linux-next/drivers/net/arm/at91_ether.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1255 lines
37 KiB
C

/*
* Ethernet driver for the Atmel AT91RM9200 (Thunder)
*
* Copyright (C) 2003 SAN People (Pty) Ltd
*
* Based on an earlier Atmel EMAC macrocell driver by Atmel and Lineo Inc.
* Initial version by Rick Bronson 01/11/2003
*
* Intel LXT971A PHY support by Christopher Bahns & David Knickerbocker
* (Polaroid Corporation)
*
* Realtek RTL8201(B)L PHY support by Roman Avramenko <roman@imsystems.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/gfp.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mach-types.h>
#include <mach/at91rm9200_emac.h>
#include <mach/gpio.h>
#include <mach/board.h>
#include "at91_ether.h"
#define DRV_NAME "at91_ether"
#define DRV_VERSION "1.0"
#define LINK_POLL_INTERVAL (HZ)
/* ..................................................................... */
/*
* Read from a EMAC register.
*/
static inline unsigned long at91_emac_read(unsigned int reg)
{
void __iomem *emac_base = (void __iomem *)AT91_VA_BASE_EMAC;
return __raw_readl(emac_base + reg);
}
/*
* Write to a EMAC register.
*/
static inline void at91_emac_write(unsigned int reg, unsigned long value)
{
void __iomem *emac_base = (void __iomem *)AT91_VA_BASE_EMAC;
__raw_writel(value, emac_base + reg);
}
/* ........................... PHY INTERFACE ........................... */
/*
* Enable the MDIO bit in MAC control register
* When not called from an interrupt-handler, access to the PHY must be
* protected by a spinlock.
*/
static void enable_mdi(void)
{
unsigned long ctl;
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_MPE); /* enable management port */
}
/*
* Disable the MDIO bit in the MAC control register
*/
static void disable_mdi(void)
{
unsigned long ctl;
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl & ~AT91_EMAC_MPE); /* disable management port */
}
/*
* Wait until the PHY operation is complete.
*/
static inline void at91_phy_wait(void) {
unsigned long timeout = jiffies + 2;
while (!(at91_emac_read(AT91_EMAC_SR) & AT91_EMAC_SR_IDLE)) {
if (time_after(jiffies, timeout)) {
printk("at91_ether: MIO timeout\n");
break;
}
cpu_relax();
}
}
/*
* Write value to the a PHY register
* Note: MDI interface is assumed to already have been enabled.
*/
static void write_phy(unsigned char phy_addr, unsigned char address, unsigned int value)
{
at91_emac_write(AT91_EMAC_MAN, AT91_EMAC_MAN_802_3 | AT91_EMAC_RW_W
| ((phy_addr & 0x1f) << 23) | (address << 18) | (value & AT91_EMAC_DATA));
/* Wait until IDLE bit in Network Status register is cleared */
at91_phy_wait();
}
/*
* Read value stored in a PHY register.
* Note: MDI interface is assumed to already have been enabled.
*/
static void read_phy(unsigned char phy_addr, unsigned char address, unsigned int *value)
{
at91_emac_write(AT91_EMAC_MAN, AT91_EMAC_MAN_802_3 | AT91_EMAC_RW_R
| ((phy_addr & 0x1f) << 23) | (address << 18));
/* Wait until IDLE bit in Network Status register is cleared */
at91_phy_wait();
*value = at91_emac_read(AT91_EMAC_MAN) & AT91_EMAC_DATA;
}
/* ........................... PHY MANAGEMENT .......................... */
/*
* Access the PHY to determine the current link speed and mode, and update the
* MAC accordingly.
* If no link or auto-negotiation is busy, then no changes are made.
*/
static void update_linkspeed(struct net_device *dev, int silent)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int bmsr, bmcr, lpa, mac_cfg;
unsigned int speed, duplex;
if (!mii_link_ok(&lp->mii)) { /* no link */
netif_carrier_off(dev);
if (!silent)
printk(KERN_INFO "%s: Link down.\n", dev->name);
return;
}
/* Link up, or auto-negotiation still in progress */
read_phy(lp->phy_address, MII_BMSR, &bmsr);
read_phy(lp->phy_address, MII_BMCR, &bmcr);
if (bmcr & BMCR_ANENABLE) { /* AutoNegotiation is enabled */
if (!(bmsr & BMSR_ANEGCOMPLETE))
return; /* Do nothing - another interrupt generated when negotiation complete */
read_phy(lp->phy_address, MII_LPA, &lpa);
if ((lpa & LPA_100FULL) || (lpa & LPA_100HALF)) speed = SPEED_100;
else speed = SPEED_10;
if ((lpa & LPA_100FULL) || (lpa & LPA_10FULL)) duplex = DUPLEX_FULL;
else duplex = DUPLEX_HALF;
} else {
speed = (bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
duplex = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
}
/* Update the MAC */
mac_cfg = at91_emac_read(AT91_EMAC_CFG) & ~(AT91_EMAC_SPD | AT91_EMAC_FD);
if (speed == SPEED_100) {
if (duplex == DUPLEX_FULL) /* 100 Full Duplex */
mac_cfg |= AT91_EMAC_SPD | AT91_EMAC_FD;
else /* 100 Half Duplex */
mac_cfg |= AT91_EMAC_SPD;
} else {
if (duplex == DUPLEX_FULL) /* 10 Full Duplex */
mac_cfg |= AT91_EMAC_FD;
else {} /* 10 Half Duplex */
}
at91_emac_write(AT91_EMAC_CFG, mac_cfg);
if (!silent)
printk(KERN_INFO "%s: Link now %i-%s\n", dev->name, speed, (duplex == DUPLEX_FULL) ? "FullDuplex" : "HalfDuplex");
netif_carrier_on(dev);
}
/*
* Handle interrupts from the PHY
*/
static irqreturn_t at91ether_phy_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct at91_private *lp = netdev_priv(dev);
unsigned int phy;
/*
* This hander is triggered on both edges, but the PHY chips expect
* level-triggering. We therefore have to check if the PHY actually has
* an IRQ pending.
