mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 15:58:47 +00:00
6e738539cd
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1223 lines
30 KiB
C
1223 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright (C) 2014 Datera Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "alloc_foreground.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_locking.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_io.h"
|
|
#include "btree_gc.h"
|
|
#include "buckets.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "ec.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "recovery.h"
|
|
#include "replicas.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched/task.h>
|
|
|
|
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
|
|
{
|
|
preempt_disable();
|
|
write_seqcount_begin(&c->gc_pos_lock);
|
|
c->gc_pos = new_pos;
|
|
write_seqcount_end(&c->gc_pos_lock);
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
|
|
{
|
|
BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
|
|
__gc_pos_set(c, new_pos);
|
|
}
|
|
|
|
/* range_checks - for validating min/max pos of each btree node: */
|
|
|
|
struct range_checks {
|
|
struct range_level {
|
|
struct bpos min;
|
|
struct bpos max;
|
|
} l[BTREE_MAX_DEPTH];
|
|
unsigned depth;
|
|
};
|
|
|
|
static void btree_node_range_checks_init(struct range_checks *r, unsigned depth)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < BTREE_MAX_DEPTH; i++)
|
|
r->l[i].min = r->l[i].max = POS_MIN;
|
|
r->depth = depth;
|
|
}
|
|
|
|
static void btree_node_range_checks(struct bch_fs *c, struct btree *b,
|
|
struct range_checks *r)
|
|
{
|
|
struct range_level *l = &r->l[b->c.level];
|
|
|
|
struct bpos expected_min = bkey_cmp(l->min, l->max)
|
|
? btree_type_successor(b->c.btree_id, l->max)
|
|
: l->max;
|
|
|
|
bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c,
|
|
"btree node has incorrect min key: %llu:%llu != %llu:%llu",
|
|
b->data->min_key.inode,
|
|
b->data->min_key.offset,
|
|
expected_min.inode,
|
|
expected_min.offset);
|
|
|
|
l->max = b->data->max_key;
|
|
|
|
if (b->c.level > r->depth) {
|
|
l = &r->l[b->c.level - 1];
|
|
|
|
bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c,
|
|
"btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu",
|
|
b->data->min_key.inode,
|
|
b->data->min_key.offset,
|
|
l->min.inode,
|
|
l->min.offset);
|
|
|
|
bch2_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c,
|
|
"btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu",
|
|
b->data->max_key.inode,
|
|
b->data->max_key.offset,
|
|
l->max.inode,
|
|
l->max.offset);
|
|
|
|
if (bkey_cmp(b->data->max_key, POS_MAX))
|
|
l->min = l->max =
|
|
btree_type_successor(b->c.btree_id,
|
|
b->data->max_key);
|
|
}
|
|
}
|
|
|
|
/* marking of btree keys/nodes: */
|
|
|
|
static int bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k,
|
|
u8 *max_stale, bool initial)
|
|
{
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const struct bch_extent_ptr *ptr;
|
|
unsigned flags =
|
|
BCH_BUCKET_MARK_GC|
|
|
(initial ? BCH_BUCKET_MARK_NOATOMIC : 0);
|
|
int ret = 0;
|
|
|
|
if (initial) {
|
|
BUG_ON(journal_seq_verify(c) &&
|
|
k.k->version.lo > journal_cur_seq(&c->journal));
|
|
|
|
if (k.k->version.lo > atomic64_read(&c->key_version))
|
|
atomic64_set(&c->key_version, k.k->version.lo);
|
|
|
|
if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
|
|
fsck_err_on(!bch2_bkey_replicas_marked(c, k, false), c,
|
|
"superblock not marked as containing replicas (type %u)",
|
|
k.k->type)) {
|
|
ret = bch2_mark_bkey_replicas(c, k);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
struct bucket *g = PTR_BUCKET(ca, ptr, true);
|
|
struct bucket *g2 = PTR_BUCKET(ca, ptr, false);
|
|
|
|
if (mustfix_fsck_err_on(!g->gen_valid, c,
|
|
"found ptr with missing gen in alloc btree,\n"
|
|
"type %u gen %u",
|
|
k.k->type, ptr->gen)) {
|
|
g2->_mark.gen = g->_mark.gen = ptr->gen;
|
|
g2->_mark.dirty = g->_mark.dirty = true;
|
|
g2->gen_valid = g->gen_valid = true;
|
|
}
|
|
|
|
