linux-next/fs/nfs/inode.c
Trond Myklebust b9f5dd57f4 nfs/localio: use dedicated workqueues for filesystem read and write
For localio access, don't call filesystem read() and write() routines
directly.  This solves two problems:

1) localio writes need to use a normal (non-memreclaim) unbound
   workqueue.  This avoids imposing new requirements on how underlying
   filesystems process frontend IO, which would cause a large amount
   of work to update all filesystems.  Without this change, when XFS
   starts getting low on space, XFS flushes work on a non-memreclaim
   work queue, which causes a priority inversion problem:

00573 workqueue: WQ_MEM_RECLAIM writeback:wb_workfn is flushing !WQ_MEM_RECLAIM xfs-sync/vdc:xfs_flush_inodes_worker
00573 WARNING: CPU: 6 PID: 8525 at kernel/workqueue.c:3706 check_flush_dependency+0x2a4/0x328
00573 Modules linked in:
00573 CPU: 6 PID: 8525 Comm: kworker/u71:5 Not tainted 6.10.0-rc3-ktest-00032-g2b0a133403ab #18502
00573 Hardware name: linux,dummy-virt (DT)
00573 Workqueue: writeback wb_workfn (flush-0:33)
00573 pstate: 400010c5 (nZcv daIF -PAN -UAO -TCO -DIT +SSBS BTYPE=--)
00573 pc : check_flush_dependency+0x2a4/0x328
00573 lr : check_flush_dependency+0x2a4/0x328
00573 sp : ffff0000c5f06bb0
00573 x29: ffff0000c5f06bb0 x28: ffff0000c998a908 x27: 1fffe00019331521
00573 x26: ffff0000d0620900 x25: ffff0000c5f06ca0 x24: ffff8000828848c0
00573 x23: 1fffe00018be0d8e x22: ffff0000c1210000 x21: ffff0000c75fde00
00573 x20: ffff800080bfd258 x19: ffff0000cad63400 x18: ffff0000cd3a4810
00573 x17: 0000000000000000 x16: 0000000000000000 x15: ffff800080508d98
00573 x14: 0000000000000000 x13: 204d49414c434552 x12: 1fffe0001b6eeab2
00573 x11: ffff60001b6eeab2 x10: dfff800000000000 x9 : ffff60001b6eeab3
00573 x8 : 0000000000000001 x7 : 00009fffe491154e x6 : ffff0000db775593
00573 x5 : ffff0000db775590 x4 : ffff0000db775590 x3 : 0000000000000000
00573 x2 : 0000000000000027 x1 : ffff600018be0d62 x0 : dfff800000000000
00573 Call trace:
00573  check_flush_dependency+0x2a4/0x328
00573  __flush_work+0x184/0x5c8
00573  flush_work+0x18/0x28
00573  xfs_flush_inodes+0x68/0x88
00573  xfs_file_buffered_write+0x128/0x6f0
00573  xfs_file_write_iter+0x358/0x448
00573  nfs_local_doio+0x854/0x1568
00573  nfs_initiate_pgio+0x214/0x418
00573  nfs_generic_pg_pgios+0x304/0x480
00573  nfs_pageio_doio+0xe8/0x240
00573  nfs_pageio_complete+0x160/0x480
00573  nfs_writepages+0x300/0x4f0
00573  do_writepages+0x12c/0x4a0
00573  __writeback_single_inode+0xd4/0xa68
00573  writeback_sb_inodes+0x470/0xcb0
00573  __writeback_inodes_wb+0xb0/0x1d0
00573  wb_writeback+0x594/0x808
00573  wb_workfn+0x5e8/0x9e0
00573  process_scheduled_works+0x53c/0xd90
00573  worker_thread+0x370/0x8c8
00573  kthread+0x258/0x2e8
00573  ret_from_fork+0x10/0x20

2) Some filesystem writeback routines can end up taking up a lot of
   stack space (particularly XFS).  Instead of risking running over
   due to the extra overhead from the NFS stack, we should just call
   these routines from a workqueue job.  Since we need to do this to
   address 1) above we're able to avoid possibly blowing the stack
   "for free".

Use of dedicated workqueues improves performance over using the
system_unbound_wq.

Also, the creds used to open the file are used to override_creds() in
both nfs_local_call_read() and nfs_local_call_write() -- otherwise the
workqueue could have elevated capabilities (which the caller may not).

Lastly, care is taken to set PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO in
nfs_do_local_write() to avoid writeback deadlocks.

The PF_LOCAL_THROTTLE flag prevents deadlocks in balance_dirty_pages()
by causing writes to only be throttled against other writes to the
same bdi (it keeps the throttling local).  Normally all writes to
bdi(s) are throttled equally (after throughput factors are allowed
for).

The PF_MEMALLOC_NOIO flag prevents the lower filesystem IO from
causing memory reclaim to re-enter filesystems or IO devices and so
prevents deadlocks from occuring where IO that cleans pages is
waiting on IO to complete.

Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Co-developed-by: Mike Snitzer <snitzer@kernel.org>
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Co-developed-by: NeilBrown <neilb@suse.de>
Signed-off-by: NeilBrown <neilb@suse.de> # eliminated wait_for_completion
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Anna Schumaker <anna.schumaker@oracle.com>
2024-09-23 15:03:30 -04:00

2637 lines
73 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/nfs/inode.c
*
* Copyright (C) 1992 Rick Sladkey
*
* nfs inode and superblock handling functions
*
* Modularised by Alan Cox <alan@lxorguk.ukuu.org.uk>, while hacking some
* experimental NFS changes. Modularisation taken straight from SYS5 fs.
*
* Change to nfs_read_super() to permit NFS mounts to multi-homed hosts.
* J.S.Peatfield@damtp.cam.ac.uk
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched/signal.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/metrics.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/nfs4_mount.h>
#include <linux/lockd/bind.h>
#include <linux/seq_file.h>
#include <linux/mount.h>
#include <linux/vfs.h>
#include <linux/inet.h>
#include <linux/nfs_xdr.h>
#include <linux/slab.h>
#include <linux/compat.h>
#include <linux/freezer.h>
#include <linux/uaccess.h>
#include <linux/iversion.h>
#include "nfs4_fs.h"
#include "callback.h"
#include "delegation.h"
#include "iostat.h"
#include "internal.h"
#include "fscache.h"
#include "pnfs.h"
#include "nfs.h"
#include "netns.h"
#include "sysfs.h"
#include "nfstrace.h"
#define NFSDBG_FACILITY NFSDBG_VFS
#define NFS_64_BIT_INODE_NUMBERS_ENABLED 1
/* Default is to see 64-bit inode numbers */
static bool enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED;
static int nfs_update_inode(struct inode *, struct nfs_fattr *);
static struct kmem_cache * nfs_inode_cachep;
static inline unsigned long
nfs_fattr_to_ino_t(struct nfs_fattr *fattr)
{
return nfs_fileid_to_ino_t(fattr->fileid);
}
int nfs_wait_bit_killable(struct wait_bit_key *key, int mode)
{
schedule();
if (signal_pending_state(mode, current))
return -ERESTARTSYS;
return 0;
}
EXPORT_SYMBOL_GPL(nfs_wait_bit_killable);
/**
* nfs_compat_user_ino64 - returns the user-visible inode number
* @fileid: 64-bit fileid
*
* This function returns a 32-bit inode number if the boot parameter
* nfs.enable_ino64 is zero.
*/
u64 nfs_compat_user_ino64(u64 fileid)
{
#ifdef CONFIG_COMPAT
compat_ulong_t ino;
#else
unsigned long ino;
#endif
if (enable_ino64)
return fileid;
ino = fileid;
if (sizeof(ino) < sizeof(fileid))
ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8;
return ino;
}
int nfs_drop_inode(struct inode *inode)
{
return NFS_STALE(inode) || generic_drop_inode(inode);
}
EXPORT_SYMBOL_GPL(nfs_drop_inode);
void nfs_clear_inode(struct inode *inode)
{
/*
* The following should never happen...
*/
WARN_ON_ONCE(nfs_have_writebacks(inode));
WARN_ON_ONCE(!list_empty(&NFS_I(inode)->open_files));
nfs_zap_acl_cache(inode);
nfs_access_zap_cache(inode);
nfs_fscache_clear_inode(inode);
}
EXPORT_SYMBOL_GPL(nfs_clear_inode);
void nfs_evict_inode(struct inode *inode)
{
truncate_inode_pages_final(&inode->i_data);
clear_inode(inode);
nfs_clear_inode(inode);
}
int nfs_sync_inode(struct inode *inode)
{
inode_dio_wait(inode);
return nfs_wb_all(inode);
}
EXPORT_SYMBOL_GPL(nfs_sync_inode);
/**
* nfs_sync_mapping - helper to flush all mmapped dirty data to disk
* @mapping: pointer to struct address_space
*/
int nfs_sync_mapping(struct address_space *mapping)
{
int ret = 0;
if (mapping->nrpages != 0) {
unmap_mapping_range(mapping, 0, 0, 0);
ret = nfs_wb_all(mapping->host);
}
return ret;
}
static int nfs_attribute_timeout(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
return !time_in_range_open(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo);
}
static bool nfs_check_cache_flags_invalid(struct inode *inode,
unsigned long flags)
{
unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity);
return (cache_validity & flags) != 0;
}
bool nfs_check_cache_invalid(struct inode *inode, unsigned long flags)
{
if (nfs_check_cache_flags_invalid(inode, flags))
return true;
return nfs_attribute_cache_expired(inode);
}
EXPORT_SYMBOL_GPL(nfs_check_cache_invalid);
#ifdef CONFIG_NFS_V4_2
static bool nfs_has_xattr_cache(const struct nfs_inode *nfsi)
{
return nfsi->xattr_cache != NULL;
}
#else
static bool nfs_has_xattr_cache(const struct nfs_inode *nfsi)
{
return false;
}
#endif
void nfs_set_cache_invalid(struct inode *inode, unsigned long flags)
{
struct nfs_inode *nfsi = NFS_I(inode);
if (nfs_have_delegated_attributes(inode)) {
if (!(flags & NFS_INO_REVAL_FORCED))
flags &= ~(NFS_INO_INVALID_MODE |
NFS_INO_INVALID_OTHER |
NFS_INO_INVALID_XATTR);
flags &= ~(NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE);
}
if (!nfs_has_xattr_cache(nfsi))
flags &= ~NFS_INO_INVALID_XATTR;
if (flags & NFS_INO_INVALID_DATA)
nfs_fscache_invalidate(inode, 0);
flags &= ~NFS_INO_REVAL_FORCED;
nfsi->cache_validity |= flags;
if (inode->i_mapping->nrpages == 0) {
nfsi->cache_validity &= ~NFS_INO_INVALID_DATA;
nfs_ooo_clear(nfsi);
} else if (nfsi->cache_validity & NFS_INO_INVALID_DATA) {
nfs_ooo_clear(nfsi);
}
trace_nfs_set_cache_invalid(inode, 0);
}
EXPORT_SYMBOL_GPL(nfs_set_cache_invalid);
/*
* Invalidate the local caches
*/
static void nfs_zap_caches_locked(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
int mode = inode->i_mode;
nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = jiffies;
if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR |
NFS_INO_INVALID_DATA |
NFS_INO_INVALID_ACCESS |
NFS_INO_INVALID_ACL |
NFS_INO_INVALID_XATTR);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR |
NFS_INO_INVALID_ACCESS |
NFS_INO_INVALID_ACL |
NFS_INO_INVALID_XATTR);
nfs_zap_label_cache_locked(nfsi);
}
void nfs_zap_caches(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs_zap_caches_locked(inode);
spin_unlock(&inode->i_lock);
}
void nfs_zap_mapping(struct inode *inode, struct address_space *mapping)
{
if (mapping->nrpages != 0) {
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
spin_unlock(&inode->i_lock);
}
}
void nfs_zap_acl_cache(struct inode *inode)
{
void (*clear_acl_cache)(struct inode *);
clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache;
if (clear_acl_cache != NULL)
clear_acl_cache(inode);
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL;
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_zap_acl_cache);
void nfs_invalidate_atime(struct inode *inode)
{
if (nfs_have_delegated_atime(inode))
return;
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_invalidate_atime);
/*
* Invalidate, but do not unhash, the inode.