*/
enable_mdi();
if ((lp->phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) {
read_phy(lp->phy_address, MII_DSINTR_REG, &phy); /* ack interrupt in Davicom PHY */
if (!(phy & (1 << 0)))
goto done;
}
else if (lp->phy_type == MII_LXT971A_ID) {
read_phy(lp->phy_address, MII_ISINTS_REG, &phy); /* ack interrupt in Intel PHY */
if (!(phy & (1 << 2)))
goto done;
}
else if (lp->phy_type == MII_BCM5221_ID) {
read_phy(lp->phy_address, MII_BCMINTR_REG, &phy); /* ack interrupt in Broadcom PHY */
if (!(phy & (1 << 0)))
goto done;
}
else if (lp->phy_type == MII_KS8721_ID) {
read_phy(lp->phy_address, MII_TPISTATUS, &phy); /* ack interrupt in Micrel PHY */
if (!(phy & ((1 << 2) | 1)))
goto done;
}
else if (lp->phy_type == MII_T78Q21x3_ID) { /* ack interrupt in Teridian PHY */
read_phy(lp->phy_address, MII_T78Q21INT_REG, &phy);
if (!(phy & ((1 << 2) | 1)))
goto done;
}
else if (lp->phy_type == MII_DP83848_ID) {
read_phy(lp->phy_address, MII_DPPHYSTS_REG, &phy); /* ack interrupt in DP83848 PHY */
if (!(phy & (1 << 7)))
goto done;
}
update_linkspeed(dev, 0);
done:
disable_mdi();
return IRQ_HANDLED;
}
/*
* Initialize and enable the PHY interrupt for link-state changes
*/
static void enable_phyirq(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int dsintr, irq_number;
int status;
irq_number = lp->board_data.phy_irq_pin;
if (!irq_number) {
/*
* PHY doesn't have an IRQ pin (RTL8201, DP83847, AC101L),
* or board does not have it connected.
*/
mod_timer(&lp->check_timer, jiffies + LINK_POLL_INTERVAL);
return;
}
status = request_irq(irq_number, at91ether_phy_interrupt, 0, dev->name, dev);
if (status) {
printk(KERN_ERR "at91_ether: PHY IRQ %d request failed - status %d!\n", irq_number, status);
return;
}
spin_lock_irq(&lp->lock);
enable_mdi();
if ((lp->phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) { /* for Davicom PHY */
read_phy(lp->phy_address, MII_DSINTR_REG, &dsintr);
dsintr = dsintr & ~0xf00; /* clear bits 8..11 */
write_phy(lp->phy_address, MII_DSINTR_REG, dsintr);
}
else if (lp->phy_type == MII_LXT971A_ID) { /* for Intel PHY */
read_phy(lp->phy_address, MII_ISINTE_REG, &dsintr);
dsintr = dsintr | 0xf2; /* set bits 1, 4..7 */
write_phy(lp->phy_address, MII_ISINTE_REG, dsintr);
}
else if (lp->phy_type == MII_BCM5221_ID) { /* for Broadcom PHY */
dsintr = (1 << 15) | ( 1 << 14);
write_phy(lp->phy_address, MII_BCMINTR_REG, dsintr);
}
else if (lp->phy_type == MII_KS8721_ID) { /* for Micrel PHY */
dsintr = (1 << 10) | ( 1 << 8);
write_phy(lp->phy_address, MII_TPISTATUS, dsintr);
}
else if (lp->phy_type == MII_T78Q21x3_ID) { /* for Teridian PHY */
read_phy(lp->phy_address, MII_T78Q21INT_REG, &dsintr);
dsintr = dsintr | 0x500; /* set bits 8, 10 */
write_phy(lp->phy_address, MII_T78Q21INT_REG, dsintr);
}
else if (lp->phy_type == MII_DP83848_ID) { /* National Semiconductor DP83848 PHY */
read_phy(lp->phy_address, MII_DPMISR_REG, &dsintr);
dsintr = dsintr | 0x3c; /* set bits 2..5 */
write_phy(lp->phy_address, MII_DPMISR_REG, dsintr);
read_phy(lp->phy_address, MII_DPMICR_REG, &dsintr);
dsintr = dsintr | 0x3; /* set bits 0,1 */
write_phy(lp->phy_address, MII_DPMICR_REG, dsintr);
}
disable_mdi();
spin_unlock_irq(&lp->lock);
}
/*
* Disable the PHY interrupt
*/
static void disable_phyirq(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int dsintr;
unsigned int irq_number;
irq_number = lp->board_data.phy_irq_pin;
if (!irq_number) {
del_timer_sync(&lp->check_timer);
return;
}
spin_lock_irq(&lp->lock);
enable_mdi();
if ((lp->phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) { /* for Davicom PHY */
read_phy(lp->phy_address, MII_DSINTR_REG, &dsintr);
dsintr = dsintr | 0xf00; /* set bits 8..11 */
write_phy(lp->phy_address, MII_DSINTR_REG, dsintr);
}
else if (lp->phy_type == MII_LXT971A_ID) { /* for Intel PHY */
read_phy(lp->phy_address, MII_ISINTE_REG, &dsintr);