if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c,
|
|
"%u ptr gen in the future: %u > %u",
|
|
k.k->type, ptr->gen, g->mark.gen)) {
|
|
g2->_mark.gen = g->_mark.gen = ptr->gen;
|
|
g2->_mark.dirty = g->_mark.dirty = true;
|
|
g2->gen_valid = g->gen_valid = true;
|
|
set_bit(BCH_FS_FIXED_GENS, &c->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
bkey_for_each_ptr(ptrs, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
struct bucket *g = PTR_BUCKET(ca, ptr, true);
|
|
|
|
if (gen_after(g->oldest_gen, ptr->gen))
|
|
g->oldest_gen = ptr->gen;
|
|
|
|
*max_stale = max(*max_stale, ptr_stale(ca, ptr));
|
|
}
|
|
|
|
bch2_mark_key(c, k, k.k->size, NULL, 0, flags);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
static int btree_gc_mark_node(struct bch_fs *c, struct btree *b,
|
|
u8 *max_stale, bool initial)
|
|
{
|
|
struct btree_node_iter iter;
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
int ret = 0;
|
|
|
|
*max_stale = 0;
|
|
|
|
if (!btree_node_type_needs_gc(btree_node_type(b)))
|
|
return 0;
|
|
|
|
for_each_btree_node_key_unpack(b, k, &iter,
|
|
&unpacked) {
|
|
bch2_bkey_debugcheck(c, b, k);
|
|
|
|
ret = bch2_gc_mark_key(c, k, max_stale, initial);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id,
|
|
bool initial, bool metadata_only)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct btree *b;
|
|
struct range_checks r;
|
|
unsigned depth = metadata_only ? 1
|
|
: expensive_debug_checks(c) ? 0
|
|
: !btree_node_type_needs_gc(btree_id) ? 1
|
|
: 0;
|
|
u8 max_stale;
|
|
int ret = 0;
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
|
|
|
|
btree_node_range_checks_init(&r, depth);
|
|
|
|
__for_each_btree_node(&trans, iter, btree_id, POS_MIN,
|
|
0, depth, BTREE_ITER_PREFETCH, b) {
|
|
btree_node_range_checks(c, b, &r);
|
|
|
|
bch2_verify_btree_nr_keys(b);
|
|
|
|
gc_pos_set(c, gc_pos_btree_node(b));
|
|
|
|
ret = btree_gc_mark_node(c, b, &max_stale, initial);
|
|
if (ret)
|
|
break;
|
|
|
|
if (!initial) {
|
|
if (max_stale > 64)
|
|
bch2_btree_node_rewrite(c, iter,
|
|
b->data->keys.seq,
|
|
BTREE_INSERT_USE_RESERVE|
|
|
BTREE_INSERT_NOWAIT|
|
|
BTREE_INSERT_GC_LOCK_HELD);
|
|
else if (!btree_gc_rewrite_disabled(c) &&
|
|
(btree_gc_always_rewrite(c) || max_stale > 16))
|
|
bch2_btree_node_rewrite(c, iter,
|
|
b->data->keys.seq,
|
|
BTREE_INSERT_NOWAIT|
|
|
BTREE_INSERT_GC_LOCK_HELD);
|
|
}
|
|
|
|
bch2_trans_cond_resched(&trans);
|
|
}
|
|
ret = bch2_trans_exit(&trans) ?: ret;
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
b = c->btree_roots[btree_id].b;
|
|
if (!btree_node_fake(b))
|
|
ret = bch2_gc_mark_key(c, bkey_i_to_s_c(&b->key),
|
|
&max_stale, initial);
|
|
gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
|
|
mutex_unlock(&c->btree_root_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
|
|
{
|
|
return (int) btree_id_to_gc_phase(l) -
|
|
(int) btree_id_to_gc_phase(r);
|
|
}
|
|
|
|
static int mark_journal_key(struct bch_fs *c, enum btree_id id,
|
|
struct bkey_i *insert)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct bkey_s_c k;
|
|
u8 max_stale;
|
|
int ret = 0;
|
|
|
|
ret = bch2_gc_mark_key(c, bkey_i_to_s_c(insert), &max_stale, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
for_each_btree_key(&trans, iter, id, bkey_start_pos(&insert->k),
|
|
BTREE_ITER_SLOTS, k, ret) {
|
|
percpu_down_read(&c->mark_lock);
|
|
ret = bch2_mark_overwrite(&trans, iter, k, insert, NULL,
|
|
BCH_BUCKET_MARK_GC|
|
|
BCH_BUCKET_MARK_NOATOMIC);
|
|
percpu_up_read(&c->mark_lock);
|
|
|
|
if (!ret)
|
|
break;
|
|
}
|
|
|
|
return bch2_trans_exit(&trans) ?: ret;
|
|
}
|
|
|
|
static int bch2_gc_btrees(struct bch_fs *c, struct journal_keys *journal_keys,
|
|
bool initial, bool metadata_only)
|
|
{
|
|
enum btree_id ids[BTREE_ID_NR];
|
|
unsigned i;
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
ids[i] = i;
|
|
bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++) {
|
|
enum btree_id id = ids[i];
|
|
enum btree_node_type type = __btree_node_type(0, id);
|
|
|
|