* NB: must be called with inode->i_lock held!
*/
static void nfs_set_inode_stale_locked(struct inode *inode)
{
set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
nfs_zap_caches_locked(inode);
trace_nfs_set_inode_stale(inode);
}
void nfs_set_inode_stale(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs_set_inode_stale_locked(inode);
spin_unlock(&inode->i_lock);
}
struct nfs_find_desc {
struct nfs_fh *fh;
struct nfs_fattr *fattr;
};
/*
* In NFSv3 we can have 64bit inode numbers. In order to support
* this, and re-exported directories (also seen in NFSv2)
* we are forced to allow 2 different inodes to have the same
* i_ino.
*/
static int
nfs_find_actor(struct inode *inode, void *opaque)
{
struct nfs_find_desc *desc = opaque;
struct nfs_fh *fh = desc->fh;
struct nfs_fattr *fattr = desc->fattr;
if (NFS_FILEID(inode) != fattr->fileid)
return 0;
if (inode_wrong_type(inode, fattr->mode))
return 0;
if (nfs_compare_fh(NFS_FH(inode), fh))
return 0;
if (is_bad_inode(inode) || NFS_STALE(inode))
return 0;
return 1;
}
static int
nfs_init_locked(struct inode *inode, void *opaque)
{
struct nfs_find_desc *desc = opaque;
struct nfs_fattr *fattr = desc->fattr;
set_nfs_fileid(inode, fattr->fileid);
inode->i_mode = fattr->mode;
nfs_copy_fh(NFS_FH(inode), desc->fh);
return 0;
}
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static void nfs_clear_label_invalid(struct inode *inode)
{
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_LABEL;
spin_unlock(&inode->i_lock);
}
void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr)
{
int error;
if (fattr->label == NULL)
return;
if ((fattr->valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL) && inode->i_security) {
error = security_inode_notifysecctx(inode, fattr->label->label,
fattr->label->len);
if (error)
printk(KERN_ERR "%s() %s %d "
"security_inode_notifysecctx() %d\n",
__func__,
(char *)fattr->label->label,
fattr->label->len, error);
nfs_clear_label_invalid(inode);
}
}
struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags)
{
struct nfs4_label *label;
if (!(server->caps & NFS_CAP_SECURITY_LABEL))
return NULL;
label = kzalloc(sizeof(struct nfs4_label), flags);
if (label == NULL)
return ERR_PTR(-ENOMEM);
label->label = kzalloc(NFS4_MAXLABELLEN, flags);
if (label->label == NULL) {
kfree(label);
return ERR_PTR(-ENOMEM);
}
label->len = NFS4_MAXLABELLEN;
return label;
}
EXPORT_SYMBOL_GPL(nfs4_label_alloc);
#else
void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr)
{
}
#endif
EXPORT_SYMBOL_GPL(nfs_setsecurity);
/* Search for inode identified by fh, fileid and i_mode in inode cache. */
struct inode *
nfs_ilookup(struct super_block *sb, struct nfs_fattr *fattr, struct nfs_fh *fh)
{
struct nfs_find_desc desc = {
.fh = fh,
.fattr = fattr,
};
struct inode *inode;
unsigned long hash;
if (!(fattr->valid & NFS_ATTR_FATTR_FILEID) ||
!(fattr->valid & NFS_ATTR_FATTR_TYPE))
return NULL;
hash = nfs_fattr_to_ino_t(fattr);
inode = ilookup5(sb, hash, nfs_find_actor, &desc);
dprintk("%s: returning %p\n", __func__, inode);
return inode;
}
static void nfs_inode_init_regular(struct nfs_inode *nfsi)
{
atomic_long_set(&nfsi->nrequests, 0);
atomic_long_set(&nfsi->redirtied_pages, 0);
INIT_LIST_HEAD(&nfsi->commit_info.list);
atomic_long_set(&nfsi->commit_info.ncommit, 0);
atomic_set(&nfsi->commit_info.rpcs_out, 0);
mutex_init(&nfsi->commit_mutex);
}
static void nfs_inode_init_dir(struct nfs_inode *nfsi)
{
nfsi->cache_change_attribute = 0;
memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
init_rwsem(&nfsi->rmdir_sem);
}
/*
* This is our front-end to iget that looks up inodes by file handle
* instead of inode number.
*/
struct inode *
nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr)
{
struct nfs_find_desc desc = {
.fh = fh,
.fattr = fattr
};
struct inode *inode = ERR_PTR(-ENOENT);
u64 fattr_supported = NFS_SB(sb)->fattr_valid;
unsigned long hash;
nfs_attr_check_mountpoint(sb, fattr);
if (nfs_attr_use_mounted_on_fileid(fattr))
fattr->fileid = fattr->mounted_on_fileid;
else if ((fattr->valid & NFS_ATTR_FATTR_FILEID) == 0)
goto out_no_inode;
if ((fattr->valid & NFS_ATTR_FATTR_TYPE) == 0)
goto out_no_inode;
hash = nfs_fattr_to_ino_t(fattr);
inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc);
if (inode == NULL) {
inode = ERR_PTR(-ENOMEM);
goto out_no_inode;
}
if (inode->i_state & I_NEW) {
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long now = jiffies;
/* We set i_ino for the few things that still rely on it,
* such as stat(2) */
inode->i_ino = hash;
/* We can't support update_atime(), since the server will reset it */
inode->i_flags |= S_NOATIME|S_NOCMTIME;
inode->i_mode = fattr->mode;
nfsi->cache_validity = 0;
if ((fattr->valid & NFS_ATTR_FATTR_MODE) == 0
&& (fattr_supported & NFS_ATTR_FATTR_MODE))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_MODE);
/* Why so? Because we want revalidate for devices/FIFOs, and
* that's precisely what we have in nfs_file_inode_operations.
*/
inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops;
if (S_ISREG(inode->i_mode)) {
inode->i_fop = NFS_SB(sb)->nfs_client->rpc_ops->file_ops;
inode->i_data.a_ops = &nfs_file_aops;
nfs_inode_init_regular(nfsi);
mapping_set_large_folios(inode->i_mapping);
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops;
inode->i_fop = &nfs_dir_operations;
inode->i_data.a_ops = &nfs_dir_aops;
nfs_inode_init_dir(nfsi);
/* Deal with crossing mountpoints */
if (fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT ||
fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) {
if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)
inode->i_op = &nfs_referral_inode_operations;
else
inode->i_op = &nfs_mountpoint_inode_operations;
inode->i_fop = NULL;
inode->i_flags |= S_AUTOMOUNT;
}
} else if (S_ISLNK(inode->i_mode)) {
inode->i_op = &nfs_symlink_inode_operations;
inode_nohighmem(inode);
} else
init_special_inode(inode, inode->i_mode, fattr->rdev);
inode_set_atime(inode, 0, 0);
inode_set_mtime(inode, 0, 0);
inode_set_ctime(inode, 0, 0);
inode_set_iversion_raw(inode, 0);
inode->i_size = 0;
clear_nlink(inode);
inode->i_uid = make_kuid(&init_user_ns, -2);
inode->i_gid = make_kgid(&init_user_ns, -2);
inode->i_blocks = 0;
nfsi->write_io = 0;
nfsi->read_io = 0;
nfsi->read_cache_jiffies = fattr->time_start;
nfsi->attr_gencount = fattr->gencount;
if (fattr->valid & NFS_ATTR_FATTR_ATIME)
inode_set_atime_to_ts(inode, fattr->atime);
else if (fattr_supported & NFS_ATTR_FATTR_ATIME)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME);
if (fattr->valid & NFS_ATTR_FATTR_MTIME)
inode_set_mtime_to_ts(inode, fattr->mtime);
else if (fattr_supported & NFS_ATTR_FATTR_MTIME)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME);
if (fattr->valid & NFS_ATTR_FATTR_CTIME)
inode_set_ctime_to_ts(inode, fattr->ctime);
else if (fattr_supported & NFS_ATTR_FATTR_CTIME)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CTIME);
if (fattr->valid & NFS_ATTR_FATTR_CHANGE)
inode_set_iversion_raw(inode, fattr->change_attr);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
if (fattr->valid & NFS_ATTR_FATTR_SIZE)
inode->i_size = nfs_size_to_loff_t(fattr->size);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_SIZE);
if (fattr->valid & NFS_ATTR_FATTR_NLINK)
set_nlink(inode, fattr->nlink);
else if (fattr_supported & NFS_ATTR_FATTR_NLINK)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_NLINK);
if (fattr->valid & NFS_ATTR_FATTR_OWNER)
inode->i_uid = fattr->uid;
else if (fattr_supported & NFS_ATTR_FATTR_OWNER)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_OTHER);
if (fattr->valid & NFS_ATTR_FATTR_GROUP)
inode->i_gid = fattr->gid;
else if (fattr_supported & NFS_ATTR_FATTR_GROUP)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_OTHER);
if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED)
inode->i_blocks = fattr->du.nfs2.blocks;
else if (fattr_supported & NFS_ATTR_FATTR_BLOCKS_USED &&
fattr->size != 0)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS);
if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
} else if (fattr_supported & NFS_ATTR_FATTR_SPACE_USED &&
fattr->size != 0)
nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS);
nfs_setsecurity(inode, fattr);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
nfsi->access_cache = RB_ROOT;
nfs_fscache_init_inode(inode);
unlock_new_inode(inode);
} else {
int err = nfs_refresh_inode(inode, fattr);
if (err < 0) {
iput(inode);
inode = ERR_PTR(err);
goto out_no_inode;
}
}
dprintk("NFS: nfs_fhget(%s/%Lu fh_crc=0x%08x ct=%d)\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode),
nfs_display_fhandle_hash(fh),
atomic_read(&inode->i_count));
out:
return inode;
out_no_inode:
dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode));
goto out;
}
EXPORT_SYMBOL_GPL(nfs_fhget);
static void
nfs_fattr_fixup_delegated(struct inode *inode, struct nfs_fattr *fattr)
{
unsigned long cache_validity = NFS_I(inode)->cache_validity;