dsintr = dsintr & ~0xf2; /* clear bits 1, 4..7 */
write_phy(lp->phy_address, MII_ISINTE_REG, dsintr);
}
else if (lp->phy_type == MII_BCM5221_ID) { /* for Broadcom PHY */
read_phy(lp->phy_address, MII_BCMINTR_REG, &dsintr);
dsintr = ~(1 << 14);
write_phy(lp->phy_address, MII_BCMINTR_REG, dsintr);
}
else if (lp->phy_type == MII_KS8721_ID) { /* for Micrel PHY */
read_phy(lp->phy_address, MII_TPISTATUS, &dsintr);
dsintr = ~((1 << 10) | (1 << 8));
write_phy(lp->phy_address, MII_TPISTATUS, dsintr);
}
else if (lp->phy_type == MII_T78Q21x3_ID) { /* for Teridian PHY */
read_phy(lp->phy_address, MII_T78Q21INT_REG, &dsintr);
dsintr = dsintr & ~0x500; /* clear bits 8, 10 */
write_phy(lp->phy_address, MII_T78Q21INT_REG, dsintr);
}
else if (lp->phy_type == MII_DP83848_ID) { /* National Semiconductor DP83848 PHY */
read_phy(lp->phy_address, MII_DPMICR_REG, &dsintr);
dsintr = dsintr & ~0x3; /* clear bits 0, 1 */
write_phy(lp->phy_address, MII_DPMICR_REG, dsintr);
read_phy(lp->phy_address, MII_DPMISR_REG, &dsintr);
dsintr = dsintr & ~0x3c; /* clear bits 2..5 */
write_phy(lp->phy_address, MII_DPMISR_REG, dsintr);
}
disable_mdi();
spin_unlock_irq(&lp->lock);
free_irq(irq_number, dev); /* Free interrupt handler */
}
/*
* Perform a software reset of the PHY.
*/
#if 0
static void reset_phy(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned int bmcr;
spin_lock_irq(&lp->lock);
enable_mdi();
/* Perform PHY reset */
write_phy(lp->phy_address, MII_BMCR, BMCR_RESET);
/* Wait until PHY reset is complete */
do {
read_phy(lp->phy_address, MII_BMCR, &bmcr);
} while (!(bmcr & BMCR_RESET));
disable_mdi();
spin_unlock_irq(&lp->lock);
}
#endif
static void at91ether_check_link(unsigned long dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct at91_private *lp = netdev_priv(dev);
enable_mdi();
update_linkspeed(dev, 1);
disable_mdi();
mod_timer(&lp->check_timer, jiffies + LINK_POLL_INTERVAL);
}
/* ......................... ADDRESS MANAGEMENT ........................ */
/*
* NOTE: Your bootloader must always set the MAC address correctly before
* booting into Linux.
*
* - It must always set the MAC address after reset, even if it doesn't
* happen to access the Ethernet while it's booting. Some versions of
* U-Boot on the AT91RM9200-DK do not do this.
*
* - Likewise it must store the addresses in the correct byte order.
* MicroMonitor (uMon) on the CSB337 does this incorrectly (and
* continues to do so, for bug-compatibility).
*/
static short __init unpack_mac_address(struct net_device *dev, unsigned int hi, unsigned int lo)
{
char addr[6];
if (machine_is_csb337()) {
addr[5] = (lo & 0xff); /* The CSB337 bootloader stores the MAC the wrong-way around */
addr[4] = (lo & 0xff00) >> 8;
addr[3] = (lo & 0xff0000) >> 16;
addr[2] = (lo & 0xff000000) >> 24;
addr[1] = (hi & 0xff);
addr[0] = (hi & 0xff00) >> 8;
}
else {
addr[0] = (lo & 0xff);
addr[1] = (lo & 0xff00) >> 8;
addr[2] = (lo & 0xff0000) >> 16;
addr[3] = (lo & 0xff000000) >> 24;
addr[4] = (hi & 0xff);
addr[5] = (hi & 0xff00) >> 8;
}
if (is_valid_ether_addr(addr)) {
memcpy(dev->dev_addr, &addr, 6);
return 1;
}
return 0;
}
/*
* Set the ethernet MAC address in dev->dev_addr
*/
static void __init get_mac_address(struct net_device *dev)
{
/* Check Specific-Address 1 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA1H), at91_emac_read(AT91_EMAC_SA1L)))
return;
/* Check Specific-Address 2 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA2H), at91_emac_read(AT91_EMAC_SA2L)))
return;
/* Check Specific-Address 3 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA3H), at91_emac_read(AT91_EMAC_SA3L)))
return;
/* Check Specific-Address 4 */
if (unpack_mac_address(dev, at91_emac_read(AT91_EMAC_SA4H), at91_emac_read(AT91_EMAC_SA4L)))
return;
printk(KERN_ERR "at91_ether: Your bootloader did not configure a MAC address.\n");
}
/*
* Program the hardware MAC address from dev->dev_addr.
