mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 21:23:23 +00:00
65c17b801e
Make XP return values more generic to XP and not so tied to XPC by changing enum xpc_retval to xp_retval, along with changing return value prefixes from xpc to xp. Also, cleanup a comment block that referenced some of these return values as well as the handling of BTE related return values. Signed-off-by: Dean Nelson <dcn@sgi.com> Acked-by: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1324 lines
36 KiB
C
1324 lines
36 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved.
|
|
*/
|
|
|
|
/*
|
|
* Cross Partition Communication (XPC) support - standard version.
|
|
*
|
|
* XPC provides a message passing capability that crosses partition
|
|
* boundaries. This module is made up of two parts:
|
|
*
|
|
* partition This part detects the presence/absence of other
|
|
* partitions. It provides a heartbeat and monitors
|
|
* the heartbeats of other partitions.
|
|
*
|
|
* channel This part manages the channels and sends/receives
|
|
* messages across them to/from other partitions.
|
|
*
|
|
* There are a couple of additional functions residing in XP, which
|
|
* provide an interface to XPC for its users.
|
|
*
|
|
*
|
|
* Caveats:
|
|
*
|
|
* . We currently have no way to determine which nasid an IPI came
|
|
* from. Thus, xpc_IPI_send() does a remote AMO write followed by
|
|
* an IPI. The AMO indicates where data is to be pulled from, so
|
|
* after the IPI arrives, the remote partition checks the AMO word.
|
|
* The IPI can actually arrive before the AMO however, so other code
|
|
* must periodically check for this case. Also, remote AMO operations
|
|
* do not reliably time out. Thus we do a remote PIO read solely to
|
|
* know whether the remote partition is down and whether we should
|
|
* stop sending IPIs to it. This remote PIO read operation is set up
|
|
* in a special nofault region so SAL knows to ignore (and cleanup)
|
|
* any errors due to the remote AMO write, PIO read, and/or PIO
|
|
* write operations.
|
|
*
|
|
* If/when new hardware solves this IPI problem, we should abandon
|
|
* the current approach.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/sn/intr.h>
|
|
#include <asm/sn/sn_sal.h>
|
|
#include "xpc.h"
|
|
|
|
/* define two XPC debug device structures to be used with dev_dbg() et al */
|
|
|
|
struct device_driver xpc_dbg_name = {
|
|
.name = "xpc"
|
|
};
|
|
|
|
struct device xpc_part_dbg_subname = {
|
|
.bus_id = {0}, /* set to "part" at xpc_init() time */
|
|
.driver = &xpc_dbg_name
|
|
};
|
|
|
|
struct device xpc_chan_dbg_subname = {
|
|
.bus_id = {0}, /* set to "chan" at xpc_init() time */
|
|
.driver = &xpc_dbg_name
|
|
};
|
|
|
|
struct device *xpc_part = &xpc_part_dbg_subname;
|
|
struct device *xpc_chan = &xpc_chan_dbg_subname;
|
|
|
|
static int xpc_kdebug_ignore;
|
|
|
|
/* systune related variables for /proc/sys directories */
|
|
|
|
static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
|
|
static int xpc_hb_min_interval = 1;
|
|
static int xpc_hb_max_interval = 10;
|
|
|
|
static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
|
|
static int xpc_hb_check_min_interval = 10;
|
|
static int xpc_hb_check_max_interval = 120;
|
|
|
|
int xpc_disengage_request_timelimit = XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT;
|
|
static int xpc_disengage_request_min_timelimit; /* = 0 */
|
|
static int xpc_disengage_request_max_timelimit = 120;
|
|
|
|
static ctl_table xpc_sys_xpc_hb_dir[] = {
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "hb_interval",
|
|
.data = &xpc_hb_interval,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_minmax,
|
|
.strategy = &sysctl_intvec,
|
|
.extra1 = &xpc_hb_min_interval,
|
|
.extra2 = &xpc_hb_max_interval},
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "hb_check_interval",
|
|
.data = &xpc_hb_check_interval,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_minmax,
|
|
.strategy = &sysctl_intvec,
|
|
.extra1 = &xpc_hb_check_min_interval,
|
|
.extra2 = &xpc_hb_check_max_interval},
|
|
{}
|
|
};
|
|
static ctl_table xpc_sys_xpc_dir[] = {
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "hb",
|
|
.mode = 0555,
|
|
.child = xpc_sys_xpc_hb_dir},
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "disengage_request_timelimit",
|
|
.data = &xpc_disengage_request_timelimit,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec_minmax,
|
|
.strategy = &sysctl_intvec,
|
|
.extra1 = &xpc_disengage_request_min_timelimit,
|
|
.extra2 = &xpc_disengage_request_max_timelimit},
|
|
{}
|
|
};
|
|
static ctl_table xpc_sys_dir[] = {
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "xpc",
|
|
.mode = 0555,
|
|
.child = xpc_sys_xpc_dir},
|
|
{}
|
|
};
|
|
static struct ctl_table_header *xpc_sysctl;
|
|
|
|
/* non-zero if any remote partition disengage request was timed out */
|
|
int xpc_disengage_request_timedout;
|
|
|
|
/* #of IRQs received */
|
|
static atomic_t xpc_act_IRQ_rcvd;
|
|
|
|
/* IRQ handler notifies this wait queue on receipt of an IRQ */
|
|
static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq);
|
|
|
|
static unsigned long xpc_hb_check_timeout;
|
|
|
|
/* notification that the xpc_hb_checker thread has exited */
|
|
static DECLARE_COMPLETION(xpc_hb_checker_exited);
|
|
|
|
/* notification that the xpc_discovery thread has exited */
|
|
static DECLARE_COMPLETION(xpc_discovery_exited);
|
|
|
|
static struct timer_list xpc_hb_timer;
|
|
|
|
static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
|
|
|
|
static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
|
|
static struct notifier_block xpc_reboot_notifier = {
|
|
.notifier_call = xpc_system_reboot,
|
|
};
|
|
|
|
static int xpc_system_die(struct notifier_block *, unsigned long, void *);
|
|
static struct notifier_block xpc_die_notifier = {
|
|
.notifier_call = xpc_system_die,
|
|
};
|
|
|
|
/*
|
|
* Timer function to enforce the timelimit on the partition disengage request.