if (nfs_have_delegated_mtime(inode)) {
if (!(cache_validity & NFS_INO_INVALID_CTIME))
fattr->valid &= ~(NFS_ATTR_FATTR_PRECTIME |
NFS_ATTR_FATTR_CTIME);
if (!(cache_validity & NFS_INO_INVALID_MTIME))
fattr->valid &= ~(NFS_ATTR_FATTR_PREMTIME |
NFS_ATTR_FATTR_MTIME);
if (!(cache_validity & NFS_INO_INVALID_ATIME))
fattr->valid &= ~NFS_ATTR_FATTR_ATIME;
} else if (nfs_have_delegated_atime(inode)) {
if (!(cache_validity & NFS_INO_INVALID_ATIME))
fattr->valid &= ~NFS_ATTR_FATTR_ATIME;
}
}
void nfs_update_delegated_atime(struct inode *inode)
{
spin_lock(&inode->i_lock);
if (nfs_have_delegated_atime(inode)) {
inode_update_timestamps(inode, S_ATIME);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ATIME;
}
spin_unlock(&inode->i_lock);
}
void nfs_update_delegated_mtime_locked(struct inode *inode)
{
if (nfs_have_delegated_mtime(inode)) {
inode_update_timestamps(inode, S_CTIME | S_MTIME);
NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_MTIME);
}
}
void nfs_update_delegated_mtime(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs_update_delegated_mtime_locked(inode);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_update_delegated_mtime);
#define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE|ATTR_OPEN)
int
nfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct nfs_fattr *fattr;
int error = 0;
nfs_inc_stats(inode, NFSIOS_VFSSETATTR);
/* skip mode change if it's just for clearing setuid/setgid */
if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
attr->ia_valid &= ~ATTR_MODE;
if (attr->ia_valid & ATTR_SIZE) {
BUG_ON(!S_ISREG(inode->i_mode));
error = inode_newsize_ok(inode, attr->ia_size);
if (error)
return error;
if (attr->ia_size == i_size_read(inode))
attr->ia_valid &= ~ATTR_SIZE;
}
if (nfs_have_delegated_mtime(inode)) {
if (attr->ia_valid & ATTR_MTIME) {
nfs_update_delegated_mtime(inode);
attr->ia_valid &= ~ATTR_MTIME;
}
if (attr->ia_valid & ATTR_ATIME) {
nfs_update_delegated_atime(inode);
attr->ia_valid &= ~ATTR_ATIME;
}
}
/* Optimization: if the end result is no change, don't RPC */
if (((attr->ia_valid & NFS_VALID_ATTRS) & ~(ATTR_FILE|ATTR_OPEN)) == 0)
return 0;
trace_nfs_setattr_enter(inode);
/* Write all dirty data */
if (S_ISREG(inode->i_mode))
nfs_sync_inode(inode);
fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
if (fattr == NULL) {
error = -ENOMEM;
goto out;
}
error = NFS_PROTO(inode)->setattr(dentry, fattr, attr);
if (error == 0)
error = nfs_refresh_inode(inode, fattr);
nfs_free_fattr(fattr);
out:
trace_nfs_setattr_exit(inode, error);
return error;
}
EXPORT_SYMBOL_GPL(nfs_setattr);
/**
* nfs_vmtruncate - unmap mappings "freed" by truncate() syscall
* @inode: inode of the file used
* @offset: file offset to start truncating
*
* This is a copy of the common vmtruncate, but with the locking
* corrected to take into account the fact that NFS requires
* inode->i_size to be updated under the inode->i_lock.
* Note: must be called with inode->i_lock held!
*/
static int nfs_vmtruncate(struct inode * inode, loff_t offset)
{
int err;
err = inode_newsize_ok(inode, offset);
if (err)
goto out;
trace_nfs_size_truncate(inode, offset);
i_size_write(inode, offset);
/* Optimisation */
if (offset == 0) {
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_DATA;
nfs_ooo_clear(NFS_I(inode));
}
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
spin_unlock(&inode->i_lock);
truncate_pagecache(inode, offset);
nfs_update_delegated_mtime_locked(inode);
spin_lock(&inode->i_lock);
out:
return err;
}
/**
* nfs_setattr_update_inode - Update inode metadata after a setattr call.
* @inode: pointer to struct inode
* @attr: pointer to struct iattr
* @fattr: pointer to struct nfs_fattr
*
* Note: we do this in the *proc.c in order to ensure that
* it works for things like exclusive creates too.
*/
void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr,
struct nfs_fattr *fattr)
{
/* Barrier: bump the attribute generation count. */
nfs_fattr_set_barrier(fattr);
spin_lock(&inode->i_lock);
NFS_I(inode)->attr_gencount = fattr->gencount;
if ((attr->ia_valid & ATTR_SIZE) != 0) {
if (!nfs_have_delegated_mtime(inode))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS);
nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC);
nfs_vmtruncate(inode, attr->ia_size);
}
if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) {
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_CTIME;
if ((attr->ia_valid & ATTR_KILL_SUID) != 0 &&
inode->i_mode & S_ISUID)
inode->i_mode &= ~S_ISUID;
if (setattr_should_drop_sgid(&nop_mnt_idmap, inode))
inode->i_mode &= ~S_ISGID;
if ((attr->ia_valid & ATTR_MODE) != 0) {
int mode = attr->ia_mode & S_IALLUGO;
mode |= inode->i_mode & ~S_IALLUGO;
inode->i_mode = mode;
}
if ((attr->ia_valid & ATTR_UID) != 0)
inode->i_uid = attr->ia_uid;
if ((attr->ia_valid & ATTR_GID) != 0)
inode->i_gid = attr->ia_gid;
if (fattr->valid & NFS_ATTR_FATTR_CTIME)
inode_set_ctime_to_ts(inode, fattr->ctime);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE
| NFS_INO_INVALID_CTIME);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL);
}
if (attr->ia_valid & (ATTR_ATIME_SET|ATTR_ATIME)) {
NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_ATIME
| NFS_INO_INVALID_CTIME);
if (fattr->valid & NFS_ATTR_FATTR_ATIME)
inode_set_atime_to_ts(inode, fattr->atime);
else if (attr->ia_valid & ATTR_ATIME_SET)
inode_set_atime_to_ts(inode, attr->ia_atime);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME);
if (fattr->valid & NFS_ATTR_FATTR_CTIME)
inode_set_ctime_to_ts(inode, fattr->ctime);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE
| NFS_INO_INVALID_CTIME);
}
if (attr->ia_valid & (ATTR_MTIME_SET|ATTR_MTIME)) {
NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_MTIME
| NFS_INO_INVALID_CTIME);
if (fattr->valid & NFS_ATTR_FATTR_MTIME)
inode_set_mtime_to_ts(inode, fattr->mtime);
else if (attr->ia_valid & ATTR_MTIME_SET)
inode_set_mtime_to_ts(inode, attr->ia_mtime);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME);
if (fattr->valid & NFS_ATTR_FATTR_CTIME)
inode_set_ctime_to_ts(inode, fattr->ctime);
else
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE
| NFS_INO_INVALID_CTIME);
}
if (fattr->valid)
nfs_update_inode(inode, fattr);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_setattr_update_inode);
/*
* Don't request help from readdirplus if the file is being written to,
* or if attribute caching is turned off
*/
static bool nfs_getattr_readdirplus_enable(const struct inode *inode)
{
return nfs_server_capable(inode, NFS_CAP_READDIRPLUS) &&
!nfs_have_writebacks(inode) && NFS_MAXATTRTIMEO(inode) > 5 * HZ;
}
static void nfs_readdirplus_parent_cache_miss(struct dentry *dentry)
{
if (!IS_ROOT(dentry)) {
struct dentry *parent = dget_parent(dentry);
nfs_readdir_record_entry_cache_miss(d_inode(parent));
dput(parent);
}
}
static void nfs_readdirplus_parent_cache_hit(struct dentry *dentry)
{
if (!IS_ROOT(dentry)) {
struct dentry *parent = dget_parent(dentry);
nfs_readdir_record_entry_cache_hit(d_inode(parent));
dput(parent);
}
}
static u32 nfs_get_valid_attrmask(struct inode *inode)
{
unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity);
u32 reply_mask = STATX_INO | STATX_TYPE;
if (!(cache_validity & NFS_INO_INVALID_ATIME))
reply_mask |= STATX_ATIME;
if (!(cache_validity & NFS_INO_INVALID_CTIME))
reply_mask |= STATX_CTIME;
if (!(cache_validity & NFS_INO_INVALID_MTIME))
reply_mask |= STATX_MTIME;
if (!(cache_validity & NFS_INO_INVALID_SIZE))
reply_mask |= STATX_SIZE;
if (!(cache_validity & NFS_INO_INVALID_NLINK))
reply_mask |= STATX_NLINK;
if (!(cache_validity & NFS_INO_INVALID_MODE))
reply_mask |= STATX_MODE;
if (!(cache_validity & NFS_INO_INVALID_OTHER))
reply_mask |= STATX_UID | STATX_GID;
if (!(cache_validity & NFS_INO_INVALID_BLOCKS))
reply_mask |= STATX_BLOCKS;
if (!(cache_validity & NFS_INO_INVALID_CHANGE))
reply_mask |= STATX_CHANGE_COOKIE;
return reply_mask;
}
int nfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
struct nfs_server *server = NFS_SERVER(inode);
unsigned long cache_validity;
int err = 0;
bool force_sync = query_flags & AT_STATX_FORCE_SYNC;
bool do_update = false;
bool readdirplus_enabled = nfs_getattr_readdirplus_enable(inode);
trace_nfs_getattr_enter(inode);
request_mask &= STATX_TYPE | STATX_MODE | STATX_NLINK | STATX_UID |
STATX_GID | STATX_ATIME | STATX_MTIME | STATX_CTIME |
STATX_INO | STATX_SIZE | STATX_BLOCKS |
STATX_CHANGE_COOKIE;
if ((query_flags & AT_STATX_DONT_SYNC) && !force_sync) {
if (readdirplus_enabled)
nfs_readdirplus_parent_cache_hit(path->dentry);
goto out_no_revalidate;
}
/* Flush out writes to the server in order to update c/mtime/version. */
if ((request_mask & (STATX_CTIME | STATX_MTIME | STATX_CHANGE_COOKIE)) &&
S_ISREG(inode->i_mode)) {
if (nfs_have_delegated_mtime(inode))
filemap_fdatawrite(inode->i_mapping);
else
filemap_write_and_wait(inode->i_mapping);
}
/*
* We may force a getattr if the user cares about atime.