int ret = bch2_gc_btree(c, id, initial, metadata_only);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (journal_keys && !metadata_only &&
|
|
btree_node_type_needs_gc(type)) {
|
|
struct journal_key *j;
|
|
int ret;
|
|
|
|
for_each_journal_key(*journal_keys, j)
|
|
if (j->btree_id == id) {
|
|
ret = mark_journal_key(c, id, j->k);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
|
|
u64 start, u64 end,
|
|
enum bch_data_type type,
|
|
unsigned flags)
|
|
{
|
|
u64 b = sector_to_bucket(ca, start);
|
|
|
|
do {
|
|
unsigned sectors =
|
|
min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
|
|
|
|
bch2_mark_metadata_bucket(c, ca, b, type, sectors,
|
|
gc_phase(GC_PHASE_SB), flags);
|
|
b++;
|
|
start += sectors;
|
|
} while (start < end);
|
|
}
|
|
|
|
void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
|
|
unsigned flags)
|
|
{
|
|
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
|
|
unsigned i;
|
|
u64 b;
|
|
|
|
/*
|
|
* This conditional is kind of gross, but we may be called from the
|
|
* device add path, before the new device has actually been added to the
|
|
* running filesystem:
|
|
*/
|
|
if (c) {
|
|
lockdep_assert_held(&c->sb_lock);
|
|
percpu_down_read(&c->mark_lock);
|
|
}
|
|
|
|
for (i = 0; i < layout->nr_superblocks; i++) {
|
|
u64 offset = le64_to_cpu(layout->sb_offset[i]);
|
|
|
|
if (offset == BCH_SB_SECTOR)
|
|
mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
|
|
BCH_DATA_SB, flags);
|
|
|
|
mark_metadata_sectors(c, ca, offset,
|
|
offset + (1 << layout->sb_max_size_bits),
|
|
BCH_DATA_SB, flags);
|
|
}
|
|
|
|
for (i = 0; i < ca->journal.nr; i++) {
|
|
b = ca->journal.buckets[i];
|
|
bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_JOURNAL,
|
|
ca->mi.bucket_size,
|
|
gc_phase(GC_PHASE_SB), flags);
|
|
}
|
|
|
|
if (c)
|
|
percpu_up_read(&c->mark_lock);
|
|
}
|
|
|
|
static void bch2_mark_superblocks(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
|
|
mutex_lock(&c->sb_lock);
|
|
gc_pos_set(c, gc_phase(GC_PHASE_SB));
|
|
|
|
for_each_online_member(ca, c, i)
|
|
bch2_mark_dev_superblock(c, ca, BCH_BUCKET_MARK_GC);
|
|
mutex_unlock(&c->sb_lock);
|
|
}
|
|
|
|
/* Also see bch2_pending_btree_node_free_insert_done() */
|
|
static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
|
|
{
|
|
struct btree_update *as;
|
|
struct pending_btree_node_free *d;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
|
|
|
|
for_each_pending_btree_node_free(c, as, d)
|
|
if (d->index_update_done)
|
|
bch2_mark_key(c, bkey_i_to_s_c(&d->key), 0, NULL, 0,
|
|
BCH_BUCKET_MARK_GC);
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
static void bch2_mark_allocator_buckets(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
struct open_bucket *ob;
|
|
size_t i, j, iter;
|
|
unsigned ci;
|
|
|
|
percpu_down_read(&c->mark_lock);
|
|
|
|
spin_lock(&c->freelist_lock);
|
|
gc_pos_set(c, gc_pos_alloc(c, NULL));
|
|
|
|
for_each_member_device(ca, c, ci) {
|
|
fifo_for_each_entry(i, &ca->free_inc, iter)
|
|
bch2_mark_alloc_bucket(c, ca, i, true,
|
|
gc_pos_alloc(c, NULL),
|
|
BCH_BUCKET_MARK_GC);
|
|
|
|
|
|
|
|
for (j = 0; j < RESERVE_NR; j++)
|
|
fifo_for_each_entry(i, &ca->free[j], iter)
|
|
bch2_mark_alloc_bucket(c, ca, i, true,
|
|
gc_pos_alloc(c, NULL),
|
|
BCH_BUCKET_MARK_GC);
|
|
}
|
|
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
for (ob = c->open_buckets;
|
|
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
|
|
ob++) {
|
|
spin_lock(&ob->lock);
|
|
if (ob->valid) {
|
|
gc_pos_set(c, gc_pos_alloc(c, ob));
|
|
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
|
bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
|
|
gc_pos_alloc(c, ob),
|
|
BCH_BUCKET_MARK_GC);
|
|
}
|
|
spin_unlock(&ob->lock);
|
|
}
|
|
|
|
percpu_up_read(&c->mark_lock);
|
|
}
|
|
|
|
static void bch2_gc_free(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
|
|
genradix_free(&c->stripes[1]);
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
kvpfree(rcu_dereference_protected(ca->buckets[1], 1),