|
|
*/
|
|
static void
|
|
xpc_timeout_partition_disengage_request(unsigned long data)
|
|
{
|
|
struct xpc_partition *part = (struct xpc_partition *)data;
|
|
|
|
DBUG_ON(time_before(jiffies, part->disengage_request_timeout));
|
|
|
|
(void)xpc_partition_disengaged(part);
|
|
|
|
DBUG_ON(part->disengage_request_timeout != 0);
|
|
DBUG_ON(xpc_partition_engaged(1UL << XPC_PARTID(part)) != 0);
|
|
}
|
|
|
|
/*
|
|
* Notify the heartbeat check thread that an IRQ has been received.
|
|
*/
|
|
static irqreturn_t
|
|
xpc_act_IRQ_handler(int irq, void *dev_id)
|
|
{
|
|
atomic_inc(&xpc_act_IRQ_rcvd);
|
|
wake_up_interruptible(&xpc_act_IRQ_wq);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Timer to produce the heartbeat. The timer structures function is
|
|
* already set when this is initially called. A tunable is used to
|
|
* specify when the next timeout should occur.
|
|
*/
|
|
static void
|
|
xpc_hb_beater(unsigned long dummy)
|
|
{
|
|
xpc_vars->heartbeat++;
|
|
|
|
if (time_after_eq(jiffies, xpc_hb_check_timeout))
|
|
wake_up_interruptible(&xpc_act_IRQ_wq);
|
|
|
|
xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
|
|
add_timer(&xpc_hb_timer);
|
|
}
|
|
|
|
/*
|
|
* This thread is responsible for nearly all of the partition
|
|
* activation/deactivation.
|
|
*/
|
|
static int
|
|
xpc_hb_checker(void *ignore)
|
|
{
|
|
int last_IRQ_count = 0;
|
|
int new_IRQ_count;
|
|
int force_IRQ = 0;
|
|
|
|
/* this thread was marked active by xpc_hb_init() */
|
|
|
|
set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU));
|
|
|
|
/* set our heartbeating to other partitions into motion */
|
|
xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
|
|
xpc_hb_beater(0);
|
|
|
|
while (!xpc_exiting) {
|
|
|
|
dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
|
|
"been received\n",
|
|
(int)(xpc_hb_check_timeout - jiffies),
|
|
atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count);
|
|
|
|
/* checking of remote heartbeats is skewed by IRQ handling */
|
|
if (time_after_eq(jiffies, xpc_hb_check_timeout)) {
|
|
dev_dbg(xpc_part, "checking remote heartbeats\n");
|
|
xpc_check_remote_hb();
|
|
|
|
/*
|
|
* We need to periodically recheck to ensure no
|
|
* IPI/AMO pairs have been missed. That check
|
|
* must always reset xpc_hb_check_timeout.
|
|
*/
|
|
force_IRQ = 1;
|
|
}
|
|
|
|
/* check for outstanding IRQs */
|
|
new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd);
|
|
if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) {
|
|
force_IRQ = 0;
|
|
|
|
dev_dbg(xpc_part, "found an IRQ to process; will be "
|
|
"resetting xpc_hb_check_timeout\n");
|
|
|
|
last_IRQ_count += xpc_identify_act_IRQ_sender();
|
|
if (last_IRQ_count < new_IRQ_count) {
|
|
/* retry once to help avoid missing AMO */
|
|
(void)xpc_identify_act_IRQ_sender();
|
|
}
|
|
last_IRQ_count = new_IRQ_count;
|
|
|
|
xpc_hb_check_timeout = jiffies +
|
|
(xpc_hb_check_interval * HZ);
|
|
}
|
|
|
|
/* wait for IRQ or timeout */
|
|
(void)wait_event_interruptible(xpc_act_IRQ_wq,
|
|
(last_IRQ_count <
|
|
atomic_read(&xpc_act_IRQ_rcvd)
|
|
|| time_after_eq(jiffies,
|
|
xpc_hb_check_timeout) ||
|
|
xpc_exiting));
|
|
}
|
|
|
|
dev_dbg(xpc_part, "heartbeat checker is exiting\n");
|
|
|
|
/* mark this thread as having exited */
|
|
complete(&xpc_hb_checker_exited);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This thread will attempt to discover other partitions to activate
|
|
* based on info provided by SAL. This new thread is short lived and
|
|
* will exit once discovery is complete.