*
* Note that we only have to check the vfsmount flags here:
* - NFS always sets S_NOATIME by so checking it would give a
* bogus result
* - NFS never sets SB_NOATIME or SB_NODIRATIME so there is
* no point in checking those.
*/
if ((path->mnt->mnt_flags & MNT_NOATIME) ||
((path->mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
request_mask &= ~STATX_ATIME;
/* Is the user requesting attributes that might need revalidation? */
if (!(request_mask & (STATX_MODE|STATX_NLINK|STATX_ATIME|STATX_CTIME|
STATX_MTIME|STATX_UID|STATX_GID|
STATX_SIZE|STATX_BLOCKS|
STATX_CHANGE_COOKIE)))
goto out_no_revalidate;
/* Check whether the cached attributes are stale */
do_update |= force_sync || nfs_attribute_cache_expired(inode);
cache_validity = READ_ONCE(NFS_I(inode)->cache_validity);
do_update |= cache_validity & NFS_INO_INVALID_CHANGE;
if (request_mask & STATX_ATIME)
do_update |= cache_validity & NFS_INO_INVALID_ATIME;
if (request_mask & STATX_CTIME)
do_update |= cache_validity & NFS_INO_INVALID_CTIME;
if (request_mask & STATX_MTIME)
do_update |= cache_validity & NFS_INO_INVALID_MTIME;
if (request_mask & STATX_SIZE)
do_update |= cache_validity & NFS_INO_INVALID_SIZE;
if (request_mask & STATX_NLINK)
do_update |= cache_validity & NFS_INO_INVALID_NLINK;
if (request_mask & STATX_MODE)
do_update |= cache_validity & NFS_INO_INVALID_MODE;
if (request_mask & (STATX_UID | STATX_GID))
do_update |= cache_validity & NFS_INO_INVALID_OTHER;
if (request_mask & STATX_BLOCKS)
do_update |= cache_validity & NFS_INO_INVALID_BLOCKS;
if (do_update) {
if (readdirplus_enabled)
nfs_readdirplus_parent_cache_miss(path->dentry);
err = __nfs_revalidate_inode(server, inode);
if (err)
goto out;
} else if (readdirplus_enabled)
nfs_readdirplus_parent_cache_hit(path->dentry);
out_no_revalidate:
/* Only return attributes that were revalidated. */
stat->result_mask = nfs_get_valid_attrmask(inode) | request_mask;
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode));
stat->change_cookie = inode_peek_iversion_raw(inode);
stat->attributes_mask |= STATX_ATTR_CHANGE_MONOTONIC;
if (server->change_attr_type != NFS4_CHANGE_TYPE_IS_UNDEFINED)
stat->attributes |= STATX_ATTR_CHANGE_MONOTONIC;
if (S_ISDIR(inode->i_mode))
stat->blksize = NFS_SERVER(inode)->dtsize;
out:
trace_nfs_getattr_exit(inode, err);
return err;
}
EXPORT_SYMBOL_GPL(nfs_getattr);
static void nfs_init_lock_context(struct nfs_lock_context *l_ctx)
{
refcount_set(&l_ctx->count, 1);
l_ctx->lockowner = current->files;
INIT_LIST_HEAD(&l_ctx->list);
atomic_set(&l_ctx->io_count, 0);
}
static struct nfs_lock_context *__nfs_find_lock_context(struct nfs_open_context *ctx)
{
struct nfs_lock_context *pos;
list_for_each_entry_rcu(pos, &ctx->lock_context.list, list) {
if (pos->lockowner != current->files)
continue;
if (refcount_inc_not_zero(&pos->count))
return pos;
}
return NULL;
}
struct nfs_lock_context *nfs_get_lock_context(struct nfs_open_context *ctx)
{
struct nfs_lock_context *res, *new = NULL;
struct inode *inode = d_inode(ctx->dentry);
rcu_read_lock();
res = __nfs_find_lock_context(ctx);
rcu_read_unlock();
if (res == NULL) {
new = kmalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
if (new == NULL)
return ERR_PTR(-ENOMEM);
nfs_init_lock_context(new);
spin_lock(&inode->i_lock);
res = __nfs_find_lock_context(ctx);
if (res == NULL) {
new->open_context = get_nfs_open_context(ctx);
if (new->open_context) {
list_add_tail_rcu(&new->list,
&ctx->lock_context.list);
res = new;
new = NULL;
} else
res = ERR_PTR(-EBADF);
}
spin_unlock(&inode->i_lock);
kfree(new);
}
return res;
}
EXPORT_SYMBOL_GPL(nfs_get_lock_context);
void nfs_put_lock_context(struct nfs_lock_context *l_ctx)
{
struct nfs_open_context *ctx = l_ctx->open_context;
struct inode *inode = d_inode(ctx->dentry);
if (!refcount_dec_and_lock(&l_ctx->count, &inode->i_lock))
return;
list_del_rcu(&l_ctx->list);
spin_unlock(&inode->i_lock);
put_nfs_open_context(ctx);
kfree_rcu(l_ctx, rcu_head);
}
EXPORT_SYMBOL_GPL(nfs_put_lock_context);
/**
* nfs_close_context - Common close_context() routine NFSv2/v3
* @ctx: pointer to context
* @is_sync: is this a synchronous close
*
* Ensure that the attributes are up to date if we're mounted
* with close-to-open semantics and we have cached data that will
* need to be revalidated on open.
*/
void nfs_close_context(struct nfs_open_context *ctx, int is_sync)
{
struct nfs_inode *nfsi;
struct inode *inode;
if (!(ctx->mode & FMODE_WRITE))
return;
if (!is_sync)
return;
inode = d_inode(ctx->dentry);
if (nfs_have_read_or_write_delegation(inode))
return;
nfsi = NFS_I(inode);
if (inode->i_mapping->nrpages == 0)
return;
if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
return;
if (!list_empty(&nfsi->open_files))
return;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_NOCTO)
return;
nfs_revalidate_inode(inode,
NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE);
}
EXPORT_SYMBOL_GPL(nfs_close_context);
struct nfs_open_context *alloc_nfs_open_context(struct dentry *dentry,
fmode_t f_mode,
struct file *filp)
{
struct nfs_open_context *ctx;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
if (!ctx)
return ERR_PTR(-ENOMEM);
nfs_sb_active(dentry->d_sb);
ctx->dentry = dget(dentry);
if (filp)
ctx->cred = get_cred(filp->f_cred);
else
ctx->cred = get_current_cred();
rcu_assign_pointer(ctx->ll_cred, NULL);
ctx->state = NULL;
ctx->mode = f_mode;
ctx->flags = 0;
ctx->error = 0;
ctx->flock_owner = (fl_owner_t)filp;
nfs_init_lock_context(&ctx->lock_context);
ctx->lock_context.open_context = ctx;
INIT_LIST_HEAD(&ctx->list);
ctx->mdsthreshold = NULL;
return ctx;
}
EXPORT_SYMBOL_GPL(alloc_nfs_open_context);
struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx)
{
if (ctx != NULL && refcount_inc_not_zero(&ctx->lock_context.count))
return ctx;
return NULL;
}
EXPORT_SYMBOL_GPL(get_nfs_open_context);
static void __put_nfs_open_context(struct nfs_open_context *ctx, int is_sync)
{
struct inode *inode = d_inode(ctx->dentry);
struct super_block *sb = ctx->dentry->d_sb;
if (!refcount_dec_and_test(&ctx->lock_context.count))
return;
if (!list_empty(&ctx->list)) {
spin_lock(&inode->i_lock);
list_del_rcu(&ctx->list);
spin_unlock(&inode->i_lock);
}
if (inode != NULL)
NFS_PROTO(inode)->close_context(ctx, is_sync);
put_cred(ctx->cred);
dput(ctx->dentry);
nfs_sb_deactive(sb);
put_rpccred(rcu_dereference_protected(ctx->ll_cred, 1));
kfree(ctx->mdsthreshold);
kfree_rcu(ctx, rcu_head);
}
void put_nfs_open_context(struct nfs_open_context *ctx)
{
__put_nfs_open_context(ctx, 0);
}
EXPORT_SYMBOL_GPL(put_nfs_open_context);
static void put_nfs_open_context_sync(struct nfs_open_context *ctx)
{
__put_nfs_open_context(ctx, 1);
}
/*
* Ensure that mmap has a recent RPC credential for use when writing out
* shared pages
*/
void nfs_inode_attach_open_context(struct nfs_open_context *ctx)
{
struct inode *inode = d_inode(ctx->dentry);
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
if (list_empty(&nfsi->open_files) &&
nfs_ooo_test(nfsi))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA |
NFS_INO_REVAL_FORCED);
list_add_tail_rcu(&ctx->list, &nfsi->open_files);
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL_GPL(nfs_inode_attach_open_context);
void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx)
{
filp->private_data = get_nfs_open_context(ctx);
set_bit(NFS_CONTEXT_FILE_OPEN, &ctx->flags);
if (list_empty(&ctx->list))
nfs_inode_attach_open_context(ctx);
}
EXPORT_SYMBOL_GPL(nfs_file_set_open_context);
/*
* Given an inode, search for an open context with the desired characteristics
*/
struct nfs_open_context *nfs_find_open_context(struct inode *inode, const struct cred *cred, fmode_t mode)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_open_context *pos, *ctx = NULL;
rcu_read_lock();
list_for_each_entry_rcu(pos, &nfsi->open_files, list) {
if (cred != NULL && cred_fscmp(pos->cred, cred) != 0)
continue;
if ((pos->mode & (FMODE_READ|FMODE_WRITE)) != mode)
continue;
if (!test_bit(NFS_CONTEXT_FILE_OPEN, &pos->flags))
continue;
ctx = get_nfs_open_context(pos);
if (ctx)
break;
}
rcu_read_unlock();
return ctx;
}
void nfs_file_clear_open_context(struct file *filp)
{
struct nfs_open_context *ctx = nfs_file_open_context(filp);
if (ctx) {
struct inode *inode = d_inode(ctx->dentry);
clear_bit(NFS_CONTEXT_FILE_OPEN, &ctx->flags);
/*
* We fatal error on write before. Try to writeback
* every page again.
*/
if (ctx->error < 0)
invalidate_inode_pages2(inode->i_mapping);
filp->private_data = NULL;
put_nfs_open_context_sync(ctx);
}
}
/*
* These allocate and release file read/write context information.
