Linus Torvalds 6a2b60b17b Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace changes from Eric Biederman:
 "While small this set of changes is very significant with respect to
  containers in general and user namespaces in particular.  The user
  space interface is now complete.

  This set of changes adds support for unprivileged users to create user
  namespaces and as a user namespace root to create other namespaces.
  The tyranny of supporting suid root preventing unprivileged users from
  using cool new kernel features is broken.

  This set of changes completes the work on setns, adding support for
  the pid, user, mount namespaces.

  This set of changes includes a bunch of basic pid namespace
  cleanups/simplifications.  Of particular significance is the rework of
  the pid namespace cleanup so it no longer requires sending out
  tendrils into all kinds of unexpected cleanup paths for operation.  At
  least one case of broken error handling is fixed by this cleanup.

  The files under /proc/<pid>/ns/ have been converted from regular files
  to magic symlinks which prevents incorrect caching by the VFS,
  ensuring the files always refer to the namespace the process is
  currently using and ensuring that the ptrace_mayaccess permission
  checks are always applied.

  The files under /proc/<pid>/ns/ have been given stable inode numbers
  so it is now possible to see if different processes share the same
  namespaces.

  Through the David Miller's net tree are changes to relax many of the
  permission checks in the networking stack to allowing the user
  namespace root to usefully use the networking stack.  Similar changes
  for the mount namespace and the pid namespace are coming through my
  tree.

  Two small changes to add user namespace support were commited here adn
  in David Miller's -net tree so that I could complete the work on the
  /proc/<pid>/ns/ files in this tree.

  Work remains to make it safe to build user namespaces and 9p, afs,
  ceph, cifs, coda, gfs2, ncpfs, nfs, nfsd, ocfs2, and xfs so the
  Kconfig guard remains in place preventing that user namespaces from
  being built when any of those filesystems are enabled.

  Future design work remains to allow root users outside of the initial
  user namespace to mount more than just /proc and /sys."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (38 commits)
  proc: Usable inode numbers for the namespace file descriptors.
  proc: Fix the namespace inode permission checks.
  proc: Generalize proc inode allocation
  userns: Allow unprivilged mounts of proc and sysfs
  userns: For /proc/self/{uid,gid}_map derive the lower userns from the struct file
  procfs: Print task uids and gids in the userns that opened the proc file
  userns: Implement unshare of the user namespace
  userns: Implent proc namespace operations
  userns: Kill task_user_ns
  userns: Make create_new_namespaces take a user_ns parameter
  userns: Allow unprivileged use of setns.
  userns: Allow unprivileged users to create new namespaces
  userns: Allow setting a userns mapping to your current uid.
  userns: Allow chown and setgid preservation
  userns: Allow unprivileged users to create user namespaces.
  userns: Ignore suid and sgid on binaries if the uid or gid can not be mapped
  userns: fix return value on mntns_install() failure
  vfs: Allow unprivileged manipulation of the mount namespace.
  vfs: Only support slave subtrees across different user namespaces
  vfs: Add a user namespace reference from struct mnt_namespace
  ...
2012-12-17 15:44:47 -08:00