|
|
*/
|
|
static int
|
|
xpc_initiate_discovery(void *ignore)
|
|
{
|
|
xpc_discovery();
|
|
|
|
dev_dbg(xpc_part, "discovery thread is exiting\n");
|
|
|
|
/* mark this thread as having exited */
|
|
complete(&xpc_discovery_exited);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Establish first contact with the remote partititon. This involves pulling
|
|
* the XPC per partition variables from the remote partition and waiting for
|
|
* the remote partition to pull ours.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_make_first_contact(struct xpc_partition *part)
|
|
{
|
|
enum xp_retval ret;
|
|
|
|
while ((ret = xpc_pull_remote_vars_part(part)) != xpSuccess) {
|
|
if (ret != xpRetry) {
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(xpc_chan, "waiting to make first contact with "
|
|
"partition %d\n", XPC_PARTID(part));
|
|
|
|
/* wait a 1/4 of a second or so */
|
|
(void)msleep_interruptible(250);
|
|
|
|
if (part->act_state == XPC_P_DEACTIVATING)
|
|
return part->reason;
|
|
}
|
|
|
|
return xpc_mark_partition_active(part);
|
|
}
|
|
|
|
/*
|
|
* The first kthread assigned to a newly activated partition is the one
|
|
* created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to
|
|
* that kthread until the partition is brought down, at which time that kthread
|
|
* returns back to XPC HB. (The return of that kthread will signify to XPC HB
|
|
* that XPC has dismantled all communication infrastructure for the associated
|
|
* partition.) This kthread becomes the channel manager for that partition.
|
|
*
|
|
* Each active partition has a channel manager, who, besides connecting and
|
|
* disconnecting channels, will ensure that each of the partition's connected
|
|
* channels has the required number of assigned kthreads to get the work done.
|
|
*/
|
|
static void
|
|
xpc_channel_mgr(struct xpc_partition *part)
|
|
{
|
|
while (part->act_state != XPC_P_DEACTIVATING ||
|
|
atomic_read(&part->nchannels_active) > 0 ||
|
|
!xpc_partition_disengaged(part)) {
|
|
|
|
xpc_process_channel_activity(part);
|
|
|
|
/*
|
|
* Wait until we've been requested to activate kthreads or
|
|
* all of the channel's message queues have been torn down or
|
|
* a signal is pending.
|
|
*
|
|
* The channel_mgr_requests is set to 1 after being awakened,
|
|
* This is done to prevent the channel mgr from making one pass
|
|
* through the loop for each request, since he will
|
|
* be servicing all the requests in one pass. The reason it's
|
|
* set to 1 instead of 0 is so that other kthreads will know
|
|
* that the channel mgr is running and won't bother trying to
|
|
* wake him up.
|
|
*/
|
|
atomic_dec(&part->channel_mgr_requests);
|
|
(void)wait_event_interruptible(part->channel_mgr_wq,
|
|
(atomic_read(&part->channel_mgr_requests) > 0 ||
|
|
part->local_IPI_amo != 0 ||
|
|
(part->act_state == XPC_P_DEACTIVATING &&
|
|
atomic_read(&part->nchannels_active) == 0 &&
|
|
xpc_partition_disengaged(part))));
|
|
atomic_set(&part->channel_mgr_requests, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When XPC HB determines that a partition has come up, it will create a new
|
|
* kthread and that kthread will call this function to attempt to set up the
|
|
* basic infrastructure used for Cross Partition Communication with the newly
|
|
* upped partition.
|
|
*
|
|
* The kthread that was created by XPC HB and which setup the XPC
|
|
* infrastructure will remain assigned to the partition until the partition
|
|
* goes down. At which time the kthread will teardown the XPC infrastructure
|
|
* and then exit.
|
|
*
|
|
* XPC HB will put the remote partition's XPC per partition specific variables
|
|
* physical address into xpc_partitions[partid].remote_vars_part_pa prior to
|
|
* calling xpc_partition_up().
|
|
*/
|
|
static void
|
|
xpc_partition_up(struct xpc_partition *part)
|
|
{
|
|
DBUG_ON(part->channels != NULL);
|
|
|
|
dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part));
|
|
|
|
if (xpc_setup_infrastructure(part) != xpSuccess)
|
|
return;
|
|
|
|
/*
|
|
* The kthread that XPC HB called us with will become the
|
|
* channel manager for this partition. It will not return
|
|
* back to XPC HB until the partition's XPC infrastructure
|
|
* has been dismantled.
|
|
*/
|
|
|
|
(void)xpc_part_ref(part); /* this will always succeed */
|
|
|
|
if (xpc_make_first_contact(part) == xpSuccess)
|
|
xpc_channel_mgr(part);
|
|
|
|
xpc_part_deref(part);
|
|
|
|
xpc_teardown_infrastructure(part);
|
|
}
|
|
|
|
static int
|
|
xpc_activating(void *__partid)
|
|
{
|
|
partid_t partid = (u64)__partid;
|
|
struct xpc_partition *part = &xpc_partitions[partid];
|
|
unsigned long irq_flags;
|
|
|
|
DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
|
|
if (part->act_state == XPC_P_DEACTIVATING) {
|
|
part->act_state = XPC_P_INACTIVE;
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
part->remote_rp_pa = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* indicate the thread is activating */
|
|
DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ);
|
|
part->act_state = XPC_P_ACTIVATING;
|
|
|
|
XPC_SET_REASON(part, 0, 0);
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
|
|
dev_dbg(xpc_part, "bringing partition %d up\n", partid);
|
|
|
|
/*
|
|
* Register the remote partition's AMOs with SAL so it can handle
|
|
* and cleanup errors within that address range should the remote
|
|
* partition go down. We don't unregister this range because it is
|
|
* difficult to tell when outstanding writes to the remote partition
|
|
* are finished and thus when it is safe to unregister. This should
|
|
* not result in wasted space in the SAL xp_addr_region table because
|
|
* we should get the same page for remote_amos_page_pa after module
|
|
* reloads and system reboots.