*/
int nfs_open(struct inode *inode, struct file *filp)
{
struct nfs_open_context *ctx;
ctx = alloc_nfs_open_context(file_dentry(filp),
flags_to_mode(filp->f_flags), filp);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
nfs_file_set_open_context(filp, ctx);
put_nfs_open_context(ctx);
nfs_fscache_open_file(inode, filp);
return 0;
}
/*
* This function is called whenever some part of NFS notices that
* the cached attributes have to be refreshed.
*/
int
__nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
{
int status = -ESTALE;
struct nfs_fattr *fattr = NULL;
struct nfs_inode *nfsi = NFS_I(inode);
dfprintk(PAGECACHE, "NFS: revalidating (%s/%Lu)\n",
inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode));
trace_nfs_revalidate_inode_enter(inode);
if (is_bad_inode(inode))
goto out;
if (NFS_STALE(inode))
goto out;
/* pNFS: Attributes aren't updated until we layoutcommit */
if (S_ISREG(inode->i_mode)) {
status = pnfs_sync_inode(inode, false);
if (status)
goto out;
}
status = -ENOMEM;
fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
if (fattr == NULL)
goto out;
nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE);
status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), fattr, inode);
if (status != 0) {
dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) getattr failed, error=%d\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode), status);
switch (status) {
case -ETIMEDOUT:
/* A soft timeout occurred. Use cached information? */
if (server->flags & NFS_MOUNT_SOFTREVAL)
status = 0;
break;
case -ESTALE:
if (!S_ISDIR(inode->i_mode))
nfs_set_inode_stale(inode);
else
nfs_zap_caches(inode);
}
goto out;
}
status = nfs_refresh_inode(inode, fattr);
if (status) {
dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) refresh failed, error=%d\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode), status);
goto out;
}
if (nfsi->cache_validity & NFS_INO_INVALID_ACL)
nfs_zap_acl_cache(inode);
nfs_setsecurity(inode, fattr);
dfprintk(PAGECACHE, "NFS: (%s/%Lu) revalidation complete\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode));
out:
nfs_free_fattr(fattr);
trace_nfs_revalidate_inode_exit(inode, status);
return status;
}
int nfs_attribute_cache_expired(struct inode *inode)
{
if (nfs_have_delegated_attributes(inode))
return 0;
return nfs_attribute_timeout(inode);
}
/**
* nfs_revalidate_inode - Revalidate the inode attributes
* @inode: pointer to inode struct
* @flags: cache flags to check
*
* Updates inode attribute information by retrieving the data from the server.
*/
int nfs_revalidate_inode(struct inode *inode, unsigned long flags)
{
if (!nfs_check_cache_invalid(inode, flags))
return NFS_STALE(inode) ? -ESTALE : 0;
return __nfs_revalidate_inode(NFS_SERVER(inode), inode);
}
EXPORT_SYMBOL_GPL(nfs_revalidate_inode);
static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping)
{
int ret;
nfs_fscache_invalidate(inode, 0);
if (mapping->nrpages != 0) {
if (S_ISREG(inode->i_mode)) {
ret = nfs_sync_mapping(mapping);
if (ret < 0)
return ret;
}
ret = invalidate_inode_pages2(mapping);
if (ret < 0)
return ret;
}
nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE);
dfprintk(PAGECACHE, "NFS: (%s/%Lu) data cache invalidated\n",
inode->i_sb->s_id,
(unsigned long long)NFS_FILEID(inode));
return 0;
}
/**
* nfs_clear_invalid_mapping - Conditionally clear a mapping
* @mapping: pointer to mapping
*
* If the NFS_INO_INVALID_DATA inode flag is set, clear the mapping.
*/
int nfs_clear_invalid_mapping(struct address_space *mapping)
{
struct inode *inode = mapping->host;
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long *bitlock = &nfsi->flags;
int ret = 0;
/*
* We must clear NFS_INO_INVALID_DATA first to ensure that
* invalidations that come in while we're shooting down the mappings
* are respected. But, that leaves a race window where one revalidator
* can clear the flag, and then another checks it before the mapping
* gets invalidated. Fix that by serializing access to this part of
* the function.
*
* At the same time, we need to allow other tasks to see whether we
* might be in the middle of invalidating the pages, so we only set
* the bit lock here if it looks like we're going to be doing that.
*/
for (;;) {
ret = wait_on_bit_action(bitlock, NFS_INO_INVALIDATING,
nfs_wait_bit_killable,
TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
if (ret)
goto out;
spin_lock(&inode->i_lock);
if (test_bit(NFS_INO_INVALIDATING, bitlock)) {
spin_unlock(&inode->i_lock);
continue;
}
if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
break;
spin_unlock(&inode->i_lock);
goto out;
}
set_bit(NFS_INO_INVALIDATING, bitlock);
smp_wmb();
nfsi->cache_validity &= ~NFS_INO_INVALID_DATA;
nfs_ooo_clear(nfsi);
spin_unlock(&inode->i_lock);
trace_nfs_invalidate_mapping_enter(inode);
ret = nfs_invalidate_mapping(inode, mapping);
trace_nfs_invalidate_mapping_exit(inode, ret);
clear_bit_unlock(NFS_INO_INVALIDATING, bitlock);
smp_mb__after_atomic();
wake_up_bit(bitlock, NFS_INO_INVALIDATING);
out:
return ret;
}
bool nfs_mapping_need_revalidate_inode(struct inode *inode)
{
return nfs_check_cache_invalid(inode, NFS_INO_INVALID_CHANGE) ||
NFS_STALE(inode);
}
int nfs_revalidate_mapping_rcu(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long *bitlock = &nfsi->flags;
int ret = 0;
if (IS_SWAPFILE(inode))
goto out;
if (nfs_mapping_need_revalidate_inode(inode)) {
ret = -ECHILD;
goto out;
}
spin_lock(&inode->i_lock);
if (test_bit(NFS_INO_INVALIDATING, bitlock) ||
(nfsi->cache_validity & NFS_INO_INVALID_DATA))
ret = -ECHILD;
spin_unlock(&inode->i_lock);
out:
return ret;
}
/**
* nfs_revalidate_mapping - Revalidate the pagecache
* @inode: pointer to host inode
* @mapping: pointer to mapping
*/
int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping)
{
/* swapfiles are not supposed to be shared. */
if (IS_SWAPFILE(inode))
return 0;
if (nfs_mapping_need_revalidate_inode(inode)) {
int ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
if (ret < 0)
return ret;
}
return nfs_clear_invalid_mapping(mapping);
}
static bool nfs_file_has_writers(struct nfs_inode *nfsi)
{
struct inode *inode = &nfsi->vfs_inode;
if (!S_ISREG(inode->i_mode))
return false;
if (list_empty(&nfsi->open_files))
return false;
return inode_is_open_for_write(inode);
}
static bool nfs_file_has_buffered_writers(struct nfs_inode *nfsi)
{
return nfs_file_has_writers(nfsi) && nfs_file_io_is_buffered(nfsi);
}
static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct timespec64 ts;
if ((fattr->valid & NFS_ATTR_FATTR_PRECHANGE)
&& (fattr->valid & NFS_ATTR_FATTR_CHANGE)
&& inode_eq_iversion_raw(inode, fattr->pre_change_attr)) {
inode_set_iversion_raw(inode, fattr->change_attr);
if (S_ISDIR(inode->i_mode))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
else if (nfs_server_capable(inode, NFS_CAP_XATTR))
nfs_set_cache_invalid(inode, NFS_INO_INVALID_XATTR);
}
/* If we have atomic WCC data, we may update some attributes */
ts = inode_get_ctime(inode);
if ((fattr->valid & NFS_ATTR_FATTR_PRECTIME)
&& (fattr->valid & NFS_ATTR_FATTR_CTIME)
&& timespec64_equal(&ts, &fattr->pre_ctime)) {
inode_set_ctime_to_ts(inode, fattr->ctime);
}
ts = inode_get_mtime(inode);
if ((fattr->valid & NFS_ATTR_FATTR_PREMTIME)
&& (fattr->valid & NFS_ATTR_FATTR_MTIME)
&& timespec64_equal(&ts, &fattr->pre_mtime)) {
inode_set_mtime_to_ts(inode, fattr->mtime);
}
if ((fattr->valid & NFS_ATTR_FATTR_PRESIZE)
&& (fattr->valid & NFS_ATTR_FATTR_SIZE)
&& i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size)
&& !nfs_have_writebacks(inode)) {
trace_nfs_size_wcc(inode, fattr->size);
i_size_write(inode, nfs_size_to_loff_t(fattr->size));
}
}
/**
* nfs_check_inode_attributes - verify consistency of the inode attribute cache
* @inode: pointer to inode
* @fattr: updated attributes
*
* Verifies the attribute cache. If we have just changed the attributes,
* so that fattr carries weak cache consistency data, then it may
* also update the ctime/mtime/change_attribute.
*/
static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
loff_t cur_size, new_isize;
unsigned long invalid = 0;
struct timespec64 ts;
if (nfs_have_delegated_attributes(inode))
return 0;
if (!(fattr->valid & NFS_ATTR_FATTR_FILEID)) {
/* Only a mounted-on-fileid? Just exit */
if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID)
return 0;
/* Has the inode gone and changed behind our back? */
} else if (nfsi->fileid != fattr->fileid) {
/* Is this perhaps the mounted-on fileid? */
if ((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) &&
nfsi->fileid == fattr->mounted_on_fileid)
return 0;
return -ESTALE;
}
if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && inode_wrong_type(inode, fattr->mode))
return -ESTALE;
if (!nfs_file_has_buffered_writers(nfsi)) {
/* Verify a few of the more important attributes */
if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && !inode_eq_iversion_raw(inode, fattr->change_attr))
invalid |= NFS_INO_INVALID_CHANGE;
ts = inode_get_mtime(inode);
if ((fattr->valid & NFS_ATTR_FATTR_MTIME) && !timespec64_equal(&ts, &fattr->mtime))
invalid |= NFS_INO_INVALID_MTIME;
ts = inode_get_ctime(inode);
if ((fattr->valid & NFS_ATTR_FATTR_CTIME) && !timespec64_equal(&ts, &fattr->ctime))
invalid |= NFS_INO_INVALID_CTIME;
if (fattr->valid & NFS_ATTR_FATTR_SIZE) {
cur_size = i_size_read(inode);
new_isize = nfs_size_to_loff_t(fattr->size);
if (cur_size != new_isize)
invalid |= NFS_INO_INVALID_SIZE;
}
}
/* Have any file permissions changed? */
if ((fattr->valid & NFS_ATTR_FATTR_MODE) && (inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO))
invalid |= NFS_INO_INVALID_MODE;
if ((fattr->valid & NFS_ATTR_FATTR_OWNER) && !uid_eq(inode->i_uid, fattr->uid))
invalid |= NFS_INO_INVALID_OTHER;
if ((fattr->valid & NFS_ATTR_FATTR_GROUP) && !gid_eq(inode->i_gid, fattr->gid))
invalid |= NFS_INO_INVALID_OTHER;
/* Has the link count changed? */
if ((fattr->valid & NFS_ATTR_FATTR_NLINK) && inode->i_nlink != fattr->nlink)
invalid |= NFS_INO_INVALID_NLINK;
ts = inode_get_atime(inode);
if ((fattr->valid & NFS_ATTR_FATTR_ATIME) && !timespec64_equal(&ts, &fattr->atime))
invalid |= NFS_INO_INVALID_ATIME;
if (invalid != 0)
nfs_set_cache_invalid(inode, invalid);
nfsi->read_cache_jiffies = fattr->time_start;
return 0;
}
static atomic_long_t nfs_attr_generation_counter;
static unsigned long nfs_read_attr_generation_counter(void)
{
return atomic_long_read(&nfs_attr_generation_counter);
}
unsigned long nfs_inc_attr_generation_counter(void)
{
return atomic_long_inc_return(&nfs_attr_generation_counter);
}
EXPORT_SYMBOL_GPL(nfs_inc_attr_generation_counter);
void nfs_fattr_init(struct nfs_fattr *fattr)
{
fattr->valid = 0;
fattr->time_start = jiffies;
fattr->gencount = nfs_inc_attr_generation_counter();
fattr->owner_name = NULL;
fattr->group_name = NULL;
}
EXPORT_SYMBOL_GPL(nfs_fattr_init);
/**
* nfs_fattr_set_barrier
* @fattr: attributes
*
* Used to set a barrier after an attribute was updated. This
* barrier ensures that older attributes from RPC calls that may
* have raced with our update cannot clobber these new values.