|
|
sizeof(struct bucket_array) +
|
|
ca->mi.nbuckets * sizeof(struct bucket));
|
|
ca->buckets[1] = NULL;
|
|
|
|
free_percpu(ca->usage[1]);
|
|
ca->usage[1] = NULL;
|
|
}
|
|
|
|
free_percpu(c->usage_gc);
|
|
c->usage_gc = NULL;
|
|
}
|
|
|
|
static int bch2_gc_done(struct bch_fs *c,
|
|
bool initial, bool metadata_only)
|
|
{
|
|
struct bch_dev *ca;
|
|
bool verify = !metadata_only &&
|
|
(!initial ||
|
|
(c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)));
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
#define copy_field(_f, _msg, ...) \
|
|
if (dst->_f != src->_f) { \
|
|
if (verify) \
|
|
fsck_err(c, _msg ": got %llu, should be %llu" \
|
|
, ##__VA_ARGS__, dst->_f, src->_f); \
|
|
dst->_f = src->_f; \
|
|
}
|
|
#define copy_stripe_field(_f, _msg, ...) \
|
|
if (dst->_f != src->_f) { \
|
|
if (verify) \
|
|
fsck_err(c, "stripe %zu has wrong "_msg \
|
|
": got %u, should be %u", \
|
|
dst_iter.pos, ##__VA_ARGS__, \
|
|
dst->_f, src->_f); \
|
|
dst->_f = src->_f; \
|
|
dst->dirty = true; \
|
|
}
|
|
#define copy_bucket_field(_f) \
|
|
if (dst->b[b].mark._f != src->b[b].mark._f) { \
|
|
if (verify) \
|
|
fsck_err(c, "dev %u bucket %zu has wrong " #_f \
|
|
": got %u, should be %u", i, b, \
|
|
dst->b[b].mark._f, src->b[b].mark._f); \
|
|
dst->b[b]._mark._f = src->b[b].mark._f; \
|
|
dst->b[b]._mark.dirty = true; \
|
|
}
|
|
#define copy_dev_field(_f, _msg, ...) \
|
|
copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__)
|
|
#define copy_fs_field(_f, _msg, ...) \
|
|
copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__)
|
|
|
|
if (!metadata_only) {
|
|
struct genradix_iter dst_iter = genradix_iter_init(&c->stripes[0], 0);
|
|
struct genradix_iter src_iter = genradix_iter_init(&c->stripes[1], 0);
|
|
struct stripe *dst, *src;
|
|
unsigned i;
|
|
|
|
c->ec_stripes_heap.used = 0;
|
|
|
|
while ((dst = genradix_iter_peek(&dst_iter, &c->stripes[0])) &&
|
|
(src = genradix_iter_peek(&src_iter, &c->stripes[1]))) {
|
|
BUG_ON(src_iter.pos != dst_iter.pos);
|
|
|
|
copy_stripe_field(alive, "alive");
|
|
copy_stripe_field(sectors, "sectors");
|
|
copy_stripe_field(algorithm, "algorithm");
|
|
copy_stripe_field(nr_blocks, "nr_blocks");
|
|
copy_stripe_field(nr_redundant, "nr_redundant");
|
|
copy_stripe_field(blocks_nonempty,
|
|
"blocks_nonempty");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++)
|
|
copy_stripe_field(block_sectors[i],
|
|
"block_sectors[%u]", i);
|
|
|
|
if (dst->alive)
|
|
bch2_stripes_heap_insert(c, dst, dst_iter.pos);
|
|
|
|
genradix_iter_advance(&dst_iter, &c->stripes[0]);
|
|
genradix_iter_advance(&src_iter, &c->stripes[1]);
|
|
}
|
|
}
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
struct bucket_array *dst = __bucket_array(ca, 0);
|
|
struct bucket_array *src = __bucket_array(ca, 1);
|
|
size_t b;
|
|
|
|
for (b = 0; b < src->nbuckets; b++) {
|
|
copy_bucket_field(gen);
|
|
copy_bucket_field(data_type);
|
|
copy_bucket_field(owned_by_allocator);
|
|
copy_bucket_field(stripe);
|
|
copy_bucket_field(dirty_sectors);
|
|
copy_bucket_field(cached_sectors);
|
|
|
|
if (dst->b[b].oldest_gen != src->b[b].oldest_gen) {
|
|
dst->b[b].oldest_gen = src->b[b].oldest_gen;
|
|
dst->b[b]._mark.dirty = true;
|
|
}
|
|
}
|
|
};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
|
|
bch2_fs_usage_acc_to_base(c, i);
|
|
|
|
bch2_dev_usage_from_buckets(c);
|
|
|
|
{
|
|
unsigned nr = fs_usage_u64s(c);
|
|
struct bch_fs_usage *dst = c->usage_base;
|
|
struct bch_fs_usage *src = (void *)
|
|
bch2_acc_percpu_u64s((void *) c->usage_gc, nr);
|
|
|
|
copy_fs_field(hidden, "hidden");
|
|
copy_fs_field(btree, "btree");
|
|
|
|
if (!metadata_only) {
|
|
copy_fs_field(data, "data");
|
|
copy_fs_field(cached, "cached");
|
|
copy_fs_field(reserved, "reserved");
|
|
copy_fs_field(nr_inodes,"nr_inodes");
|
|
|
|
for (i = 0; i < BCH_REPLICAS_MAX; i++)
|
|
copy_fs_field(persistent_reserved[i],
|
|
"persistent_reserved[%i]", i);
|
|
}
|
|
|
|
for (i = 0; i < c->replicas.nr; i++) {
|
|