|
|
*/
|
|
if (sn_register_xp_addr_region(part->remote_amos_page_pa,
|
|
PAGE_SIZE, 1) < 0) {
|
|
dev_warn(xpc_part, "xpc_partition_up(%d) failed to register "
|
|
"xp_addr region\n", partid);
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
part->act_state = XPC_P_INACTIVE;
|
|
XPC_SET_REASON(part, xpPhysAddrRegFailed, __LINE__);
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
part->remote_rp_pa = 0;
|
|
return 0;
|
|
}
|
|
|
|
xpc_allow_hb(partid, xpc_vars);
|
|
xpc_IPI_send_activated(part);
|
|
|
|
/*
|
|
* xpc_partition_up() holds this thread and marks this partition as
|
|
* XPC_P_ACTIVE by calling xpc_hb_mark_active().
|
|
*/
|
|
(void)xpc_partition_up(part);
|
|
|
|
xpc_disallow_hb(partid, xpc_vars);
|
|
xpc_mark_partition_inactive(part);
|
|
|
|
if (part->reason == xpReactivating) {
|
|
/* interrupting ourselves results in activating partition */
|
|
xpc_IPI_send_reactivate(part);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xpc_activate_partition(struct xpc_partition *part)
|
|
{
|
|
partid_t partid = XPC_PARTID(part);
|
|
unsigned long irq_flags;
|
|
struct task_struct *kthread;
|
|
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
|
|
DBUG_ON(part->act_state != XPC_P_INACTIVE);
|
|
|
|
part->act_state = XPC_P_ACTIVATION_REQ;
|
|
XPC_SET_REASON(part, xpCloneKThread, __LINE__);
|
|
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
|
|
kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
|
|
partid);
|
|
if (IS_ERR(kthread)) {
|
|
spin_lock_irqsave(&part->act_lock, irq_flags);
|
|
part->act_state = XPC_P_INACTIVE;
|
|
XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
|
|
spin_unlock_irqrestore(&part->act_lock, irq_flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
|
|
* partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
|
|
* than one partition, we use an AMO_t structure per partition to indicate
|
|
* whether a partition has sent an IPI or not. If it has, then wake up the
|
|
* associated kthread to handle it.
|
|
*
|
|
* All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC
|
|
* running on other partitions.
|
|
*
|
|
* Noteworthy Arguments:
|
|
*
|
|
* irq - Interrupt ReQuest number. NOT USED.
|
|
*
|
|
* dev_id - partid of IPI's potential sender.
|
|
*/
|
|
irqreturn_t
|
|
xpc_notify_IRQ_handler(int irq, void *dev_id)
|
|
{
|
|
partid_t partid = (partid_t) (u64)dev_id;
|
|
struct xpc_partition *part = &xpc_partitions[partid];
|
|
|
|
DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS);
|
|
|
|
if (xpc_part_ref(part)) {
|
|
xpc_check_for_channel_activity(part);
|
|
|
|
xpc_part_deref(part);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor
|
|
* because the write to their associated IPI amo completed after the IRQ/IPI
|
|
* was received.
|
|
*/
|
|
void
|
|
xpc_dropped_IPI_check(struct xpc_partition *part)
|
|
{
|
|
if (xpc_part_ref(part)) {
|
|
xpc_check_for_channel_activity(part);
|
|
|
|
part->dropped_IPI_timer.expires = jiffies +
|
|
XPC_P_DROPPED_IPI_WAIT;
|
|
add_timer(&part->dropped_IPI_timer);
|
|
xpc_part_deref(part);
|
|
}
|
|
}
|
|
|
|
void
|
|
xpc_activate_kthreads(struct xpc_channel *ch, int needed)
|
|
{
|
|
int idle = atomic_read(&ch->kthreads_idle);
|
|
int assigned = atomic_read(&ch->kthreads_assigned);
|
|
int wakeup;
|
|
|
|
DBUG_ON(needed <= 0);
|
|
|
|
if (idle > 0) {
|
|
wakeup = (needed > idle) ? idle : needed;
|
|
needed -= wakeup;
|
|
|
|
dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
|
|
"channel=%d\n", wakeup, ch->partid, ch->number);
|
|
|
|
/* only wakeup the requested number of kthreads */
|
|
wake_up_nr(&ch->idle_wq, wakeup);
|
|
}
|
|
|
|
if (needed <= 0)
|
|
return;
|
|
|
|
if (needed + assigned > ch->kthreads_assigned_limit) {
|
|
needed = ch->kthreads_assigned_limit - assigned;
|
|
if (needed <= 0)
|
|
return;
|
|
}
|
|
|
|
dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
|
|
needed, ch->partid, ch->number);
|
|
|
|
xpc_create_kthreads(ch, needed, 0);
|
|
}
|
|
|
|
/*
|
|
* This function is where XPC's kthreads wait for messages to deliver.
|
|
*/
|
|
static void
|
|
xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
|
|
{
|
|
do {
|
|
/* deliver messages to their intended recipients */
|
|
|
|
while (ch->w_local_GP.get < ch->w_remote_GP.put &&
|
|
!(ch->flags & XPC_C_DISCONNECTING)) {
|
|
xpc_deliver_msg(ch);
|
|
}
|
|
|
|
if (atomic_inc_return(&ch->kthreads_idle) >
|
|
ch->kthreads_idle_limit) {
|
|
/* too many idle kthreads on this channel */
|
|
atomic_dec(&ch->kthreads_idle);
|
|
break;
|
|
}
|
|
|
|
dev_dbg(xpc_chan, "idle kthread calling "
|
|
"wait_event_interruptible_exclusive()\n");
|
|
|
|
(void)wait_event_interruptible_exclusive(ch->idle_wq,
|
|
(ch->w_local_GP.get < ch->w_remote_GP.put ||
|
|
(ch->flags & XPC_C_DISCONNECTING)));
|
|
|
|
atomic_dec(&ch->kthreads_idle);
|
|
|
|
} while (!(ch->flags & XPC_C_DISCONNECTING));
|
|
}
|
|
|
|
static int
|
|
xpc_kthread_start(void *args)
|
|
{
|
|
partid_t partid = XPC_UNPACK_ARG1(args);
|
|
u16 ch_number = XPC_UNPACK_ARG2(args);
|
|
struct xpc_partition *part = &xpc_partitions[partid];
|
|
struct xpc_channel *ch;
|
|
int n_needed;
|
|
unsigned long irq_flags;
|
|
|
|
dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
|
|
partid, ch_number);
|
|
|
|
ch = &part->channels[ch_number];
|
|
|
|
if (!(ch->flags & XPC_C_DISCONNECTING)) {
|
|
|
|
/* let registerer know that connection has been established */
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
|
|
ch->flags |= XPC_C_CONNECTEDCALLOUT;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
xpc_connected_callout(ch);
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
/*
|
|
* It is possible that while the callout was being
|
|
* made that the remote partition sent some messages.