*/
static void update_mac_address(struct net_device *dev)
{
at91_emac_write(AT91_EMAC_SA1L, (dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) | (dev->dev_addr[1] << 8) | (dev->dev_addr[0]));
at91_emac_write(AT91_EMAC_SA1H, (dev->dev_addr[5] << 8) | (dev->dev_addr[4]));
at91_emac_write(AT91_EMAC_SA2L, 0);
at91_emac_write(AT91_EMAC_SA2H, 0);
}
/*
* Store the new hardware address in dev->dev_addr, and update the MAC.
*/
static int set_mac_address(struct net_device *dev, void* addr)
{
struct sockaddr *address = addr;
if (!is_valid_ether_addr(address->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
update_mac_address(dev);
printk("%s: Setting MAC address to %pM\n", dev->name,
dev->dev_addr);
return 0;
}
static int inline hash_bit_value(int bitnr, __u8 *addr)
{
if (addr[bitnr / 8] & (1 << (bitnr % 8)))
return 1;
return 0;
}
/*
* The hash address register is 64 bits long and takes up two locations in the memory map.
* The least significant bits are stored in EMAC_HSL and the most significant
* bits in EMAC_HSH.
*
* The unicast hash enable and the multicast hash enable bits in the network configuration
* register enable the reception of hash matched frames. The destination address is
* reduced to a 6 bit index into the 64 bit hash register using the following hash function.
* The hash function is an exclusive or of every sixth bit of the destination address.
* hash_index[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
* hash_index[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
* hash_index[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
* hash_index[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
* hash_index[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
* hash_index[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
* da[0] represents the least significant bit of the first byte received, that is, the multicast/
* unicast indicator, and da[47] represents the most significant bit of the last byte
* received.
* If the hash index points to a bit that is set in the hash register then the frame will be
* matched according to whether the frame is multicast or unicast.
* A multicast match will be signalled if the multicast hash enable bit is set, da[0] is 1 and
* the hash index points to a bit set in the hash register.
* A unicast match will be signalled if the unicast hash enable bit is set, da[0] is 0 and the
* hash index points to a bit set in the hash register.
* To receive all multicast frames, the hash register should be set with all ones and the
* multicast hash enable bit should be set in the network configuration register.
*/
/*
* Return the hash index value for the specified address.
*/
static int hash_get_index(__u8 *addr)
{
int i, j, bitval;
int hash_index = 0;
for (j = 0; j < 6; j++) {
for (i = 0, bitval = 0; i < 8; i++)
bitval ^= hash_bit_value(i*6 + j, addr);
hash_index |= (bitval << j);
}
return hash_index;
}
/*
* Add multicast addresses to the internal multicast-hash table.
*/
static void at91ether_sethashtable(struct net_device *dev)
{
struct dev_mc_list *curr;
unsigned long mc_filter[2];
unsigned int bitnr;
mc_filter[0] = mc_filter[1] = 0;
netdev_for_each_mc_addr(curr, dev) {
bitnr = hash_get_index(curr->dmi_addr);
mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
}
at91_emac_write(AT91_EMAC_HSL, mc_filter[0]);
at91_emac_write(AT91_EMAC_HSH, mc_filter[1]);
}
/*
* Enable/Disable promiscuous and multicast modes.
*/
static void at91ether_set_multicast_list(struct net_device *dev)
{
unsigned long cfg;
cfg = at91_emac_read(AT91_EMAC_CFG);
if (dev->flags & IFF_PROMISC) /* Enable promiscuous mode */
cfg |= AT91_EMAC_CAF;
else if (dev->flags & (~IFF_PROMISC)) /* Disable promiscuous mode */
cfg &= ~AT91_EMAC_CAF;
if (dev->flags & IFF_ALLMULTI) { /* Enable all multicast mode */
at91_emac_write(AT91_EMAC_HSH, -1);
at91_emac_write(AT91_EMAC_HSL, -1);
cfg |= AT91_EMAC_MTI;
} else if (!netdev_mc_empty(dev)) { /* Enable specific multicasts */
at91ether_sethashtable(dev);
cfg |= AT91_EMAC_MTI;
} else if (dev->flags & (~IFF_ALLMULTI)) { /* Disable all multicast mode */
at91_emac_write(AT91_EMAC_HSH, 0);
at91_emac_write(AT91_EMAC_HSL, 0);
cfg &= ~AT91_EMAC_MTI;
}
at91_emac_write(AT91_EMAC_CFG, cfg);
}
/* ......................... ETHTOOL SUPPORT ........................... */
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
unsigned int value;
read_phy(phy_id, location, &value);
return value;
}
static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
write_phy(phy_id, location, value);
}
static int at91ether_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct at91_private *lp = netdev_priv(dev);
int ret;
spin_lock_irq(&lp->lock);
enable_mdi();
ret = mii_ethtool_gset(&lp->mii, cmd);
