, ioas_id);
mutex_unlock(&access->ioas_lock);
return rc;
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_replace, IOMMUFD);
/**
* iommufd_access_notify_unmap - Notify users of an iopt to stop using it
* @iopt: iopt to work on
* @iova: Starting iova in the iopt
* @length: Number of bytes
*
* After this function returns there should be no users attached to the pages
* linked to this iopt that intersect with iova,length. Anyone that has attached
* a user through iopt_access_pages() needs to detach it through
* iommufd_access_unpin_pages() before this function returns.
*
* iommufd_access_destroy() will wait for any outstanding unmap callback to
* complete. Once iommufd_access_destroy() no unmap ops are running or will
* run in the future. Due to this a driver must not create locking that prevents
* unmap to complete while iommufd_access_destroy() is running.
*/
void iommufd_access_notify_unmap(struct io_pagetable *iopt, unsigned long iova,
unsigned long length)
{
struct iommufd_ioas *ioas =
container_of(iopt, struct iommufd_ioas, iopt);
struct iommufd_access *access;
unsigned long index;
xa_lock(&ioas->iopt.access_list);
xa_for_each(&ioas->iopt.access_list, index, access) {
if (!iommufd_lock_obj(&access->obj))
continue;
xa_unlock(&ioas->iopt.access_list);
access->ops->unmap(access->data, iova, length);
iommufd_put_object(&access->obj);
xa_lock(&ioas->iopt.access_list);
}
xa_unlock(&ioas->iopt.access_list);
}
/**
* iommufd_access_unpin_pages() - Undo iommufd_access_pin_pages
* @access: IOAS access to act on
* @iova: Starting IOVA
* @length: Number of bytes to access
*
* Return the struct page's. The caller must stop accessing them before calling
* this. The iova/length must exactly match the one provided to access_pages.
*/
void iommufd_access_unpin_pages(struct iommufd_access *access,
unsigned long iova, unsigned long length)
{
struct iopt_area_contig_iter iter;
struct io_pagetable *iopt;
unsigned long last_iova;
struct iopt_area *area;
if (WARN_ON(!length) ||
WARN_ON(check_add_overflow(iova, length - 1, &last_iova)))
return;
mutex_lock(&access->ioas_lock);
/*
* The driver must be doing something wrong if it calls this before an
* iommufd_access_attach() or after an iommufd_access_detach().
*/
if (WARN_ON(!access->ioas_unpin)) {
mutex_unlock(&access->ioas_lock);
return;
}
iopt = &access->ioas_unpin->iopt;
down_read(&iopt->iova_rwsem);
iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova)
iopt_area_remove_access(
area, iopt_area_iova_to_index(area, iter.cur_iova),
iopt_area_iova_to_index(
area,
min(last_iova, iopt_area_last_iova(area))));
WARN_ON(!iopt_area_contig_done(&iter));
up_read(&iopt->iova_rwsem);
mutex_unlock(&access->ioas_lock);
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_unpin_pages, IOMMUFD);
static bool iopt_area_contig_is_aligned(struct iopt_area_contig_iter *iter)
{
if (iopt_area_start_byte(iter->area, iter->cur_iova) % PAGE_SIZE)
return false;
if (!iopt_area_contig_done(iter) &&
(iopt_area_start_byte(iter->area, iopt_area_last_iova(iter->area)) %
PAGE_SIZE) != (PAGE_SIZE - 1))
return false;
return true;
}
static bool check_area_prot(struct iopt_area *area, unsigned int flags)
{
if (flags & IOMMUFD_ACCESS_RW_WRITE)
return area->iommu_prot & IOMMU_WRITE;
return area->iommu_prot & IOMMU_READ;
}
/**
* iommufd_access_pin_pages() - Return a list of pages under the iova
* @access: IOAS access to act on
* @iova: Starting IOVA
* @length: Number of bytes to access
* @out_pages: Output page list
* @flags: IOPMMUFD_ACCESS_RW_* flags
*
* Reads @length bytes starting at iova and returns the struct page * pointers.
* These can be kmap'd by the caller for CPU access.
*
* The caller must perform iommufd_access_unpin_pages() when done to balance
* this.
*
* This API always requires a page aligned iova. This happens naturally if the
* ioas alignment is >= PAGE_SIZE and the iova is PAGE_SIZE aligned. However
* smaller alignments have corner cases where this API can fail on otherwise
* aligned iova.