|
|
* If that is the case, we may need to activate
|
|
* additional kthreads to help deliver them. We only
|
|
* need one less than total #of messages to deliver.
|
|
*/
|
|
n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1;
|
|
if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
|
|
xpc_activate_kthreads(ch, n_needed);
|
|
|
|
} else {
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
}
|
|
|
|
xpc_kthread_waitmsgs(part, ch);
|
|
}
|
|
|
|
/* let registerer know that connection is disconnecting */
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
|
|
!(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
|
|
ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
xpc_disconnect_callout(ch, xpDisconnecting);
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
|
|
}
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
if (atomic_dec_return(&ch->kthreads_assigned) == 0) {
|
|
if (atomic_dec_return(&part->nchannels_engaged) == 0) {
|
|
xpc_mark_partition_disengaged(part);
|
|
xpc_IPI_send_disengage(part);
|
|
}
|
|
}
|
|
|
|
xpc_msgqueue_deref(ch);
|
|
|
|
dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
|
|
partid, ch_number);
|
|
|
|
xpc_part_deref(part);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For each partition that XPC has established communications with, there is
|
|
* a minimum of one kernel thread assigned to perform any operation that
|
|
* may potentially sleep or block (basically the callouts to the asynchronous
|
|
* functions registered via xpc_connect()).
|
|
*
|
|
* Additional kthreads are created and destroyed by XPC as the workload
|
|
* demands.
|
|
*
|
|
* A kthread is assigned to one of the active channels that exists for a given
|
|
* partition.
|
|
*/
|
|
void
|
|
xpc_create_kthreads(struct xpc_channel *ch, int needed,
|
|
int ignore_disconnecting)
|
|
{
|
|
unsigned long irq_flags;
|
|
u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
|
|
struct xpc_partition *part = &xpc_partitions[ch->partid];
|
|
struct task_struct *kthread;
|
|
|
|
while (needed-- > 0) {
|
|
|
|
/*
|
|
* The following is done on behalf of the newly created
|
|
* kthread. That kthread is responsible for doing the
|
|
* counterpart to the following before it exits.
|
|
*/
|
|
if (ignore_disconnecting) {
|
|
if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
|
|
/* kthreads assigned had gone to zero */
|
|
BUG_ON(!(ch->flags &
|
|
XPC_C_DISCONNECTINGCALLOUT_MADE));
|
|
break;
|
|
}
|
|
|
|
} else if (ch->flags & XPC_C_DISCONNECTING) {
|
|
break;
|
|
|
|
} else if (atomic_inc_return(&ch->kthreads_assigned) == 1) {
|
|
if (atomic_inc_return(&part->nchannels_engaged) == 1)
|
|
xpc_mark_partition_engaged(part);
|
|
}
|
|
(void)xpc_part_ref(part);
|
|
xpc_msgqueue_ref(ch);
|
|
|
|
kthread = kthread_run(xpc_kthread_start, (void *)args,
|
|
"xpc%02dc%d", ch->partid, ch->number);
|
|
if (IS_ERR(kthread)) {
|
|
/* the fork failed */
|
|
|
|
/*
|
|
* NOTE: if (ignore_disconnecting &&
|
|
* !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
|
|
* then we'll deadlock if all other kthreads assigned
|
|
* to this channel are blocked in the channel's
|
|
* registerer, because the only thing that will unblock
|
|
* them is the xpDisconnecting callout that this
|
|
* failed kthread_run() would have made.
|
|
*/
|
|
|
|
if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
|
|
atomic_dec_return(&part->nchannels_engaged) == 0) {
|
|
xpc_mark_partition_disengaged(part);
|
|
xpc_IPI_send_disengage(part);
|
|
}
|
|
xpc_msgqueue_deref(ch);
|
|
xpc_part_deref(part);
|
|
|
|
if (atomic_read(&ch->kthreads_assigned) <
|
|
ch->kthreads_idle_limit) {
|
|
/*
|
|
* Flag this as an error only if we have an
|
|
* insufficient #of kthreads for the channel
|
|
* to function.