struct bch_replicas_entry *e =
|
|
cpu_replicas_entry(&c->replicas, i);
|
|
char buf[80];
|
|
|
|
if (metadata_only &&
|
|
(e->data_type == BCH_DATA_USER ||
|
|
e->data_type == BCH_DATA_CACHED))
|
|
continue;
|
|
|
|
bch2_replicas_entry_to_text(&PBUF(buf), e);
|
|
|
|
copy_fs_field(replicas[i], "%s", buf);
|
|
}
|
|
}
|
|
|
|
#undef copy_fs_field
|
|
#undef copy_dev_field
|
|
#undef copy_bucket_field
|
|
#undef copy_stripe_field
|
|
#undef copy_field
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_gc_start(struct bch_fs *c,
|
|
bool metadata_only)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
|
|
/*
|
|
* indicate to stripe code that we need to allocate for the gc stripes
|
|
* radix tree, too
|
|
*/
|
|
gc_pos_set(c, gc_phase(GC_PHASE_START));
|
|
|
|
BUG_ON(c->usage_gc);
|
|
|
|
c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
|
|
sizeof(u64), GFP_KERNEL);
|
|
if (!c->usage_gc)
|
|
return -ENOMEM;
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
BUG_ON(ca->buckets[1]);
|
|
BUG_ON(ca->usage[1]);
|
|
|
|
ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) +
|
|
ca->mi.nbuckets * sizeof(struct bucket),
|
|
GFP_KERNEL|__GFP_ZERO);
|
|
if (!ca->buckets[1]) {
|
|
percpu_ref_put(&ca->ref);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ca->usage[1] = alloc_percpu(struct bch_dev_usage);
|
|
if (!ca->usage[1]) {
|
|
percpu_ref_put(&ca->ref);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
struct bucket_array *dst = __bucket_array(ca, 1);
|
|
struct bucket_array *src = __bucket_array(ca, 0);
|
|
size_t b;
|
|
|
|
dst->first_bucket = src->first_bucket;
|
|
dst->nbuckets = src->nbuckets;
|
|
|
|
for (b = 0; b < src->nbuckets; b++) {
|
|
struct bucket *d = &dst->b[b];
|
|
struct bucket *s = &src->b[b];
|
|
|
|
d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen;
|
|
d->gen_valid = s->gen_valid;
|
|
|
|
if (metadata_only &&
|
|
(s->mark.data_type == BCH_DATA_USER ||
|
|
s->mark.data_type == BCH_DATA_CACHED)) {
|
|
d->_mark = s->mark;
|
|
d->_mark.owned_by_allocator = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
return bch2_ec_mem_alloc(c, true);
|
|
}
|
|
|
|
/**
|
|
* bch2_gc - walk _all_ references to buckets, and recompute them:
|
|
*
|
|
* Order matters here:
|
|
* - Concurrent GC relies on the fact that we have a total ordering for
|
|
* everything that GC walks - see gc_will_visit_node(),
|
|
* gc_will_visit_root()
|
|
*
|
|
* - also, references move around in the course of index updates and
|
|
* various other crap: everything needs to agree on the ordering
|
|
* references are allowed to move around in - e.g., we're allowed to
|
|
* start with a reference owned by an open_bucket (the allocator) and
|
|
* move it to the btree, but not the reverse.
|
|
*
|
|
* This is necessary to ensure that gc doesn't miss references that
|
|
* move around - if references move backwards in the ordering GC
|
|
* uses, GC could skip past them
|
|
*/
|
|
int bch2_gc(struct bch_fs *c, struct journal_keys *journal_keys,
|
|
bool initial, bool metadata_only)
|
|
{
|
|
struct bch_dev *ca;
|
|
u64 start_time = local_clock();
|
|
unsigned i, iter = 0;
|
|
int ret;
|
|
|
|
trace_gc_start(c);
|
|
|
|
down_write(&c->gc_lock);
|
|
again:
|
|
percpu_down_write(&c->mark_lock);
|
|
ret = bch2_gc_start(c, metadata_only);
|
|
percpu_up_write(&c->mark_lock);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
bch2_mark_superblocks(c);
|
|
|
|
ret = bch2_gc_btrees(c, journal_keys, initial, metadata_only);
|
|
if (ret)
|
|
goto out;
|
|
|
|
bch2_mark_pending_btree_node_frees(c);
|
|
bch2_mark_allocator_buckets(c);
|
|
|
|
c->gc_count++;
|
|
out:
|
|
if (!ret &&
|
|
(test_bit(BCH_FS_FIXED_GENS, &c->flags) ||
|
|
(!iter && test_restart_gc(c)))) {
|
|
/*
|
|
* XXX: make sure gens we fixed got saved
|
|
*/
|
|
if (iter++ <= 2) {
|
|
bch_info(c, "Fixed gens, restarting mark and sweep:");
|
|
clear_bit(BCH_FS_FIXED_GENS, &c->flags);
|
|
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
|
|
|
|
percpu_down_write(&c->mark_lock);
|
|