* Note that you are still responsible for ensuring that other
* operations which change the attribute on the server do not
* collide.
*/
void nfs_fattr_set_barrier(struct nfs_fattr *fattr)
{
fattr->gencount = nfs_inc_attr_generation_counter();
}
struct nfs_fattr *nfs_alloc_fattr(void)
{
struct nfs_fattr *fattr;
fattr = kmalloc(sizeof(*fattr), GFP_KERNEL);
if (fattr != NULL) {
nfs_fattr_init(fattr);
fattr->label = NULL;
}
return fattr;
}
EXPORT_SYMBOL_GPL(nfs_alloc_fattr);
struct nfs_fattr *nfs_alloc_fattr_with_label(struct nfs_server *server)
{
struct nfs_fattr *fattr = nfs_alloc_fattr();
if (!fattr)
return NULL;
fattr->label = nfs4_label_alloc(server, GFP_KERNEL);
if (IS_ERR(fattr->label)) {
kfree(fattr);
return NULL;
}
return fattr;
}
EXPORT_SYMBOL_GPL(nfs_alloc_fattr_with_label);
struct nfs_fh *nfs_alloc_fhandle(void)
{
struct nfs_fh *fh;
fh = kmalloc(sizeof(struct nfs_fh), GFP_KERNEL);
if (fh != NULL)
fh->size = 0;
return fh;
}
EXPORT_SYMBOL_GPL(nfs_alloc_fhandle);
#ifdef NFS_DEBUG
/*
* _nfs_display_fhandle_hash - calculate the crc32 hash for the filehandle
* in the same way that wireshark does
*
* @fh: file handle
*
* For debugging only.
*/
u32 _nfs_display_fhandle_hash(const struct nfs_fh *fh)
{
/* wireshark uses 32-bit AUTODIN crc and does a bitwise
* not on the result */
return nfs_fhandle_hash(fh);
}
EXPORT_SYMBOL_GPL(_nfs_display_fhandle_hash);
/*
* _nfs_display_fhandle - display an NFS file handle on the console
*
* @fh: file handle to display
* @caption: display caption
*
* For debugging only.
*/
void _nfs_display_fhandle(const struct nfs_fh *fh, const char *caption)
{
unsigned short i;
if (fh == NULL || fh->size == 0) {
printk(KERN_DEFAULT "%s at %p is empty\n", caption, fh);
return;
}
printk(KERN_DEFAULT "%s at %p is %u bytes, crc: 0x%08x:\n",
caption, fh, fh->size, _nfs_display_fhandle_hash(fh));
for (i = 0; i < fh->size; i += 16) {
__be32 *pos = (__be32 *)&fh->data[i];
switch ((fh->size - i - 1) >> 2) {
case 0:
printk(KERN_DEFAULT " %08x\n",
be32_to_cpup(pos));
break;
case 1:
printk(KERN_DEFAULT " %08x %08x\n",
be32_to_cpup(pos), be32_to_cpup(pos + 1));
break;
case 2:
printk(KERN_DEFAULT " %08x %08x %08x\n",
be32_to_cpup(pos), be32_to_cpup(pos + 1),
be32_to_cpup(pos + 2));
break;
default:
printk(KERN_DEFAULT " %08x %08x %08x %08x\n",
be32_to_cpup(pos), be32_to_cpup(pos + 1),
be32_to_cpup(pos + 2), be32_to_cpup(pos + 3));
}
}
}
EXPORT_SYMBOL_GPL(_nfs_display_fhandle);
#endif
/**
* nfs_inode_attrs_cmp_generic - compare attributes
* @fattr: attributes
* @inode: pointer to inode
*
* Attempt to divine whether or not an RPC call reply carrying stale
* attributes got scheduled after another call carrying updated ones.
* Note also the check for wraparound of 'attr_gencount'
*
* The function returns '1' if it thinks the attributes in @fattr are
* more recent than the ones cached in @inode. Otherwise it returns
* the value '0'.
*/
static int nfs_inode_attrs_cmp_generic(const struct nfs_fattr *fattr,
const struct inode *inode)
{
unsigned long attr_gencount = NFS_I(inode)->attr_gencount;
return (long)(fattr->gencount - attr_gencount) > 0 ||
(long)(attr_gencount - nfs_read_attr_generation_counter()) > 0;
}
/**
* nfs_inode_attrs_cmp_monotonic - compare attributes
* @fattr: attributes
* @inode: pointer to inode
*
* Attempt to divine whether or not an RPC call reply carrying stale
* attributes got scheduled after another call carrying updated ones.
*
* We assume that the server observes monotonic semantics for
* the change attribute, so a larger value means that the attributes in
* @fattr are more recent, in which case the function returns the
* value '1'.
* A return value of '0' indicates no measurable change
* A return value of '-1' means that the attributes in @inode are
* more recent.
*/
static int nfs_inode_attrs_cmp_monotonic(const struct nfs_fattr *fattr,
const struct inode *inode)
{
s64 diff = fattr->change_attr - inode_peek_iversion_raw(inode);
if (diff > 0)
return 1;
return diff == 0 ? 0 : -1;
}
/**
* nfs_inode_attrs_cmp_strict_monotonic - compare attributes
* @fattr: attributes
* @inode: pointer to inode
*
* Attempt to divine whether or not an RPC call reply carrying stale
* attributes got scheduled after another call carrying updated ones.
*
* We assume that the server observes strictly monotonic semantics for
* the change attribute, so a larger value means that the attributes in
* @fattr are more recent, in which case the function returns the
* value '1'.
* A return value of '-1' means that the attributes in @inode are
* more recent or unchanged.
*/
static int nfs_inode_attrs_cmp_strict_monotonic(const struct nfs_fattr *fattr,
const struct inode *inode)
{
return nfs_inode_attrs_cmp_monotonic(fattr, inode) > 0 ? 1 : -1;
}
/**
* nfs_inode_attrs_cmp - compare attributes
* @fattr: attributes
* @inode: pointer to inode
*
* This function returns '1' if it thinks the attributes in @fattr are
* more recent than the ones cached in @inode. It returns '-1' if
* the attributes in @inode are more recent than the ones in @fattr,
* and it returns 0 if not sure.
*/
static int nfs_inode_attrs_cmp(const struct nfs_fattr *fattr,
const struct inode *inode)
{
if (nfs_inode_attrs_cmp_generic(fattr, inode) > 0)
return 1;
switch (NFS_SERVER(inode)->change_attr_type) {
case NFS4_CHANGE_TYPE_IS_UNDEFINED:
break;
case NFS4_CHANGE_TYPE_IS_TIME_METADATA:
if (!(fattr->valid & NFS_ATTR_FATTR_CHANGE))
break;
return nfs_inode_attrs_cmp_monotonic(fattr, inode);
default:
if (!(fattr->valid & NFS_ATTR_FATTR_CHANGE))
break;
return nfs_inode_attrs_cmp_strict_monotonic(fattr, inode);
}
return 0;
}
/**
* nfs_inode_finish_partial_attr_update - complete a previous inode update
* @fattr: attributes
* @inode: pointer to inode
*
* Returns '1' if the last attribute update left the inode cached
* attributes in a partially unrevalidated state, and @fattr
* matches the change attribute of that partial update.
* Otherwise returns '0'.
*/
static int nfs_inode_finish_partial_attr_update(const struct nfs_fattr *fattr,
const struct inode *inode)
{
const unsigned long check_valid =
NFS_INO_INVALID_ATIME | NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE |
NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_OTHER |
NFS_INO_INVALID_NLINK;
unsigned long cache_validity = NFS_I(inode)->cache_validity;
enum nfs4_change_attr_type ctype = NFS_SERVER(inode)->change_attr_type;
if (ctype != NFS4_CHANGE_TYPE_IS_UNDEFINED &&
!(cache_validity & NFS_INO_INVALID_CHANGE) &&
(cache_validity & check_valid) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 &&
nfs_inode_attrs_cmp_monotonic(fattr, inode) == 0)
return 1;
return 0;
}
static void nfs_ooo_merge(struct nfs_inode *nfsi,
u64 start, u64 end)
{
int i, cnt;
if (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)
/* No point merging anything */
return;
if (!nfsi->ooo) {
nfsi->ooo = kmalloc(sizeof(*nfsi->ooo), GFP_ATOMIC);
if (!nfsi->ooo) {
nfsi->cache_validity |= NFS_INO_DATA_INVAL_DEFER;
return;
}
nfsi->ooo->cnt = 0;
}
/* add this range, merging if possible */
cnt = nfsi->ooo->cnt;
for (i = 0; i < cnt; i++) {
if (end == nfsi->ooo->gap[i].start)
end = nfsi->ooo->gap[i].end;
else if (start == nfsi->ooo->gap[i].end)
start = nfsi->ooo->gap[i].start;
else
continue;
/* Remove 'i' from table and loop to insert the new range */
cnt -= 1;
nfsi->ooo->gap[i] = nfsi->ooo->gap[cnt];
i = -1;
}
if (start != end) {
if (cnt >= ARRAY_SIZE(nfsi->ooo->gap)) {
nfsi->cache_validity |= NFS_INO_DATA_INVAL_DEFER;
kfree(nfsi->ooo);
nfsi->ooo = NULL;
return;
}
nfsi->ooo->gap[cnt].start = start;
nfsi->ooo->gap[cnt].end = end;
cnt += 1;
}
nfsi->ooo->cnt = cnt;
}
static void nfs_ooo_record(struct nfs_inode *nfsi,
struct nfs_fattr *fattr)
{
/* This reply was out-of-order, so record in the
* pre/post change id, possibly cancelling
* gaps created when iversion was jumpped forward.