|
|
*/
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
|
|
&irq_flags);
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
xpc_disconnect_wait(int ch_number)
|
|
{
|
|
unsigned long irq_flags;
|
|
partid_t partid;
|
|
struct xpc_partition *part;
|
|
struct xpc_channel *ch;
|
|
int wakeup_channel_mgr;
|
|
|
|
/* now wait for all callouts to the caller's function to cease */
|
|
for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (!xpc_part_ref(part))
|
|
continue;
|
|
|
|
ch = &part->channels[ch_number];
|
|
|
|
if (!(ch->flags & XPC_C_WDISCONNECT)) {
|
|
xpc_part_deref(part);
|
|
continue;
|
|
}
|
|
|
|
wait_for_completion(&ch->wdisconnect_wait);
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
|
|
wakeup_channel_mgr = 0;
|
|
|
|
if (ch->delayed_IPI_flags) {
|
|
if (part->act_state != XPC_P_DEACTIVATING) {
|
|
spin_lock(&part->IPI_lock);
|
|
XPC_SET_IPI_FLAGS(part->local_IPI_amo,
|
|
ch->number,
|
|
ch->delayed_IPI_flags);
|
|
spin_unlock(&part->IPI_lock);
|
|
wakeup_channel_mgr = 1;
|
|
}
|
|
ch->delayed_IPI_flags = 0;
|
|
}
|
|
|
|
ch->flags &= ~XPC_C_WDISCONNECT;
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|
|
|
|
if (wakeup_channel_mgr)
|
|
xpc_wakeup_channel_mgr(part);
|
|
|
|
xpc_part_deref(part);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xpc_do_exit(enum xp_retval reason)
|
|
{
|
|
partid_t partid;
|
|
int active_part_count, printed_waiting_msg = 0;
|
|
struct xpc_partition *part;
|
|
unsigned long printmsg_time, disengage_request_timeout = 0;
|
|
|
|
/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
|
|
DBUG_ON(xpc_exiting == 1);
|
|
|
|
/*
|
|
* Let the heartbeat checker thread and the discovery thread
|
|
* (if one is running) know that they should exit. Also wake up
|
|
* the heartbeat checker thread in case it's sleeping.
|
|
*/
|
|
xpc_exiting = 1;
|
|
wake_up_interruptible(&xpc_act_IRQ_wq);
|
|
|
|
/* ignore all incoming interrupts */
|
|
free_irq(SGI_XPC_ACTIVATE, NULL);
|
|
|
|
/* wait for the discovery thread to exit */
|
|
wait_for_completion(&xpc_discovery_exited);
|
|
|
|
/* wait for the heartbeat checker thread to exit */
|
|
wait_for_completion(&xpc_hb_checker_exited);
|
|
|
|
/* sleep for a 1/3 of a second or so */
|
|
(void)msleep_interruptible(300);
|
|
|
|
/* wait for all partitions to become inactive */
|
|
|
|
printmsg_time = jiffies + (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ);
|
|
xpc_disengage_request_timedout = 0;
|
|
|
|
do {
|
|
active_part_count = 0;
|
|
|
|
for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (xpc_partition_disengaged(part) &&
|
|
part->act_state == XPC_P_INACTIVE) {
|
|
continue;
|
|
}
|
|
|
|
active_part_count++;
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, reason);
|
|
|
|
if (part->disengage_request_timeout >
|
|
disengage_request_timeout) {
|
|
disengage_request_timeout =
|
|
part->disengage_request_timeout;
|
|
}
|
|
}
|
|
|
|
if (xpc_partition_engaged(-1UL)) {
|
|
if (time_after(jiffies, printmsg_time)) {
|
|
dev_info(xpc_part, "waiting for remote "
|
|
"partitions to disengage, timeout in "
|
|
"%ld seconds\n",
|
|
(disengage_request_timeout - jiffies)
|
|
/ HZ);
|
|
printmsg_time = jiffies +
|
|
(XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ);
|
|
printed_waiting_msg = 1;
|
|
}
|
|
|
|
} else if (active_part_count > 0) {
|
|
if (printed_waiting_msg) {
|
|
dev_info(xpc_part, "waiting for local partition"
|
|
" to disengage\n");
|
|
printed_waiting_msg = 0;
|
|
}
|
|
|
|
} else {
|
|
if (!xpc_disengage_request_timedout) {
|
|
dev_info(xpc_part, "all partitions have "
|
|
"disengaged\n");
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* sleep for a 1/3 of a second or so */
|
|
(void)msleep_interruptible(300);
|
|
|
|
} while (1);
|
|
|
|
DBUG_ON(xpc_partition_engaged(-1UL));
|
|
|
|
/* indicate to others that our reserved page is uninitialized */
|
|
xpc_rsvd_page->vars_pa = 0;
|
|
|
|
/* now it's time to eliminate our heartbeat */
|
|
del_timer_sync(&xpc_hb_timer);
|
|
DBUG_ON(xpc_vars->heartbeating_to_mask != 0);
|
|
|
|
if (reason == xpUnloading) {
|
|
/* take ourselves off of the reboot_notifier_list */
|
|
(void)unregister_reboot_notifier(&xpc_reboot_notifier);
|
|
|
|
/* take ourselves off of the die_notifier list */
|
|
(void)unregister_die_notifier(&xpc_die_notifier);
|
|
}
|
|
|
|
/* close down protections for IPI operations */
|
|
xpc_restrict_IPI_ops();
|
|
|
|
/* clear the interface to XPC's functions */
|
|
xpc_clear_interface();
|
|
|
|
if (xpc_sysctl)
|
|
unregister_sysctl_table(xpc_sysctl);
|
|
|
|
kfree(xpc_remote_copy_buffer_base);
|
|
}
|
|
|
|
/*
|
|
* This function is called when the system is being rebooted.
|
|
*/
|
|
static int
|
|
xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
|
|
{
|
|
enum xp_retval reason;
|
|
|
|
switch (event) {
|
|
case SYS_RESTART:
|
|
reason = xpSystemReboot;
|
|
break;
|
|
case SYS_HALT:
|
|
reason = xpSystemHalt;
|
|
break;
|
|
case SYS_POWER_OFF:
|
|
reason = xpSystemPoweroff;
|
|
break;
|
|
default:
|
|
reason = xpSystemGoingDown;
|
|
}
|
|
|
|
xpc_do_exit(reason);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
/*
|
|
* Notify other partitions to disengage from all references to our memory.