bch2_gc_free(c);
|
|
percpu_up_write(&c->mark_lock);
|
|
|
|
goto again;
|
|
}
|
|
|
|
bch_info(c, "Unable to fix bucket gens, looping");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (!ret) {
|
|
bch2_journal_block(&c->journal);
|
|
|
|
percpu_down_write(&c->mark_lock);
|
|
ret = bch2_gc_done(c, initial, metadata_only);
|
|
|
|
bch2_journal_unblock(&c->journal);
|
|
} else {
|
|
percpu_down_write(&c->mark_lock);
|
|
}
|
|
|
|
/* Indicates that gc is no longer in progress: */
|
|
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
|
|
|
|
bch2_gc_free(c);
|
|
percpu_up_write(&c->mark_lock);
|
|
|
|
up_write(&c->gc_lock);
|
|
|
|
trace_gc_end(c);
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
|
|
|
|
/*
|
|
* Wake up allocator in case it was waiting for buckets
|
|
* because of not being able to inc gens
|
|
*/
|
|
for_each_member_device(ca, c, i)
|
|
bch2_wake_allocator(ca);
|
|
|
|
/*
|
|
* At startup, allocations can happen directly instead of via the
|
|
* allocator thread - issue wakeup in case they blocked on gc_lock:
|
|
*/
|
|
closure_wake_up(&c->freelist_wait);
|
|
return ret;
|
|
}
|
|
|
|
/* Btree coalescing */
|
|
|
|
static void recalc_packed_keys(struct btree *b)
|
|
{
|
|
struct bset *i = btree_bset_first(b);
|
|
struct bkey_packed *k;
|
|
|
|
memset(&b->nr, 0, sizeof(b->nr));
|
|
|
|
BUG_ON(b->nsets != 1);
|
|
|
|
vstruct_for_each(i, k)
|
|
btree_keys_account_key_add(&b->nr, 0, k);
|
|
}
|
|
|
|
static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
|
|
struct btree *old_nodes[GC_MERGE_NODES])
|
|
{
|
|
struct btree *parent = btree_node_parent(iter, old_nodes[0]);
|
|
unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
|
|
unsigned blocks = btree_blocks(c) * 2 / 3;
|
|
struct btree *new_nodes[GC_MERGE_NODES];
|
|
struct btree_update *as;
|
|
struct keylist keylist;
|
|
struct bkey_format_state format_state;
|
|
struct bkey_format new_format;
|
|
|
|
memset(new_nodes, 0, sizeof(new_nodes));
|
|
bch2_keylist_init(&keylist, NULL);
|
|
|
|
/* Count keys that are not deleted */
|
|
for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
|
|
u64s += old_nodes[i]->nr.live_u64s;
|
|
|
|
nr_old_nodes = nr_new_nodes = i;
|
|
|
|
/* Check if all keys in @old_nodes could fit in one fewer node */
|
|
if (nr_old_nodes <= 1 ||
|
|
__vstruct_blocks(struct btree_node, c->block_bits,
|
|
DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
|
|
return;
|
|
|
|
/* Find a format that all keys in @old_nodes can pack into */
|
|
bch2_bkey_format_init(&format_state);
|
|
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
__bch2_btree_calc_format(&format_state, old_nodes[i]);
|
|
|
|
new_format = bch2_bkey_format_done(&format_state);
|
|
|
|
/* Check if repacking would make any nodes too big to fit */
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
|
|
trace_btree_gc_coalesce_fail(c,
|
|
BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
|
|
return;
|
|
}
|
|
|
|
if (bch2_keylist_realloc(&keylist, NULL, 0,
|
|
(BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
|
|
trace_btree_gc_coalesce_fail(c,
|
|
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
|
|
return;
|
|
}
|
|
|
|
as = bch2_btree_update_start(c, iter->btree_id,
|
|
btree_update_reserve_required(c, parent) + nr_old_nodes,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE,
|
|
NULL);
|
|
if (IS_ERR(as)) {
|
|
trace_btree_gc_coalesce_fail(c,
|
|
BTREE_GC_COALESCE_FAIL_RESERVE_GET);
|
|
bch2_keylist_free(&keylist, NULL);
|
|
return;
|
|
}
|
|
|
|
trace_btree_gc_coalesce(c, old_nodes[0]);
|
|
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
bch2_btree_interior_update_will_free_node(as, old_nodes[i]);
|
|
|
|
/* Repack everything with @new_format and sort down to one bset */
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
new_nodes[i] =
|
|
__bch2_btree_node_alloc_replacement(as, old_nodes[i],
|
|
new_format);
|
|
|
|
/*
|
|
* Conceptually we concatenate the nodes together and slice them
|
|
* up at different boundaries.