*/
if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) &&
(fattr->valid & NFS_ATTR_FATTR_PRECHANGE))
nfs_ooo_merge(nfsi,
fattr->change_attr,
fattr->pre_change_attr);
}
static int nfs_refresh_inode_locked(struct inode *inode,
struct nfs_fattr *fattr)
{
int attr_cmp = nfs_inode_attrs_cmp(fattr, inode);
int ret = 0;
trace_nfs_refresh_inode_enter(inode);
if (attr_cmp > 0 || nfs_inode_finish_partial_attr_update(fattr, inode))
ret = nfs_update_inode(inode, fattr);
else {
nfs_ooo_record(NFS_I(inode), fattr);
if (attr_cmp == 0)
ret = nfs_check_inode_attributes(inode, fattr);
}
trace_nfs_refresh_inode_exit(inode, ret);
return ret;
}
/**
* nfs_refresh_inode - try to update the inode attribute cache
* @inode: pointer to inode
* @fattr: updated attributes
*
* Check that an RPC call that returned attributes has not overlapped with
* other recent updates of the inode metadata, then decide whether it is
* safe to do a full update of the inode attributes, or whether just to
* call nfs_check_inode_attributes.
*/
int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
if ((fattr->valid & NFS_ATTR_FATTR) == 0)
return 0;
spin_lock(&inode->i_lock);
status = nfs_refresh_inode_locked(inode, fattr);
spin_unlock(&inode->i_lock);
return status;
}
EXPORT_SYMBOL_GPL(nfs_refresh_inode);
static int nfs_post_op_update_inode_locked(struct inode *inode,
struct nfs_fattr *fattr, unsigned int invalid)
{
if (S_ISDIR(inode->i_mode))
invalid |= NFS_INO_INVALID_DATA;
nfs_set_cache_invalid(inode, invalid);
if ((fattr->valid & NFS_ATTR_FATTR) == 0)
return 0;
return nfs_refresh_inode_locked(inode, fattr);
}
/**
* nfs_post_op_update_inode - try to update the inode attribute cache
* @inode: pointer to inode
* @fattr: updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it.
*
* NB: if the server didn't return any post op attributes, this
* function will force the retrieval of attributes before the next
* NFS request. Thus it should be used only for operations that
* are expected to change one or more attributes, to avoid
* unnecessary NFS requests and trips through nfs_update_inode().
*/
int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
spin_lock(&inode->i_lock);
nfs_fattr_set_barrier(fattr);
status = nfs_post_op_update_inode_locked(inode, fattr,
NFS_INO_INVALID_CHANGE
| NFS_INO_INVALID_CTIME
| NFS_INO_REVAL_FORCED);
spin_unlock(&inode->i_lock);
return status;
}
EXPORT_SYMBOL_GPL(nfs_post_op_update_inode);
/**
* nfs_post_op_update_inode_force_wcc_locked - update the inode attribute cache
* @inode: pointer to inode
* @fattr: updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it. Fake up
* weak cache consistency data, if none exist.
*
* This function is mainly designed to be used by the ->write_done() functions.
*/
int nfs_post_op_update_inode_force_wcc_locked(struct inode *inode, struct nfs_fattr *fattr)
{
int attr_cmp = nfs_inode_attrs_cmp(fattr, inode);
int status;
/* Don't do a WCC update if these attributes are already stale */
if (attr_cmp < 0)
return 0;
if ((fattr->valid & NFS_ATTR_FATTR) == 0 || !attr_cmp) {
/* Record the pre/post change info before clearing PRECHANGE */
nfs_ooo_record(NFS_I(inode), fattr);
fattr->valid &= ~(NFS_ATTR_FATTR_PRECHANGE
| NFS_ATTR_FATTR_PRESIZE
| NFS_ATTR_FATTR_PREMTIME
| NFS_ATTR_FATTR_PRECTIME);
goto out_noforce;
}
if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PRECHANGE) == 0) {
fattr->pre_change_attr = inode_peek_iversion_raw(inode);
fattr->valid |= NFS_ATTR_FATTR_PRECHANGE;
}
if ((fattr->valid & NFS_ATTR_FATTR_CTIME) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PRECTIME) == 0) {
fattr->pre_ctime = inode_get_ctime(inode);
fattr->valid |= NFS_ATTR_FATTR_PRECTIME;
}
if ((fattr->valid & NFS_ATTR_FATTR_MTIME) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PREMTIME) == 0) {
fattr->pre_mtime = inode_get_mtime(inode);
fattr->valid |= NFS_ATTR_FATTR_PREMTIME;
}
if ((fattr->valid & NFS_ATTR_FATTR_SIZE) != 0 &&
(fattr->valid & NFS_ATTR_FATTR_PRESIZE) == 0) {
fattr->pre_size = i_size_read(inode);
fattr->valid |= NFS_ATTR_FATTR_PRESIZE;
}
out_noforce:
status = nfs_post_op_update_inode_locked(inode, fattr,
NFS_INO_INVALID_CHANGE
| NFS_INO_INVALID_CTIME
| NFS_INO_INVALID_MTIME
| NFS_INO_INVALID_BLOCKS);
return status;
}
/**
* nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache
* @inode: pointer to inode
* @fattr: updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it. Fake up
* weak cache consistency data, if none exist.
*
* This function is mainly designed to be used by the ->write_done() functions.
*/
int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr)
{
int status;
spin_lock(&inode->i_lock);
nfs_fattr_set_barrier(fattr);
status = nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
spin_unlock(&inode->i_lock);
return status;
}
EXPORT_SYMBOL_GPL(nfs_post_op_update_inode_force_wcc);
/*
* Many nfs protocol calls return the new file attributes after
* an operation. Here we update the inode to reflect the state
* of the server's inode.
*
* This is a bit tricky because we have to make sure all dirty pages
* have been sent off to the server before calling invalidate_inode_pages.
* To make sure no other process adds more write requests while we try
* our best to flush them, we make them sleep during the attribute refresh.
*
* A very similar scenario holds for the dir cache.
*/
static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_inode *nfsi = NFS_I(inode);
loff_t cur_isize, new_isize;
u64 fattr_supported = server->fattr_valid;
unsigned long invalid = 0;
unsigned long now = jiffies;
unsigned long save_cache_validity;
bool have_writers = nfs_file_has_buffered_writers(nfsi);
bool cache_revalidated = true;
bool attr_changed = false;
bool have_delegation;
dfprintk(VFS, "NFS: %s(%s/%lu fh_crc=0x%08x ct=%d info=0x%x)\n",
__func__, inode->i_sb->s_id, inode->i_ino,
nfs_display_fhandle_hash(NFS_FH(inode)),
atomic_read(&inode->i_count), fattr->valid);
if (!(fattr->valid & NFS_ATTR_FATTR_FILEID)) {
/* Only a mounted-on-fileid? Just exit */
if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID)
return 0;
/* Has the inode gone and changed behind our back? */
} else if (nfsi->fileid != fattr->fileid) {
/* Is this perhaps the mounted-on fileid? */
if ((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) &&
nfsi->fileid == fattr->mounted_on_fileid)
return 0;
printk(KERN_ERR "NFS: server %s error: fileid changed\n"
"fsid %s: expected fileid 0x%Lx, got 0x%Lx\n",
NFS_SERVER(inode)->nfs_client->cl_hostname,
inode->i_sb->s_id, (long long)nfsi->fileid,
(long long)fattr->fileid);
goto out_err;
}
/*
* Make sure the inode's type hasn't changed.
*/
if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && inode_wrong_type(inode, fattr->mode)) {
/*
* Big trouble! The inode has become a different object.
*/
printk(KERN_DEBUG "NFS: %s: inode %lu mode changed, %07o to %07o\n",
__func__, inode->i_ino, inode->i_mode, fattr->mode);
goto out_err;
}
/* Update the fsid? */
if (S_ISDIR(inode->i_mode) && (fattr->valid & NFS_ATTR_FATTR_FSID) &&
!nfs_fsid_equal(&server->fsid, &fattr->fsid) &&
!IS_AUTOMOUNT(inode))
server->fsid = fattr->fsid;
/* Save the delegation state before clearing cache_validity */
have_delegation = nfs_have_delegated_attributes(inode);
/*
* Update the read time so we don't revalidate too often.
*/
nfsi->read_cache_jiffies = fattr->time_start;
/* Fix up any delegated attributes in the struct nfs_fattr */
nfs_fattr_fixup_delegated(inode, fattr);
save_cache_validity = nfsi->cache_validity;
nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ATIME
| NFS_INO_REVAL_FORCED
| NFS_INO_INVALID_BLOCKS);
/* Do atomic weak cache consistency updates */
nfs_wcc_update_inode(inode, fattr);
if (pnfs_layoutcommit_outstanding(inode)) {
nfsi->cache_validity |=
save_cache_validity &
(NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE |
NFS_INO_INVALID_BLOCKS);
cache_revalidated = false;
}
/* More cache consistency checks */
if (fattr->valid & NFS_ATTR_FATTR_CHANGE) {
if (!have_writers && nfsi->ooo && nfsi->ooo->cnt == 1 &&
nfsi->ooo->gap[0].end == inode_peek_iversion_raw(inode)) {
/* There is one remaining gap that hasn't been
* merged into iversion - do that now.