|
|
*/
|
|
static void
|
|
xpc_die_disengage(void)
|
|
{
|
|
struct xpc_partition *part;
|
|
partid_t partid;
|
|
unsigned long engaged;
|
|
long time, printmsg_time, disengage_request_timeout;
|
|
|
|
/* keep xpc_hb_checker thread from doing anything (just in case) */
|
|
xpc_exiting = 1;
|
|
|
|
xpc_vars->heartbeating_to_mask = 0; /* indicate we're deactivated */
|
|
|
|
for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (!XPC_SUPPORTS_DISENGAGE_REQUEST(part->
|
|
remote_vars_version)) {
|
|
|
|
/* just in case it was left set by an earlier XPC */
|
|
xpc_clear_partition_engaged(1UL << partid);
|
|
continue;
|
|
}
|
|
|
|
if (xpc_partition_engaged(1UL << partid) ||
|
|
part->act_state != XPC_P_INACTIVE) {
|
|
xpc_request_partition_disengage(part);
|
|
xpc_mark_partition_disengaged(part);
|
|
xpc_IPI_send_disengage(part);
|
|
}
|
|
}
|
|
|
|
time = rtc_time();
|
|
printmsg_time = time +
|
|
(XPC_DISENGAGE_PRINTMSG_INTERVAL * sn_rtc_cycles_per_second);
|
|
disengage_request_timeout = time +
|
|
(xpc_disengage_request_timelimit * sn_rtc_cycles_per_second);
|
|
|
|
/* wait for all other partitions to disengage from us */
|
|
|
|
while (1) {
|
|
engaged = xpc_partition_engaged(-1UL);
|
|
if (!engaged) {
|
|
dev_info(xpc_part, "all partitions have disengaged\n");
|
|
break;
|
|
}
|
|
|
|
time = rtc_time();
|
|
if (time >= disengage_request_timeout) {
|
|
for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
|
|
if (engaged & (1UL << partid)) {
|
|
dev_info(xpc_part, "disengage from "
|
|
"remote partition %d timed "
|
|
"out\n", partid);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (time >= printmsg_time) {
|
|
dev_info(xpc_part, "waiting for remote partitions to "
|
|
"disengage, timeout in %ld seconds\n",
|
|
(disengage_request_timeout - time) /
|
|
sn_rtc_cycles_per_second);
|
|
printmsg_time = time +
|
|
(XPC_DISENGAGE_PRINTMSG_INTERVAL *
|
|
sn_rtc_cycles_per_second);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is called when the system is being restarted or halted due
|
|
* to some sort of system failure. If this is the case we need to notify the
|
|
* other partitions to disengage from all references to our memory.
|
|
* This function can also be called when our heartbeater could be offlined
|
|
* for a time. In this case we need to notify other partitions to not worry
|
|
* about the lack of a heartbeat.
|
|
*/
|
|
static int
|
|
xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
|
|
{
|
|
switch (event) {
|
|
case DIE_MACHINE_RESTART:
|
|
case DIE_MACHINE_HALT:
|
|
xpc_die_disengage();
|
|
break;
|
|
|
|
case DIE_KDEBUG_ENTER:
|
|
/* Should lack of heartbeat be ignored by other partitions? */
|
|
if (!xpc_kdebug_ignore)
|
|
break;
|
|
|
|
/* fall through */
|
|
case DIE_MCA_MONARCH_ENTER:
|
|
case DIE_INIT_MONARCH_ENTER:
|
|
xpc_vars->heartbeat++;
|
|
xpc_vars->heartbeat_offline = 1;
|
|
break;
|
|
|
|
case DIE_KDEBUG_LEAVE:
|
|
/* Is lack of heartbeat being ignored by other partitions? */
|
|
if (!xpc_kdebug_ignore)
|
|
break;
|
|
|
|
/* fall through */
|
|
case DIE_MCA_MONARCH_LEAVE:
|
|
case DIE_INIT_MONARCH_LEAVE:
|
|
xpc_vars->heartbeat++;
|
|
xpc_vars->heartbeat_offline = 0;
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
int __init
|
|
xpc_init(void)
|
|
{
|
|
int ret;
|
|
partid_t partid;
|
|
struct xpc_partition *part;
|
|
struct task_struct *kthread;
|
|
size_t buf_size;
|
|
|
|
if (!ia64_platform_is("sn2"))
|
|
return -ENODEV;
|
|
|
|
buf_size = max(XPC_RP_VARS_SIZE,
|
|
XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES);
|
|
xpc_remote_copy_buffer = xpc_kmalloc_cacheline_aligned(buf_size,
|
|
GFP_KERNEL,
|
|
&xpc_remote_copy_buffer_base);
|
|
if (xpc_remote_copy_buffer == NULL)
|
|
return -ENOMEM;
|
|
|
|
snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part");
|
|
snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan");
|
|
|
|
xpc_sysctl = register_sysctl_table(xpc_sys_dir);
|
|
|
|
/*
|
|
* The first few fields of each entry of xpc_partitions[] need to
|
|
* be initialized now so that calls to xpc_connect() and
|
|
* xpc_disconnect() can be made prior to the activation of any remote
|
|
* partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
|
|
* ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
|
|
* PARTITION HAS BEEN ACTIVATED.