disable_mdi();
spin_unlock_irq(&lp->lock);
if (lp->phy_media == PORT_FIBRE) { /* override media type since mii.c doesn't know */
cmd->supported = SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
}
return ret;
}
static int at91ether_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct at91_private *lp = netdev_priv(dev);
int ret;
spin_lock_irq(&lp->lock);
enable_mdi();
ret = mii_ethtool_sset(&lp->mii, cmd);
disable_mdi();
spin_unlock_irq(&lp->lock);
return ret;
}
static int at91ether_nwayreset(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
int ret;
spin_lock_irq(&lp->lock);
enable_mdi();
ret = mii_nway_restart(&lp->mii);
disable_mdi();
spin_unlock_irq(&lp->lock);
return ret;
}
static void at91ether_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
strlcpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
}
static const struct ethtool_ops at91ether_ethtool_ops = {
.get_settings = at91ether_get_settings,
.set_settings = at91ether_set_settings,
.get_drvinfo = at91ether_get_drvinfo,
.nway_reset = at91ether_nwayreset,
.get_link = ethtool_op_get_link,
};
static int at91ether_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct at91_private *lp = netdev_priv(dev);
int res;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
enable_mdi();
res = generic_mii_ioctl(&lp->mii, if_mii(rq), cmd, NULL);
disable_mdi();
spin_unlock_irq(&lp->lock);
return res;
}
/* ................................ MAC ................................ */
/*
* Initialize and start the Receiver and Transmit subsystems
*/
static void at91ether_start(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
struct recv_desc_bufs *dlist, *dlist_phys;
int i;
unsigned long ctl;
dlist = lp->dlist;
dlist_phys = lp->dlist_phys;
for (i = 0; i < MAX_RX_DESCR; i++) {
dlist->descriptors[i].addr = (unsigned int) &dlist_phys->recv_buf[i][0];
dlist->descriptors[i].size = 0;
}
/* Set the Wrap bit on the last descriptor */
dlist->descriptors[i-1].addr |= EMAC_DESC_WRAP;
/* Reset buffer index */
lp->rxBuffIndex = 0;
/* Program address of descriptor list in Rx Buffer Queue register */
at91_emac_write(AT91_EMAC_RBQP, (unsigned long) dlist_phys);
/* Enable Receive and Transmit */
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_RE | AT91_EMAC_TE);
}
/*
* Open the ethernet interface
*/
static int at91ether_open(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned long ctl;
if (!is_valid_ether_addr(dev->dev_addr))
return -EADDRNOTAVAIL;
clk_enable(lp->ether_clk); /* Re-enable Peripheral clock */
/* Clear internal statistics */
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_CSR);
/* Update the MAC address (incase user has changed it) */
update_mac_address(dev);
/* Enable PHY interrupt */
enable_phyirq(dev);
/* Enable MAC interrupts */
at91_emac_write(AT91_EMAC_IER, AT91_EMAC_RCOM | AT91_EMAC_RBNA
| AT91_EMAC_TUND | AT91_EMAC_RTRY | AT91_EMAC_TCOM
| AT91_EMAC_ROVR | AT91_EMAC_ABT);
/* Determine current link speed */
spin_lock_irq(&lp->lock);
enable_mdi();
update_linkspeed(dev, 0);
disable_mdi();
spin_unlock_irq(&lp->lock);
at91ether_start(dev);
netif_start_queue(dev);
return 0;
}
/*
* Close the interface
*/
static int at91ether_close(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
unsigned long ctl;
/* Disable Receiver and Transmitter */
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl & ~(AT91_EMAC_TE | AT91_EMAC_RE));
/* Disable PHY interrupt */
disable_phyirq(dev);
/* Disable MAC interrupts */
at91_emac_write(AT91_EMAC_IDR, AT91_EMAC_RCOM | AT91_EMAC_RBNA
| AT91_EMAC_TUND | AT91_EMAC_RTRY | AT91_EMAC_TCOM
| AT91_EMAC_ROVR | AT91_EMAC_ABT);
netif_stop_queue(dev);
clk_disable(lp->ether_clk); /* Disable Peripheral clock */
return 0;
}
/*
* Transmit packet.
*/
static int at91ether_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
if (at91_emac_read(AT91_EMAC_TSR) & AT91_EMAC_TSR_BNQ) {
netif_stop_queue(dev);
/* Store packet information (to free when Tx completed) */
lp->skb = skb;
lp->skb_length = skb->len;
lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
dev->stats.tx_bytes += skb->len;
/* Set address of the data in the Transmit Address register */
at91_emac_write(AT91_EMAC_TAR, lp->skb_physaddr);
/* Set length of the packet in the Transmit Control register */
at91_emac_write(AT91_EMAC_TCR, skb->len);
dev->trans_start = jiffies;
} else {
printk(KERN_ERR "at91_ether.c: at91ether_start_xmit() called, but device is busy!\n");
return NETDEV_TX_BUSY; /* if we return anything but zero, dev.c:1055 calls kfree_skb(skb)
on this skb, he also reports -ENETDOWN and printk's, so either
we free and return(0) or don't free and return 1 */
}
return NETDEV_TX_OK;
}
/*
* Update the current statistics from the internal statistics registers.