607 lines
15 KiB
C

/*
* Generic pidhash and scalable, time-bounded PID allocator
*
* (C) 2002-2003 Nadia Yvette Chambers, IBM
* (C) 2004 Nadia Yvette Chambers, Oracle
* (C) 2002-2004 Ingo Molnar, Red Hat
*
* pid-structures are backing objects for tasks sharing a given ID to chain
* against. There is very little to them aside from hashing them and
* parking tasks using given ID's on a list.
*
* The hash is always changed with the tasklist_lock write-acquired,
* and the hash is only accessed with the tasklist_lock at least
* read-acquired, so there's no additional SMP locking needed here.
*
* We have a list of bitmap pages, which bitmaps represent the PID space.
* Allocating and freeing PIDs is completely lockless. The worst-case
* allocation scenario when all but one out of 1 million PIDs possible are
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
*
* Pid namespaces:
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
* Many thanks to Oleg Nesterov for comments and help
*
*/
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rculist.h>
#include <linux/bootmem.h>
#include <linux/hash.h>
#include <linux/pid_namespace.h>
#include <linux/init_task.h>
#include <linux/syscalls.h>
#include <linux/proc_fs.h>
#define pid_hashfn(nr, ns) \
hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
static struct hlist_head *pid_hash;
static unsigned int pidhash_shift = 4;
struct pid init_struct_pid = INIT_STRUCT_PID;
int pid_max = PID_MAX_DEFAULT;
#define RESERVED_PIDS 300
int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;
#define BITS_PER_PAGE (PAGE_SIZE*8)
#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
static inline int mk_pid(struct pid_namespace *pid_ns,
struct pidmap *map, int off)
{
return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
}
#define find_next_offset(map, off) \
find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
/*
* PID-map pages start out as NULL, they get allocated upon
* first use and are never deallocated. This way a low pid_max
* value does not cause lots of bitmaps to be allocated, but
* the scheme scales to up to 4 million PIDs, runtime.
*/
struct pid_namespace init_pid_ns = {
.kref = {
.refcount = ATOMIC_INIT(2),
},
.pidmap = {
[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
},
.last_pid = 0,
.level = 0,
.child_reaper = &init_task,
.user_ns = &init_user_ns,
.proc_inum = PROC_PID_INIT_INO,
};
EXPORT_SYMBOL_GPL(init_pid_ns);
int is_container_init(struct task_struct *tsk)
{
int ret = 0;
struct pid *pid;
rcu_read_lock();
pid = task_pid(tsk);
if (pid != NULL && pid->numbers[pid->level].nr == 1)
ret = 1;
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(is_container_init);
/*
* Note: disable interrupts while the pidmap_lock is held as an
* interrupt might come in and do read_lock(&tasklist_lock).
*
* If we don't disable interrupts there is a nasty deadlock between
* detach_pid()->free_pid() and another cpu that does
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
* read_lock(&tasklist_lock);
*
* After we clean up the tasklist_lock and know there are no
* irq handlers that take it we can leave the interrupts enabled.
* For now it is easier to be safe than to prove it can't happen.
*/
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
static void free_pidmap(struct upid *upid)
{
int nr = upid->nr;
struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
int offset = nr & BITS_PER_PAGE_MASK;
clear_bit(offset, map->page);
atomic_inc(&map->nr_free);
}
/*
* If we started walking pids at 'base', is 'a' seen before 'b'?
*/
static int pid_before(int base, int a, int b)
{
/*
* This is the same as saying
*
* (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
* and that mapping orders 'a' and 'b' with respect to 'base'.
*/
return (unsigned)(a - base) < (unsigned)(b - base);
}
/*
* We might be racing with someone else trying to set pid_ns->last_pid
* at the pid allocation time (there's also a sysctl for this, but racing
* with this one is OK, see comment in kernel/pid_namespace.c about it).
* We want the winner to have the "later" value, because if the
* "earlier" value prevails, then a pid may get reused immediately.
*
* Since pids rollover, it is not sufficient to just pick the bigger
* value. We have to consider where we started counting from.
*
* 'base' is the value of pid_ns->last_pid that we observed when
* we started looking for a pid.
*
* 'pid' is the pid that we eventually found.
*/
static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
{
int prev;
int last_write = base;
do {
prev = last_write;
last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