|
|
*/
|
|
for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) {
|
|
part = &xpc_partitions[partid];
|
|
|
|
DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
|
|
|
|
part->act_IRQ_rcvd = 0;
|
|
spin_lock_init(&part->act_lock);
|
|
part->act_state = XPC_P_INACTIVE;
|
|
XPC_SET_REASON(part, 0, 0);
|
|
|
|
init_timer(&part->disengage_request_timer);
|
|
part->disengage_request_timer.function =
|
|
xpc_timeout_partition_disengage_request;
|
|
part->disengage_request_timer.data = (unsigned long)part;
|
|
|
|
part->setup_state = XPC_P_UNSET;
|
|
init_waitqueue_head(&part->teardown_wq);
|
|
atomic_set(&part->references, 0);
|
|
}
|
|
|
|
/*
|
|
* Open up protections for IPI operations (and AMO operations on
|
|
* Shub 1.1 systems).
|
|
*/
|
|
xpc_allow_IPI_ops();
|
|
|
|
/*
|
|
* Interrupts being processed will increment this atomic variable and
|
|
* awaken the heartbeat thread which will process the interrupts.
|
|
*/
|
|
atomic_set(&xpc_act_IRQ_rcvd, 0);
|
|
|
|
/*
|
|
* This is safe to do before the xpc_hb_checker thread has started
|
|
* because the handler releases a wait queue. If an interrupt is
|
|
* received before the thread is waiting, it will not go to sleep,
|
|
* but rather immediately process the interrupt.
|
|
*/
|
|
ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0,
|
|
"xpc hb", NULL);
|
|
if (ret != 0) {
|
|
dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
|
|
"errno=%d\n", -ret);
|
|
|
|
xpc_restrict_IPI_ops();
|
|
|
|
if (xpc_sysctl)
|
|
unregister_sysctl_table(xpc_sysctl);
|
|
|
|
kfree(xpc_remote_copy_buffer_base);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Fill the partition reserved page with the information needed by
|
|
* other partitions to discover we are alive and establish initial
|
|
* communications.
|
|
*/
|
|
xpc_rsvd_page = xpc_rsvd_page_init();
|
|
if (xpc_rsvd_page == NULL) {
|
|
dev_err(xpc_part, "could not setup our reserved page\n");
|
|
|
|
free_irq(SGI_XPC_ACTIVATE, NULL);
|
|
xpc_restrict_IPI_ops();
|
|
|
|
if (xpc_sysctl)
|
|
unregister_sysctl_table(xpc_sysctl);
|
|
|
|
kfree(xpc_remote_copy_buffer_base);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* add ourselves to the reboot_notifier_list */
|
|
ret = register_reboot_notifier(&xpc_reboot_notifier);
|
|
if (ret != 0)
|
|
dev_warn(xpc_part, "can't register reboot notifier\n");
|
|
|
|
/* add ourselves to the die_notifier list */
|
|
ret = register_die_notifier(&xpc_die_notifier);
|
|
if (ret != 0)
|
|
dev_warn(xpc_part, "can't register die notifier\n");
|
|
|
|
init_timer(&xpc_hb_timer);
|
|
xpc_hb_timer.function = xpc_hb_beater;
|
|
|
|
/*
|
|
* The real work-horse behind xpc. This processes incoming
|
|
* interrupts and monitors remote heartbeats.
|
|
*/
|
|
kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
|
|
if (IS_ERR(kthread)) {
|
|
dev_err(xpc_part, "failed while forking hb check thread\n");
|
|
|
|
/* indicate to others that our reserved page is uninitialized */
|
|
xpc_rsvd_page->vars_pa = 0;
|
|
|
|
/* take ourselves off of the reboot_notifier_list */
|
|
(void)unregister_reboot_notifier(&xpc_reboot_notifier);
|
|
|
|
/* take ourselves off of the die_notifier list */
|
|
(void)unregister_die_notifier(&xpc_die_notifier);
|
|
|
|
del_timer_sync(&xpc_hb_timer);
|
|
free_irq(SGI_XPC_ACTIVATE, NULL);
|
|
xpc_restrict_IPI_ops();
|
|
|
|
if (xpc_sysctl)
|
|
unregister_sysctl_table(xpc_sysctl);
|
|
|
|
kfree(xpc_remote_copy_buffer_base);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Startup a thread that will attempt to discover other partitions to
|
|
* activate based on info provided by SAL. This new thread is short
|
|
* lived and will exit once discovery is complete.
|
|
*/
|
|
kthread = kthread_run(xpc_initiate_discovery, NULL,
|
|
XPC_DISCOVERY_THREAD_NAME);
|
|
if (IS_ERR(kthread)) {
|
|
dev_err(xpc_part, "failed while forking discovery thread\n");
|
|
|
|
/* mark this new thread as a non-starter */
|
|
complete(&xpc_discovery_exited);
|
|
|
|
xpc_do_exit(xpUnloading);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* set the interface to point at XPC's functions */
|
|
xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
|
|
xpc_initiate_allocate, xpc_initiate_send,
|
|
xpc_initiate_send_notify, xpc_initiate_received,
|
|
xpc_initiate_partid_to_nasids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(xpc_init);
|
|
|
|
void __exit
|
|
xpc_exit(void)
|
|
{
|
|
xpc_do_exit(xpUnloading);
|
|
}
|
|
|
|
module_exit(xpc_exit);
|
|
|
|
MODULE_AUTHOR("Silicon Graphics, Inc.");
|
|
MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param(xpc_hb_interval, int, 0);
|
|
MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
|
|
"heartbeat increments.");
|
|
|
|
module_param(xpc_hb_check_interval, int, 0);
|
|
MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
|
|
"heartbeat checks.");
|
|
|
|
module_param(xpc_disengage_request_timelimit, int, 0);
|
|
MODULE_PARM_DESC(xpc_disengage_request_timelimit, "Number of seconds to wait "
|
|
"for disengage request to complete.");
|
|
|
|
module_param(xpc_kdebug_ignore, int, 0);
|
|
MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
|
|
"other partitions when dropping into kdebug.");
|