*/
static struct net_device_stats *at91ether_stats(struct net_device *dev)
{
int ale, lenerr, seqe, lcol, ecol;
if (netif_running(dev)) {
dev->stats.rx_packets += at91_emac_read(AT91_EMAC_OK); /* Good frames received */
ale = at91_emac_read(AT91_EMAC_ALE);
dev->stats.rx_frame_errors += ale; /* Alignment errors */
lenerr = at91_emac_read(AT91_EMAC_ELR) + at91_emac_read(AT91_EMAC_USF);
dev->stats.rx_length_errors += lenerr; /* Excessive Length or Undersize Frame error */
seqe = at91_emac_read(AT91_EMAC_SEQE);
dev->stats.rx_crc_errors += seqe; /* CRC error */
dev->stats.rx_fifo_errors += at91_emac_read(AT91_EMAC_DRFC); /* Receive buffer not available */
dev->stats.rx_errors += (ale + lenerr + seqe
+ at91_emac_read(AT91_EMAC_CDE) + at91_emac_read(AT91_EMAC_RJB));
dev->stats.tx_packets += at91_emac_read(AT91_EMAC_FRA); /* Frames successfully transmitted */
dev->stats.tx_fifo_errors += at91_emac_read(AT91_EMAC_TUE); /* Transmit FIFO underruns */
dev->stats.tx_carrier_errors += at91_emac_read(AT91_EMAC_CSE); /* Carrier Sense errors */
dev->stats.tx_heartbeat_errors += at91_emac_read(AT91_EMAC_SQEE);/* Heartbeat error */
lcol = at91_emac_read(AT91_EMAC_LCOL);
ecol = at91_emac_read(AT91_EMAC_ECOL);
dev->stats.tx_window_errors += lcol; /* Late collisions */
dev->stats.tx_aborted_errors += ecol; /* 16 collisions */
dev->stats.collisions += (at91_emac_read(AT91_EMAC_SCOL) + at91_emac_read(AT91_EMAC_MCOL) + lcol + ecol);
}
return &dev->stats;
}
/*
* Extract received frame from buffer descriptors and sent to upper layers.
* (Called from interrupt context)
*/
static void at91ether_rx(struct net_device *dev)
{
struct at91_private *lp = netdev_priv(dev);
struct recv_desc_bufs *dlist;
unsigned char *p_recv;
struct sk_buff *skb;
unsigned int pktlen;
dlist = lp->dlist;
while (dlist->descriptors[lp->rxBuffIndex].addr & EMAC_DESC_DONE) {
p_recv = dlist->recv_buf[lp->rxBuffIndex];
pktlen = dlist->descriptors[lp->rxBuffIndex].size & 0x7ff; /* Length of frame including FCS */
skb = dev_alloc_skb(pktlen + 2);
if (skb != NULL) {
skb_reserve(skb, 2);
memcpy(skb_put(skb, pktlen), p_recv, pktlen);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_bytes += pktlen;
netif_rx(skb);
}
else {
dev->stats.rx_dropped += 1;
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
}
if (dlist->descriptors[lp->rxBuffIndex].size & EMAC_MULTICAST)
dev->stats.multicast++;
dlist->descriptors[lp->rxBuffIndex].addr &= ~EMAC_DESC_DONE; /* reset ownership bit */
if (lp->rxBuffIndex == MAX_RX_DESCR-1) /* wrap after last buffer */
lp->rxBuffIndex = 0;
else
lp->rxBuffIndex++;
}
}
/*
* MAC interrupt handler
*/
static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct at91_private *lp = netdev_priv(dev);
unsigned long intstatus, ctl;
/* MAC Interrupt Status register indicates what interrupts are pending.
It is automatically cleared once read. */
intstatus = at91_emac_read(AT91_EMAC_ISR);
if (intstatus & AT91_EMAC_RCOM) /* Receive complete */
at91ether_rx(dev);
if (intstatus & AT91_EMAC_TCOM) { /* Transmit complete */
/* The TCOM bit is set even if the transmission failed. */
if (intstatus & (AT91_EMAC_TUND | AT91_EMAC_RTRY))
dev->stats.tx_errors += 1;
if (lp->skb) {
dev_kfree_skb_irq(lp->skb);
lp->skb = NULL;
dma_unmap_single(NULL, lp->skb_physaddr, lp->skb_length, DMA_TO_DEVICE);
}
netif_wake_queue(dev);
}
/* Work-around for Errata #11 */
if (intstatus & AT91_EMAC_RBNA) {
ctl = at91_emac_read(AT91_EMAC_CTL);
at91_emac_write(AT91_EMAC_CTL, ctl & ~AT91_EMAC_RE);
at91_emac_write(AT91_EMAC_CTL, ctl | AT91_EMAC_RE);
}
if (intstatus & AT91_EMAC_ROVR)
printk("%s: ROVR error\n", dev->name);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void at91ether_poll_controller(struct net_device *dev)
{
unsigned long flags;
local_irq_save(flags);
at91ether_interrupt(dev->irq, dev);
local_irq_restore(flags);
}
#endif
static const struct net_device_ops at91ether_netdev_ops = {
.ndo_open = at91ether_open,
.ndo_stop = at91ether_close,
.ndo_start_xmit = at91ether_start_xmit,
.ndo_get_stats = at91ether_stats,
.ndo_set_multicast_list = at91ether_set_multicast_list,