} while ((prev != last_write) && (pid_before(base, last_write, pid)));
}
static int alloc_pidmap(struct pid_namespace *pid_ns)
{
int i, offset, max_scan, pid, last = pid_ns->last_pid;
struct pidmap *map;
pid = last + 1;
if (pid >= pid_max)
pid = RESERVED_PIDS;
offset = pid & BITS_PER_PAGE_MASK;
map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
/*
* If last_pid points into the middle of the map->page we
* want to scan this bitmap block twice, the second time
* we start with offset == 0 (or RESERVED_PIDS).
*/
max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
for (i = 0; i <= max_scan; ++i) {
if (unlikely(!map->page)) {
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
/*
* Free the page if someone raced with us
* installing it:
*/
spin_lock_irq(&pidmap_lock);
if (!map->page) {
map->page = page;
page = NULL;
}
spin_unlock_irq(&pidmap_lock);
kfree(page);
if (unlikely(!map->page))
break;
}
if (likely(atomic_read(&map->nr_free))) {
do {
if (!test_and_set_bit(offset, map->page)) {
atomic_dec(&map->nr_free);
set_last_pid(pid_ns, last, pid);
return pid;
}
offset = find_next_offset(map, offset);
pid = mk_pid(pid_ns, map, offset);
} while (offset < BITS_PER_PAGE && pid < pid_max);
}
if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
++map;
offset = 0;
} else {
map = &pid_ns->pidmap[0];
offset = RESERVED_PIDS;
if (unlikely(last == offset))
break;
}
pid = mk_pid(pid_ns, map, offset);
}
return -1;
}
int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
{
int offset;
struct pidmap *map, *end;
if (last >= PID_MAX_LIMIT)
return -1;
offset = (last + 1) & BITS_PER_PAGE_MASK;
map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
end = &pid_ns->pidmap[PIDMAP_ENTRIES];
for (; map < end; map++, offset = 0) {
if (unlikely(!map->page))
continue;
offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
if (offset < BITS_PER_PAGE)
return mk_pid(pid_ns, map, offset);
}
return -1;
}
void put_pid(struct pid *pid)
{
struct pid_namespace *ns;
if (!pid)
return;
ns = pid->numbers[pid->level].ns;
if ((atomic_read(&pid->count) == 1) ||
atomic_dec_and_test(&pid->count)) {
kmem_cache_free(ns->pid_cachep, pid);
put_pid_ns(ns);
}
}
EXPORT_SYMBOL_GPL(put_pid);
static void delayed_put_pid(struct rcu_head *rhp)
{
struct pid *pid = container_of(rhp, struct pid, rcu);
put_pid(pid);
}
void free_pid(struct pid *pid)
{
/* We can be called with write_lock_irq(&tasklist_lock) held */
int i;
unsigned long flags;
spin_lock_irqsave(&pidmap_lock, flags);
for (i = 0; i <= pid->level; i++) {
struct upid *upid = pid->numbers + i;
struct pid_namespace *ns = upid->ns;
hlist_del_rcu(&upid->pid_chain);
switch(--ns->nr_hashed) {
case 1:
/* When all that is left in the pid namespace
* is the reaper wake up the reaper. The reaper
* may be sleeping in zap_pid_ns_processes().
*/
wake_up_process(ns->child_reaper);
break;
case 0:
ns->nr_hashed = -1;
schedule_work(&ns->proc_work);
break;
}
}
spin_unlock_irqrestore(&pidmap_lock, flags);
for (i = 0; i <= pid->level; i++)
free_pidmap(pid->numbers + i);
call_rcu(&pid->rcu, delayed_put_pid);
}
struct pid *alloc_pid(struct pid_namespace *ns)
{
struct pid *pid;
enum pid_type type;
int i, nr;
struct pid_namespace *tmp;
struct upid *upid;
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
if (!pid)
goto out;
tmp = ns;
pid->level = ns->level;
for (i = ns->level; i >= 0; i--) {
nr = alloc_pidmap(tmp);
if (nr < 0)
goto out_free;
pid->numbers[i].nr = nr;
pid->numbers[i].ns = tmp;
tmp = tmp->parent;
}
if (unlikely(is_child_reaper(pid))) {
if (pid_ns_prepare_proc(ns))
goto out_free;
}
get_pid_ns(ns);
atomic_set(&pid->count, 1);
for (type = 0; type < PIDTYPE_MAX; ++type)
INIT_HLIST_HEAD(&pid->tasks[type]);
upid = pid->numbers + ns->level;
spin_lock_irq(&pidmap_lock);
if (ns->nr_hashed < 0)
goto out_unlock;
for ( ; upid >= pid->numbers; --upid) {
hlist_add_head_rcu(&upid->pid_chain,
&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
upid->ns->nr_hashed++;
}
spin_unlock_irq(&pidmap_lock);
out:
return pid;
out_unlock:
spin_unlock(&pidmap_lock);
out_free:
while (++i <= ns->level)
free_pidmap(pid->numbers + i);
kmem_cache_free(ns->pid_cachep, pid);
pid = NULL;
goto out;
}
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
{
struct hlist_node *elem;
struct upid *pnr;
hlist_for_each_entry_rcu(pnr, elem,
&pid_hash[pid_hashfn(nr, ns)], pid_chain)
if (pnr->nr == nr && pnr->ns == ns)
return container_of(pnr, struct pid,
numbers[ns->level]);
return NULL;
}
EXPORT_SYMBOL_GPL(find_pid_ns);
struct pid *find_vpid(int nr)
{
return find_pid_ns(nr, task_active_pid_ns(current));
}
EXPORT_SYMBOL_GPL(find_vpid);
/*
* attach_pid() must be called with the tasklist_lock write-held.
*/