|
|
*/
|
|
for (i = nr_new_nodes - 1; i > 0; --i) {
|
|
struct btree *n1 = new_nodes[i];
|
|
struct btree *n2 = new_nodes[i - 1];
|
|
|
|
struct bset *s1 = btree_bset_first(n1);
|
|
struct bset *s2 = btree_bset_first(n2);
|
|
struct bkey_packed *k, *last = NULL;
|
|
|
|
/* Calculate how many keys from @n2 we could fit inside @n1 */
|
|
u64s = 0;
|
|
|
|
for (k = s2->start;
|
|
k < vstruct_last(s2) &&
|
|
vstruct_blocks_plus(n1->data, c->block_bits,
|
|
u64s + k->u64s) <= blocks;
|
|
k = bkey_next(k)) {
|
|
last = k;
|
|
u64s += k->u64s;
|
|
}
|
|
|
|
if (u64s == le16_to_cpu(s2->u64s)) {
|
|
/* n2 fits entirely in n1 */
|
|
n1->key.k.p = n1->data->max_key = n2->data->max_key;
|
|
|
|
memcpy_u64s(vstruct_last(s1),
|
|
s2->start,
|
|
le16_to_cpu(s2->u64s));
|
|
le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
|
|
|
|
set_btree_bset_end(n1, n1->set);
|
|
|
|
six_unlock_write(&n2->c.lock);
|
|
bch2_btree_node_free_never_inserted(c, n2);
|
|
six_unlock_intent(&n2->c.lock);
|
|
|
|
memmove(new_nodes + i - 1,
|
|
new_nodes + i,
|
|
sizeof(new_nodes[0]) * (nr_new_nodes - i));
|
|
new_nodes[--nr_new_nodes] = NULL;
|
|
} else if (u64s) {
|
|
/* move part of n2 into n1 */
|
|
n1->key.k.p = n1->data->max_key =
|
|
bkey_unpack_pos(n1, last);
|
|
|
|
n2->data->min_key =
|
|
btree_type_successor(iter->btree_id,
|
|
n1->data->max_key);
|
|
|
|
memcpy_u64s(vstruct_last(s1),
|
|
s2->start, u64s);
|
|
le16_add_cpu(&s1->u64s, u64s);
|
|
|
|
memmove(s2->start,
|
|
vstruct_idx(s2, u64s),
|
|
(le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
|
|
s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
|
|
|
|
set_btree_bset_end(n1, n1->set);
|
|
set_btree_bset_end(n2, n2->set);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nr_new_nodes; i++) {
|
|
struct btree *n = new_nodes[i];
|
|
|
|
recalc_packed_keys(n);
|
|
btree_node_reset_sib_u64s(n);
|
|
|
|
bch2_btree_build_aux_trees(n);
|
|
six_unlock_write(&n->c.lock);
|
|
|
|
bch2_btree_node_write(c, n, SIX_LOCK_intent);
|
|
}
|
|
|
|
/*
|
|
* The keys for the old nodes get deleted. We don't want to insert keys
|
|
* that compare equal to the keys for the new nodes we'll also be
|
|
* inserting - we can't because keys on a keylist must be strictly
|
|
* greater than the previous keys, and we also don't need to since the
|
|
* key for the new node will serve the same purpose (overwriting the key
|
|
* for the old node).
|
|
*/
|
|
for (i = 0; i < nr_old_nodes; i++) {
|
|
struct bkey_i delete;
|
|
unsigned j;
|
|
|
|
for (j = 0; j < nr_new_nodes; j++)
|
|
if (!bkey_cmp(old_nodes[i]->key.k.p,
|
|
new_nodes[j]->key.k.p))
|
|
goto next;
|
|
|
|
bkey_init(&delete.k);
|
|
delete.k.p = old_nodes[i]->key.k.p;
|
|
bch2_keylist_add_in_order(&keylist, &delete);
|
|
next:
|
|
i = i;
|
|
}
|
|
|
|
/*
|
|
* Keys for the new nodes get inserted: bch2_btree_insert_keys() only
|
|
* does the lookup once and thus expects the keys to be in sorted order
|
|
* so we have to make sure the new keys are correctly ordered with
|
|
* respect to the deleted keys added in the previous loop
|
|
*/
|
|
for (i = 0; i < nr_new_nodes; i++)
|
|
bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
|
|
|
|
/* Insert the newly coalesced nodes */
|
|
bch2_btree_insert_node(as, parent, iter, &keylist, 0);
|
|
|
|
BUG_ON(!bch2_keylist_empty(&keylist));
|
|
|
|
BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]);
|
|
|
|
bch2_btree_iter_node_replace(iter, new_nodes[0]);
|
|
|
|
for (i = 0; i < nr_new_nodes; i++)
|
|
bch2_open_buckets_put(c, &new_nodes[i]->ob);
|
|
|
|
/* Free the old nodes and update our sliding window */
|
|
for (i = 0; i < nr_old_nodes; i++) {
|
|
bch2_btree_node_free_inmem(c, old_nodes[i], iter);
|
|
|
|
/*
|
|
* the index update might have triggered a split, in which case
|
|
* the nodes we coalesced - the new nodes we just created -
|
|
* might not be sibling nodes anymore - don't add them to the
|
|
* sliding window (except the first):
|
|
*/
|
|
if (!i) {
|
|
old_nodes[i] = new_nodes[i];
|
|
} else {
|
|
old_nodes[i] = NULL;
|
|
if (new_nodes[i])
|
|
six_unlock_intent(&new_nodes[i]->c.lock);
|
|
}
|
|
}
|
|
|
|
bch2_btree_update_done(as);
|
|
bch2_keylist_free(&keylist, NULL);
|
|
}
|
|
|
|
static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
|
|
{
|
|
struct btree_trans trans;
|
|
struct btree_iter *iter;
|
|
struct btree *b;
|
|
bool kthread = (current->flags & PF_KTHREAD) != 0;
|
|
unsigned i;
|
|
|
|
/* Sliding window of adjacent btree nodes */
|
|
struct btree *merge[GC_MERGE_NODES];
|
|
u32 lock_seq[GC_MERGE_NODES];
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
/*
|
|
* XXX: We don't have a good way of positively matching on sibling nodes
|
|
* that have the same parent - this code works by handling the cases
|
|
* where they might not have the same parent, and is thus fragile. Ugh.