.ndo_set_mac_address = set_mac_address,
.ndo_do_ioctl = at91ether_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = at91ether_poll_controller,
#endif
};
/*
* Initialize the ethernet interface
*/
static int __init at91ether_setup(unsigned long phy_type, unsigned short phy_address,
struct platform_device *pdev, struct clk *ether_clk)
{
struct at91_eth_data *board_data = pdev->dev.platform_data;
struct net_device *dev;
struct at91_private *lp;
unsigned int val;
int res;
dev = alloc_etherdev(sizeof(struct at91_private));
if (!dev)
return -ENOMEM;
dev->base_addr = AT91_VA_BASE_EMAC;
dev->irq = AT91RM9200_ID_EMAC;
/* Install the interrupt handler */
if (request_irq(dev->irq, at91ether_interrupt, 0, dev->name, dev)) {
free_netdev(dev);
return -EBUSY;
}
/* Allocate memory for DMA Receive descriptors */
lp = netdev_priv(dev);
lp->dlist = (struct recv_desc_bufs *) dma_alloc_coherent(NULL, sizeof(struct recv_desc_bufs), (dma_addr_t *) &lp->dlist_phys, GFP_KERNEL);
if (lp->dlist == NULL) {
free_irq(dev->irq, dev);
free_netdev(dev);
return -ENOMEM;
}
lp->board_data = *board_data;
lp->ether_clk = ether_clk;
platform_set_drvdata(pdev, dev);
spin_lock_init(&lp->lock);
ether_setup(dev);
dev->netdev_ops = &at91ether_netdev_ops;
dev->ethtool_ops = &at91ether_ethtool_ops;
SET_NETDEV_DEV(dev, &pdev->dev);
get_mac_address(dev); /* Get ethernet address and store it in dev->dev_addr */
update_mac_address(dev); /* Program ethernet address into MAC */
at91_emac_write(AT91_EMAC_CTL, 0);
if (lp->board_data.is_rmii)
at91_emac_write(AT91_EMAC_CFG, AT91_EMAC_CLK_DIV32 | AT91_EMAC_BIG | AT91_EMAC_RMII);
else
at91_emac_write(AT91_EMAC_CFG, AT91_EMAC_CLK_DIV32 | AT91_EMAC_BIG);
/* Perform PHY-specific initialization */
spin_lock_irq(&lp->lock);
enable_mdi();
if ((phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID)) {
read_phy(phy_address, MII_DSCR_REG, &val);
if ((val & (1 << 10)) == 0) /* DSCR bit 10 is 0 -- fiber mode */
lp->phy_media = PORT_FIBRE;
} else if (machine_is_csb337()) {
/* mix link activity status into LED2 link state */
write_phy(phy_address, MII_LEDCTRL_REG, 0x0d22);
} else if (machine_is_ecbat91())
write_phy(phy_address, MII_LEDCTRL_REG, 0x156A);
disable_mdi();
spin_unlock_irq(&lp->lock);
lp->mii.dev = dev; /* Support for ethtool */
lp->mii.mdio_read = mdio_read;
lp->mii.mdio_write = mdio_write;
lp->mii.phy_id = phy_address;
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
lp->phy_type = phy_type; /* Type of PHY connected */
lp->phy_address = phy_address; /* MDI address of PHY */
/* Register the network interface */
res = register_netdev(dev);
if (res) {
free_irq(dev->irq, dev);
free_netdev(dev);
dma_free_coherent(NULL, sizeof(struct recv_desc_bufs), lp->dlist, (dma_addr_t)lp->dlist_phys);
return res;
}
/* Determine current link speed */
spin_lock_irq(&lp->lock);
enable_mdi();
update_linkspeed(dev, 0);
disable_mdi();
spin_unlock_irq(&lp->lock);
netif_carrier_off(dev); /* will be enabled in open() */
/* If board has no PHY IRQ, use a timer to poll the PHY */
if (!lp->board_data.phy_irq_pin) {
init_timer(&lp->check_timer);
lp->check_timer.data = (unsigned long)dev;
lp->check_timer.function = at91ether_check_link;
} else if (lp->board_data.phy_irq_pin >= 32)
gpio_request(lp->board_data.phy_irq_pin, "ethernet_phy");
/* Display ethernet banner */
printk(KERN_INFO "%s: AT91 ethernet at 0x%08x int=%d %s%s (%pM)\n",
dev->name, (uint) dev->base_addr, dev->irq,
at91_emac_read(AT91_EMAC_CFG) & AT91_EMAC_SPD ? "100-" : "10-",
at91_emac_read(AT91_EMAC_CFG) & AT91_EMAC_FD ? "FullDuplex" : "HalfDuplex",
dev->dev_addr);
if ((phy_type == MII_DM9161_ID) || (lp->phy_type == MII_DM9161A_ID))
printk(KERN_INFO "%s: Davicom 9161 PHY %s\n", dev->name, (lp->phy_media == PORT_FIBRE) ? "(Fiber)" : "(Copper)");
else if (phy_type == MII_LXT971A_ID)
printk(KERN_INFO "%s: Intel LXT971A PHY\n", dev->name);
else if (phy_type == MII_RTL8201_ID)
printk(KERN_INFO "%s: Realtek RTL8201(B)L PHY\n", dev->name);
else if (phy_type == MII_BCM5221_ID)
printk(KERN_INFO "%s: Broadcom BCM5221 PHY\n", dev->name);
else if (phy_type == MII_DP83847_ID)