void attach_pid(struct task_struct *task, enum pid_type type,
struct pid *pid)
{
struct pid_link *link;
link = &task->pids[type];
link->pid = pid;
hlist_add_head_rcu(&link->node, &pid->tasks[type]);
}
static void __change_pid(struct task_struct *task, enum pid_type type,
struct pid *new)
{
struct pid_link *link;
struct pid *pid;
int tmp;
link = &task->pids[type];
pid = link->pid;
hlist_del_rcu(&link->node);
link->pid = new;
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
if (!hlist_empty(&pid->tasks[tmp]))
return;
free_pid(pid);
}
void detach_pid(struct task_struct *task, enum pid_type type)
{
__change_pid(task, type, NULL);
}
void change_pid(struct task_struct *task, enum pid_type type,
struct pid *pid)
{
__change_pid(task, type, pid);
attach_pid(task, type, pid);
}
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
void transfer_pid(struct task_struct *old, struct task_struct *new,
enum pid_type type)
{
new->pids[type].pid = old->pids[type].pid;
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
}
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result = NULL;
if (pid) {
struct hlist_node *first;
first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
lockdep_tasklist_lock_is_held());
if (first)
result = hlist_entry(first, struct task_struct, pids[(type)].node);
}
return result;
}
EXPORT_SYMBOL(pid_task);
/*
* Must be called under rcu_read_lock().
*/
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
{
rcu_lockdep_assert(rcu_read_lock_held(),
"find_task_by_pid_ns() needs rcu_read_lock()"
" protection");
return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
}
struct task_struct *find_task_by_vpid(pid_t vnr)
{
return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
}
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
struct pid *pid;
rcu_read_lock();
if (type != PIDTYPE_PID)
task = task->group_leader;
pid = get_pid(task->pids[type].pid);
rcu_read_unlock();
return pid;
}
EXPORT_SYMBOL_GPL(get_task_pid);
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result;
rcu_read_lock();
result = pid_task(pid, type);
if (result)
get_task_struct(result);
rcu_read_unlock();
return result;
}
EXPORT_SYMBOL_GPL(get_pid_task);
struct pid *find_get_pid(pid_t nr)
{
struct pid *pid;
rcu_read_lock();
pid = get_pid(find_vpid(nr));
rcu_read_unlock();
return pid;
}
EXPORT_SYMBOL_GPL(find_get_pid);
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{
struct upid *upid;
pid_t nr = 0;
if (pid && ns->level <= pid->level) {
upid = &pid->numbers[ns->level];
if (upid->ns == ns)
nr = upid->nr;
}
return nr;
}
EXPORT_SYMBOL_GPL(pid_nr_ns);
pid_t pid_vnr(struct pid *pid)
{
return pid_nr_ns(pid, task_active_pid_ns(current));
}
EXPORT_SYMBOL_GPL(pid_vnr);
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
struct pid_namespace *ns)
{
pid_t nr = 0;
rcu_read_lock();
if (!ns)
ns = task_active_pid_ns(current);
if (likely(pid_alive(task))) {
if (type != PIDTYPE_PID)
task = task->group_leader;
nr = pid_nr_ns(task->pids[type].pid, ns);
}
rcu_read_unlock();
return nr;
}
EXPORT_SYMBOL(__task_pid_nr_ns);
pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return pid_nr_ns(task_tgid(tsk), ns);
}
EXPORT_SYMBOL(task_tgid_nr_ns);
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
{
return ns_of_pid(task_pid(tsk));
}
EXPORT_SYMBOL_GPL(task_active_pid_ns);
/*
* Used by proc to find the first pid that is greater than or equal to nr.
*
* If there is a pid at nr this function is exactly the same as find_pid_ns.
*/
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
{
struct pid *pid;
do {
pid = find_pid_ns(nr, ns);
if (pid)
break;
nr = next_pidmap(ns, nr);
} while (nr > 0);
return pid;
}
/*
* The pid hash table is scaled according to the amount of memory in the
* machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
* more.
*/
void __init pidhash_init(void)
{
unsigned int i, pidhash_size;
pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
HASH_EARLY | HASH_SMALL,
&pidhash_shift, NULL,
0, 4096);
pidhash_size = 1U << pidhash_shift;
for (i = 0; i < pidhash_size; i++)
INIT_HLIST_HEAD(&pid_hash[i]);
}
void __init pidmap_init(void)
{
/* bump default and minimum pid_max based on number of cpus */
pid_max = min(pid_max_max, max_t(int, pid_max,
PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
pid_max_min = max_t(int, pid_max_min,
PIDS_PER_CPU_MIN * num_possible_cpus());
pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
/* Reserve PID 0. We never call free_pidmap(0) */
set_bit(0, init_pid_ns.pidmap[0].page);
atomic_dec(&init_pid_ns.pidmap[0].nr_free);
init_pid_ns.nr_hashed = 1;
init_pid_ns.pid_cachep = KMEM_CACHE(pid,
SLAB_HWCACHE_ALIGN | SLAB_PANIC);
}