*/
inode_set_iversion_raw(inode, nfsi->ooo->gap[0].start);
kfree(nfsi->ooo);
nfsi->ooo = NULL;
}
if (!inode_eq_iversion_raw(inode, fattr->change_attr)) {
/* Could it be a race with writeback? */
if (!(have_writers || have_delegation)) {
invalid |= NFS_INO_INVALID_DATA
| NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL
| NFS_INO_INVALID_XATTR;
/* Force revalidate of all attributes */
save_cache_validity |= NFS_INO_INVALID_CTIME
| NFS_INO_INVALID_MTIME
| NFS_INO_INVALID_SIZE
| NFS_INO_INVALID_BLOCKS
| NFS_INO_INVALID_NLINK
| NFS_INO_INVALID_MODE
| NFS_INO_INVALID_OTHER;
if (S_ISDIR(inode->i_mode))
nfs_force_lookup_revalidate(inode);
attr_changed = true;
dprintk("NFS: change_attr change on server for file %s/%ld\n",
inode->i_sb->s_id,
inode->i_ino);
} else if (!have_delegation) {
nfs_ooo_record(nfsi, fattr);
nfs_ooo_merge(nfsi, inode_peek_iversion_raw(inode),
fattr->change_attr);
}
inode_set_iversion_raw(inode, fattr->change_attr);
}
} else {
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_CHANGE;
if (!have_delegation ||
(nfsi->cache_validity & NFS_INO_INVALID_CHANGE) != 0)
cache_revalidated = false;
}
if (fattr->valid & NFS_ATTR_FATTR_MTIME)
inode_set_mtime_to_ts(inode, fattr->mtime);
else if (fattr_supported & NFS_ATTR_FATTR_MTIME)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_MTIME;
if (fattr->valid & NFS_ATTR_FATTR_CTIME)
inode_set_ctime_to_ts(inode, fattr->ctime);
else if (fattr_supported & NFS_ATTR_FATTR_CTIME)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_CTIME;
/* Check if our cached file size is stale */
if (fattr->valid & NFS_ATTR_FATTR_SIZE) {
new_isize = nfs_size_to_loff_t(fattr->size);
cur_isize = i_size_read(inode);
if (new_isize != cur_isize && !have_delegation) {
/* Do we perhaps have any outstanding writes, or has
* the file grown beyond our last write? */
if (!nfs_have_writebacks(inode) || new_isize > cur_isize) {
trace_nfs_size_update(inode, new_isize);
i_size_write(inode, new_isize);
if (!have_writers)
invalid |= NFS_INO_INVALID_DATA;
}
}
if (new_isize == 0 &&
!(fattr->valid & (NFS_ATTR_FATTR_SPACE_USED |
NFS_ATTR_FATTR_BLOCKS_USED))) {
fattr->du.nfs3.used = 0;
fattr->valid |= NFS_ATTR_FATTR_SPACE_USED;
}
} else
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_SIZE;
if (fattr->valid & NFS_ATTR_FATTR_ATIME)
inode_set_atime_to_ts(inode, fattr->atime);
else if (fattr_supported & NFS_ATTR_FATTR_ATIME)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_ATIME;
if (fattr->valid & NFS_ATTR_FATTR_MODE) {
if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)) {
umode_t newmode = inode->i_mode & S_IFMT;
newmode |= fattr->mode & S_IALLUGO;
inode->i_mode = newmode;
invalid |= NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL;
}
} else if (fattr_supported & NFS_ATTR_FATTR_MODE)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_MODE;
if (fattr->valid & NFS_ATTR_FATTR_OWNER) {
if (!uid_eq(inode->i_uid, fattr->uid)) {
invalid |= NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL;
inode->i_uid = fattr->uid;
}
} else if (fattr_supported & NFS_ATTR_FATTR_OWNER)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_OTHER;
if (fattr->valid & NFS_ATTR_FATTR_GROUP) {
if (!gid_eq(inode->i_gid, fattr->gid)) {
invalid |= NFS_INO_INVALID_ACCESS
| NFS_INO_INVALID_ACL;
inode->i_gid = fattr->gid;
}
} else if (fattr_supported & NFS_ATTR_FATTR_GROUP)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_OTHER;
if (fattr->valid & NFS_ATTR_FATTR_NLINK) {
if (inode->i_nlink != fattr->nlink)
set_nlink(inode, fattr->nlink);
} else if (fattr_supported & NFS_ATTR_FATTR_NLINK)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_NLINK;
if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
} else if (fattr_supported & NFS_ATTR_FATTR_SPACE_USED)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_BLOCKS;
if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED)
inode->i_blocks = fattr->du.nfs2.blocks;
else if (fattr_supported & NFS_ATTR_FATTR_BLOCKS_USED)
nfsi->cache_validity |=
save_cache_validity & NFS_INO_INVALID_BLOCKS;
/* Update attrtimeo value if we're out of the unstable period */
if (attr_changed) {
nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
/* Set barrier to be more recent than all outstanding updates */
nfsi->attr_gencount = nfs_inc_attr_generation_counter();
} else {
if (cache_revalidated) {
if (!time_in_range_open(now, nfsi->attrtimeo_timestamp,
nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) {
nfsi->attrtimeo <<= 1;
if (nfsi->attrtimeo > NFS_MAXATTRTIMEO(inode))
nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode);
}
nfsi->attrtimeo_timestamp = now;
}
/* Set the barrier to be more recent than this fattr */
if ((long)(fattr->gencount - nfsi->attr_gencount) > 0)
nfsi->attr_gencount = fattr->gencount;
}
/* Don't invalidate the data if we were to blame */
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
|| S_ISLNK(inode->i_mode)))
invalid &= ~NFS_INO_INVALID_DATA;
nfs_set_cache_invalid(inode, invalid);
return 0;
out_err:
/*
* No need to worry about unhashing the dentry, as the
* lookup validation will know that the inode is bad.
* (But we fall through to invalidate the caches.)
*/
nfs_set_inode_stale_locked(inode);
return -ESTALE;
}
struct inode *nfs_alloc_inode(struct super_block *sb)
{
struct nfs_inode *nfsi;
nfsi = alloc_inode_sb(sb, nfs_inode_cachep, GFP_KERNEL);
if (!nfsi)
return NULL;
nfsi->flags = 0UL;
nfsi->cache_validity = 0UL;
nfsi->ooo = NULL;
#if IS_ENABLED(CONFIG_NFS_V4)
nfsi->nfs4_acl = NULL;
#endif /* CONFIG_NFS_V4 */
#ifdef CONFIG_NFS_V4_2
nfsi->xattr_cache = NULL;
#endif
nfs_netfs_inode_init(nfsi);
return &nfsi->vfs_inode;
}
EXPORT_SYMBOL_GPL(nfs_alloc_inode);
void nfs_free_inode(struct inode *inode)
{
kfree(NFS_I(inode)->ooo);
kmem_cache_free(nfs_inode_cachep, NFS_I(inode));
}
EXPORT_SYMBOL_GPL(nfs_free_inode);
static inline void nfs4_init_once(struct nfs_inode *nfsi)
{
#if IS_ENABLED(CONFIG_NFS_V4)
INIT_LIST_HEAD(&nfsi->open_states);
nfsi->delegation = NULL;
init_rwsem(&nfsi->rwsem);
nfsi->layout = NULL;
#endif
}
static void init_once(void *foo)
{
struct nfs_inode *nfsi = foo;
inode_init_once(&nfsi->vfs_inode);
INIT_LIST_HEAD(&nfsi->open_files);
INIT_LIST_HEAD(&nfsi->access_cache_entry_lru);
INIT_LIST_HEAD(&nfsi->access_cache_inode_lru);
nfs4_init_once(nfsi);
}
static int __init nfs_init_inodecache(void)
{
nfs_inode_cachep = kmem_cache_create("nfs_inode_cache",
sizeof(struct nfs_inode),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_ACCOUNT),
init_once);
if (nfs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void nfs_destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(nfs_inode_cachep);
}
struct workqueue_struct *nfslocaliod_workqueue;
struct workqueue_struct *nfsiod_workqueue;
EXPORT_SYMBOL_GPL(nfsiod_workqueue);
/*
* Destroy the nfsiod workqueues
*/
static void nfsiod_stop(void)
{
struct workqueue_struct *wq;
wq = nfsiod_workqueue;
if (wq != NULL) {
nfsiod_workqueue = NULL;
destroy_workqueue(wq);
}
#if IS_ENABLED(CONFIG_NFS_LOCALIO)
wq = nfslocaliod_workqueue;
if (wq != NULL) {
nfslocaliod_workqueue = NULL;
destroy_workqueue(wq);
}
#endif /* CONFIG_NFS_LOCALIO */
}
/*
* Start the nfsiod workqueues
*/
static int nfsiod_start(void)
{
dprintk("RPC: creating workqueue nfsiod\n");
nfsiod_workqueue = alloc_workqueue("nfsiod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
if (nfsiod_workqueue == NULL)
return -ENOMEM;
#if IS_ENABLED(CONFIG_NFS_LOCALIO)
/*
* localio writes need to use a normal (non-memreclaim) workqueue.
* When we start getting low on space, XFS goes and calls flush_work() on
* a non-memreclaim work queue, which causes a priority inversion problem.
*/
dprintk("RPC: creating workqueue nfslocaliod\n");
nfslocaliod_workqueue = alloc_workqueue("nfslocaliod", WQ_UNBOUND, 0);
if (unlikely(nfslocaliod_workqueue == NULL)) {
nfsiod_stop();
return -ENOMEM;
}
#endif /* CONFIG_NFS_LOCALIO */
return 0;
}
unsigned int nfs_net_id;
EXPORT_SYMBOL_GPL(nfs_net_id);
static int nfs_net_init(struct net *net)
{
struct nfs_net *nn = net_generic(net, nfs_net_id);
nfs_clients_init(net);
if (!rpc_proc_register(net, &nn->rpcstats)) {
nfs_clients_exit(net);
return -ENOMEM;
}
return nfs_fs_proc_net_init(net);
}
static void nfs_net_exit(struct net *net)
{
rpc_proc_unregister(net, "nfs");
nfs_fs_proc_net_exit(net);
nfs_clients_exit(net);
}
static struct pernet_operations nfs_net_ops = {
.init = nfs_net_init,
.exit = nfs_net_exit,
.id = &nfs_net_id,
.size = sizeof(struct nfs_net),
};
/*
* Initialize NFS
*/
static int __init init_nfs_fs(void)
{
int err;
err = nfs_sysfs_init();
if (err < 0)
goto out10;
err = register_pernet_subsys(&nfs_net_ops);
if (err < 0)
goto out9;
err = nfsiod_start();
if (err)
goto out7;
err = nfs_fs_proc_init();
if (err)
goto out6;
err = nfs_init_nfspagecache();
if (err)
goto out5;
err = nfs_init_inodecache();
if (err)
goto out4;
err = nfs_init_readpagecache();
if (err)
goto out3;
err = nfs_init_writepagecache();
if (err)
goto out2;
err = nfs_init_directcache();
if (err)
goto out1;
err = register_nfs_fs();
if (err)
goto out0;
return 0;
out0:
nfs_destroy_directcache();
out1:
nfs_destroy_writepagecache();
out2:
nfs_destroy_readpagecache();
out3:
nfs_destroy_inodecache();
out4:
nfs_destroy_nfspagecache();
out5:
nfs_fs_proc_exit();
out6:
nfsiod_stop();
out7:
unregister_pernet_subsys(&nfs_net_ops);
out9:
nfs_sysfs_exit();
out10:
return err;
}
static void __exit exit_nfs_fs(void)
{
nfs_destroy_directcache();
nfs_destroy_writepagecache();
nfs_destroy_readpagecache();
nfs_destroy_inodecache();
nfs_destroy_nfspagecache();
unregister_pernet_subsys(&nfs_net_ops);
unregister_nfs_fs();
nfs_fs_proc_exit();
nfsiod_stop();
nfs_sysfs_exit();
}
/* Not quite true; I just maintain it */
MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>");
MODULE_DESCRIPTION("NFS client support");
MODULE_LICENSE("GPL");
module_param(enable_ino64, bool, 0644);
module_init(init_nfs_fs)
module_exit(exit_nfs_fs)