printk(KERN_INFO "%s: National Semiconductor DP83847 PHY\n", dev->name);
else if (phy_type == MII_DP83848_ID)
printk(KERN_INFO "%s: National Semiconductor DP83848 PHY\n", dev->name);
else if (phy_type == MII_AC101L_ID)
printk(KERN_INFO "%s: Altima AC101L PHY\n", dev->name);
else if (phy_type == MII_KS8721_ID)
printk(KERN_INFO "%s: Micrel KS8721 PHY\n", dev->name);
else if (phy_type == MII_T78Q21x3_ID)
printk(KERN_INFO "%s: Teridian 78Q21x3 PHY\n", dev->name);
else if (phy_type == MII_LAN83C185_ID)
printk(KERN_INFO "%s: SMSC LAN83C185 PHY\n", dev->name);
return 0;
}
/*
* Detect MAC and PHY and perform initialization
*/
static int __init at91ether_probe(struct platform_device *pdev)
{
unsigned int phyid1, phyid2;
int detected = -1;
unsigned long phy_id;
unsigned short phy_address = 0;
struct clk *ether_clk;
ether_clk = clk_get(&pdev->dev, "ether_clk");
if (IS_ERR(ether_clk)) {
printk(KERN_ERR "at91_ether: no clock defined\n");
return -ENODEV;
}
clk_enable(ether_clk); /* Enable Peripheral clock */
while ((detected != 0) && (phy_address < 32)) {
/* Read the PHY ID registers */
enable_mdi();
read_phy(phy_address, MII_PHYSID1, &phyid1);
read_phy(phy_address, MII_PHYSID2, &phyid2);
disable_mdi();
phy_id = (phyid1 << 16) | (phyid2 & 0xfff0);
switch (phy_id) {
case MII_DM9161_ID: /* Davicom 9161: PHY_ID1 = 0x181, PHY_ID2 = B881 */
case MII_DM9161A_ID: /* Davicom 9161A: PHY_ID1 = 0x181, PHY_ID2 = B8A0 */
case MII_LXT971A_ID: /* Intel LXT971A: PHY_ID1 = 0x13, PHY_ID2 = 78E0 */
case MII_RTL8201_ID: /* Realtek RTL8201: PHY_ID1 = 0, PHY_ID2 = 0x8201 */
case MII_BCM5221_ID: /* Broadcom BCM5221: PHY_ID1 = 0x40, PHY_ID2 = 0x61e0 */
case MII_DP83847_ID: /* National Semiconductor DP83847: */
case MII_DP83848_ID: /* National Semiconductor DP83848: */
case MII_AC101L_ID: /* Altima AC101L: PHY_ID1 = 0x22, PHY_ID2 = 0x5520 */
case MII_KS8721_ID: /* Micrel KS8721: PHY_ID1 = 0x22, PHY_ID2 = 0x1610 */
case MII_T78Q21x3_ID: /* Teridian 78Q21x3: PHY_ID1 = 0x0E, PHY_ID2 = 7237 */
case MII_LAN83C185_ID: /* SMSC LAN83C185: PHY_ID1 = 0x0007, PHY_ID2 = 0xC0A1 */
detected = at91ether_setup(phy_id, phy_address, pdev, ether_clk);
break;
}
phy_address++;
}
clk_disable(ether_clk); /* Disable Peripheral clock */
return detected;
}
static int __devexit at91ether_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct at91_private *lp = netdev_priv(dev);
if (lp->board_data.phy_irq_pin >= 32)
gpio_free(lp->board_data.phy_irq_pin);
unregister_netdev(dev);
free_irq(dev->irq, dev);
dma_free_coherent(NULL, sizeof(struct recv_desc_bufs), lp->dlist, (dma_addr_t)lp->dlist_phys);
clk_put(lp->ether_clk);
platform_set_drvdata(pdev, NULL);
free_netdev(dev);
return 0;
}
#ifdef CONFIG_PM
static int at91ether_suspend(struct platform_device *pdev, pm_message_t mesg)
{
struct net_device *net_dev = platform_get_drvdata(pdev);
struct at91_private *lp = netdev_priv(net_dev);
int phy_irq = lp->board_data.phy_irq_pin;
if (netif_running(net_dev)) {
if (phy_irq)
disable_irq(phy_irq);
netif_stop_queue(net_dev);
netif_device_detach(net_dev);
clk_disable(lp->ether_clk);
}
return 0;
}
static int at91ether_resume(struct platform_device *pdev)
{
struct net_device *net_dev = platform_get_drvdata(pdev);
struct at91_private *lp = netdev_priv(net_dev);
int phy_irq = lp->board_data.phy_irq_pin;
if (netif_running(net_dev)) {
clk_enable(lp->ether_clk);
netif_device_attach(net_dev);
netif_start_queue(net_dev);
if (phy_irq)
enable_irq(phy_irq);
}
return 0;
}
#else
#define at91ether_suspend NULL
#define at91ether_resume NULL
#endif
static struct platform_driver at91ether_driver = {
.remove = __devexit_p(at91ether_remove),
.suspend = at91ether_suspend,
.resume = at91ether_resume,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init at91ether_init(void)
{
return platform_driver_probe(&at91ether_driver, at91ether_probe);
}
static void __exit at91ether_exit(void)
{
platform_driver_unregister(&at91ether_driver);
}
module_init(at91ether_init)
module_exit(at91ether_exit)
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("AT91RM9200 EMAC Ethernet driver");
MODULE_AUTHOR("Andrew Victor");
MODULE_ALIAS("platform:" DRV_NAME);