*/
int iommufd_access_pin_pages(struct iommufd_access *access, unsigned long iova,
unsigned long length, struct page **out_pages,
unsigned int flags)
{
struct iopt_area_contig_iter iter;
struct io_pagetable *iopt;
unsigned long last_iova;
struct iopt_area *area;
int rc;
/* Driver's ops don't support pin_pages */
if (IS_ENABLED(CONFIG_IOMMUFD_TEST) &&
WARN_ON(access->iova_alignment != PAGE_SIZE || !access->ops->unmap))
return -EINVAL;
if (!length)
return -EINVAL;
if (check_add_overflow(iova, length - 1, &last_iova))
return -EOVERFLOW;
mutex_lock(&access->ioas_lock);
if (!access->ioas) {
mutex_unlock(&access->ioas_lock);
return -ENOENT;
}
iopt = &access->ioas->iopt;
down_read(&iopt->iova_rwsem);
iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova) {
unsigned long last = min(last_iova, iopt_area_last_iova(area));
unsigned long last_index = iopt_area_iova_to_index(area, last);
unsigned long index =
iopt_area_iova_to_index(area, iter.cur_iova);
if (area->prevent_access ||
!iopt_area_contig_is_aligned(&iter)) {
rc = -EINVAL;
goto err_remove;
}
if (!check_area_prot(area, flags)) {
rc = -EPERM;
goto err_remove;
}
rc = iopt_area_add_access(area, index, last_index, out_pages,
flags);
if (rc)
goto err_remove;
out_pages += last_index - index + 1;
}
if (!iopt_area_contig_done(&iter)) {
rc = -ENOENT;
goto err_remove;
}
up_read(&iopt->iova_rwsem);
mutex_unlock(&access->ioas_lock);
return 0;
err_remove:
if (iova < iter.cur_iova) {
last_iova = iter.cur_iova - 1;
iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova)
iopt_area_remove_access(
area,
iopt_area_iova_to_index(area, iter.cur_iova),
iopt_area_iova_to_index(
area, min(last_iova,
iopt_area_last_iova(area))));
}
up_read(&iopt->iova_rwsem);
mutex_unlock(&access->ioas_lock);
return rc;
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_pin_pages, IOMMUFD);
/**
* iommufd_access_rw - Read or write data under the iova
* @access: IOAS access to act on
* @iova: Starting IOVA
* @data: Kernel buffer to copy to/from
* @length: Number of bytes to access
* @flags: IOMMUFD_ACCESS_RW_* flags
*
* Copy kernel to/from data into the range given by IOVA/length. If flags
* indicates IOMMUFD_ACCESS_RW_KTHREAD then a large copy can be optimized
* by changing it into copy_to/from_user().
*/
int iommufd_access_rw(struct iommufd_access *access, unsigned long iova,
void *data, size_t length, unsigned int flags)
{
struct iopt_area_contig_iter iter;
struct io_pagetable *iopt;
struct iopt_area *area;
unsigned long last_iova;
int rc;
if (!length)
return -EINVAL;
if (check_add_overflow(iova, length - 1, &last_iova))
return -EOVERFLOW;
mutex_lock(&access->ioas_lock);
if (!access->ioas) {
mutex_unlock(&access->ioas_lock);
return -ENOENT;
}
iopt = &access->ioas->iopt;
down_read(&iopt->iova_rwsem);
iopt_for_each_contig_area(&iter, area, iopt, iova, last_iova) {
unsigned long last = min(last_iova, iopt_area_last_iova(area));
unsigned long bytes = (last - iter.cur_iova) + 1;
if (area->prevent_access) {
rc = -EINVAL;
goto err_out;
}
if (!check_area_prot(area, flags)) {
rc = -EPERM;
goto err_out;
}
rc = iopt_pages_rw_access(
area->pages, iopt_area_start_byte(area, iter.cur_iova),
data, bytes, flags);
if (rc)
goto err_out;
data += bytes;
}
if (!iopt_area_contig_done(&iter))
rc = -ENOENT;
err_out:
up_read(&iopt->iova_rwsem);
mutex_unlock(&access->ioas_lock);
return rc;
}
EXPORT_SYMBOL_NS_GPL(iommufd_access_rw, IOMMUFD);
int iommufd_get_hw_info(struct iommufd_ucmd *ucmd)
{
struct iommu_hw_info *cmd = ucmd->cmd;
void __user *user_ptr = u64_to_user_ptr(cmd->data_uptr);
const struct iommu_ops *ops;
struct iommufd_device *idev;
unsigned int data_len;
unsigned int copy_len;
void *data;
int rc;
if (cmd->flags || cmd->__reserved)
return -EOPNOTSUPP;
idev = iommufd_get_device(ucmd, cmd->dev_id);
if (IS_ERR(idev))
return PTR_ERR(idev);
ops = dev_iommu_ops(idev->dev);
if (ops->hw_info) {
data = ops->hw_info(idev->dev, &data_len, &cmd->out_data_type);
if (IS_ERR(data)) {
rc = PTR_ERR(data);
goto out_put;
}
/*
* drivers that have hw_info callback should have a unique
* iommu_hw_info_type.
*/
if (WARN_ON_ONCE(cmd->out_data_type ==
IOMMU_HW_INFO_TYPE_NONE)) {
rc = -ENODEV;
goto out_free;
}
} else {
cmd->out_data_type = IOMMU_HW_INFO_TYPE_NONE;
data_len = 0;
data = NULL;
}
copy_len = min(cmd->data_len, data_len);
if (copy_to_user(user_ptr, data, copy_len)) {
rc = -EFAULT;
goto out_free;
}
/*
* Zero the trailing bytes if the user buffer is bigger than the
* data size kernel actually has.
*/
if (copy_len < cmd->data_len) {
if (clear_user(user_ptr + copy_len, cmd->data_len - copy_len)) {
rc = -EFAULT;
goto out_free;
}
}
/*
* We return the length the kernel supports so userspace may know what
* the kernel capability is. It could be larger than the input buffer.
*/
cmd->data_len = data_len;
rc = iommufd_ucmd_respond(ucmd, sizeof(*cmd));
out_free:
kfree(data);
out_put:
iommufd_put_object(&idev->obj);
return rc;
}