|
|
*
|
|
* Perhaps redo this to use multiple linked iterators?
|
|
*/
|
|
memset(merge, 0, sizeof(merge));
|
|
|
|
__for_each_btree_node(&trans, iter, btree_id, POS_MIN,
|
|
BTREE_MAX_DEPTH, 0,
|
|
BTREE_ITER_PREFETCH, b) {
|
|
memmove(merge + 1, merge,
|
|
sizeof(merge) - sizeof(merge[0]));
|
|
memmove(lock_seq + 1, lock_seq,
|
|
sizeof(lock_seq) - sizeof(lock_seq[0]));
|
|
|
|
merge[0] = b;
|
|
|
|
for (i = 1; i < GC_MERGE_NODES; i++) {
|
|
if (!merge[i] ||
|
|
!six_relock_intent(&merge[i]->c.lock, lock_seq[i]))
|
|
break;
|
|
|
|
if (merge[i]->c.level != merge[0]->c.level) {
|
|
six_unlock_intent(&merge[i]->c.lock);
|
|
break;
|
|
}
|
|
}
|
|
memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
|
|
|
|
bch2_coalesce_nodes(c, iter, merge);
|
|
|
|
for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
|
|
lock_seq[i] = merge[i]->c.lock.state.seq;
|
|
six_unlock_intent(&merge[i]->c.lock);
|
|
}
|
|
|
|
lock_seq[0] = merge[0]->c.lock.state.seq;
|
|
|
|
if (kthread && kthread_should_stop()) {
|
|
bch2_trans_exit(&trans);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
bch2_trans_cond_resched(&trans);
|
|
|
|
/*
|
|
* If the parent node wasn't relocked, it might have been split
|
|
* and the nodes in our sliding window might not have the same
|
|
* parent anymore - blow away the sliding window:
|
|
*/
|
|
if (btree_iter_node(iter, iter->level + 1) &&
|
|
!btree_node_intent_locked(iter, iter->level + 1))
|
|
memset(merge + 1, 0,
|
|
(GC_MERGE_NODES - 1) * sizeof(merge[0]));
|
|
}
|
|
return bch2_trans_exit(&trans);
|
|
}
|
|
|
|
/**
|
|
* bch_coalesce - coalesce adjacent nodes with low occupancy
|
|
*/
|
|
void bch2_coalesce(struct bch_fs *c)
|
|
{
|
|
enum btree_id id;
|
|
|
|
down_read(&c->gc_lock);
|
|
trace_gc_coalesce_start(c);
|
|
|
|
for (id = 0; id < BTREE_ID_NR; id++) {
|
|
int ret = c->btree_roots[id].b
|
|
? bch2_coalesce_btree(c, id)
|
|
: 0;
|
|
|
|
if (ret) {
|
|
if (ret != -ESHUTDOWN)
|
|
bch_err(c, "btree coalescing failed: %d", ret);
|
|
return;
|
|
}
|
|
}
|
|
|
|
trace_gc_coalesce_end(c);
|
|
up_read(&c->gc_lock);
|
|
}
|
|
|
|
static int bch2_gc_thread(void *arg)
|
|
{
|
|
struct bch_fs *c = arg;
|
|
struct io_clock *clock = &c->io_clock[WRITE];
|
|
unsigned long last = atomic_long_read(&clock->now);
|
|
unsigned last_kick = atomic_read(&c->kick_gc);
|
|
int ret;
|
|
|
|
set_freezable();
|
|
|
|
while (1) {
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop()) {
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
if (atomic_read(&c->kick_gc) != last_kick)
|
|
break;
|
|
|
|
if (c->btree_gc_periodic) {
|
|
unsigned long next = last + c->capacity / 16;
|
|
|
|
if (atomic_long_read(&clock->now) >= next)
|
|
break;
|
|
|
|
bch2_io_clock_schedule_timeout(clock, next);
|
|
} else {
|
|
schedule();
|
|
}
|
|
|
|
try_to_freeze();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
last = atomic_long_read(&clock->now);
|
|
last_kick = atomic_read(&c->kick_gc);
|
|
|
|
ret = bch2_gc(c, NULL, false, false);
|
|
if (ret)
|
|
bch_err(c, "btree gc failed: %i", ret);
|
|
|
|
debug_check_no_locks_held();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_gc_thread_stop(struct bch_fs *c)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
p = c->gc_thread;
|
|
c->gc_thread = NULL;
|
|
|
|
if (p) {
|
|
kthread_stop(p);
|
|
put_task_struct(p);
|
|
}
|
|
}
|
|
|
|
int bch2_gc_thread_start(struct bch_fs *c)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
BUG_ON(c->gc_thread);
|
|
|
|
p = kthread_create(bch2_gc_thread, c, "bch_gc");
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
get_task_struct(p);
|
|
c->gc_thread = p;
|
|
wake_up_process(p);
|
|
return 0;
|
|
}
|