Aaron Komisar dc0c18ed22 mac80211: fix scan when operating on DFS channels in ETSI domains
In non-ETSI regulatory domains scan is blocked when operating channel
is a DFS channel. For ETSI, however, once DFS channel is marked as
available after the CAC, this channel will remain available (for some
time) even after leaving this channel.

Therefore a scan can be done without any impact on the availability
of the DFS channel as no new CAC is required after the scan.

Enable scan in mac80211 in these cases.

Signed-off-by: Aaron Komisar <aaron.komisar@tandemg.com>
Link: https://lore.kernel.org/r/1570024728-17284-1-git-send-email-aaron.komisar@tandemg.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2019-10-07 22:10:50 +02:00

4031 lines
103 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2017 Intel Deutschland GmbH
* Copyright (C) 2018 - 2019 Intel Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: Wireless regulatory infrastructure
*
* The usual implementation is for a driver to read a device EEPROM to
* determine which regulatory domain it should be operating under, then
* looking up the allowable channels in a driver-local table and finally
* registering those channels in the wiphy structure.
*
* Another set of compliance enforcement is for drivers to use their
* own compliance limits which can be stored on the EEPROM. The host
* driver or firmware may ensure these are used.
*
* In addition to all this we provide an extra layer of regulatory
* conformance. For drivers which do not have any regulatory
* information CRDA provides the complete regulatory solution.
* For others it provides a community effort on further restrictions
* to enhance compliance.
*
* Note: When number of rules --> infinity we will not be able to
* index on alpha2 any more, instead we'll probably have to
* rely on some SHA1 checksum of the regdomain for example.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <linux/verification.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <net/cfg80211.h>
#include "core.h"
#include "reg.h"
#include "rdev-ops.h"
#include "nl80211.h"
/*
* Grace period we give before making sure all current interfaces reside on
* channels allowed by the current regulatory domain.
*/
#define REG_ENFORCE_GRACE_MS 60000
/**
* enum reg_request_treatment - regulatory request treatment
*
* @REG_REQ_OK: continue processing the regulatory request
* @REG_REQ_IGNORE: ignore the regulatory request
* @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
* be intersected with the current one.
* @REG_REQ_ALREADY_SET: the regulatory request will not change the current
* regulatory settings, and no further processing is required.
*/
enum reg_request_treatment {
REG_REQ_OK,
REG_REQ_IGNORE,
REG_REQ_INTERSECT,
REG_REQ_ALREADY_SET,
};
static struct regulatory_request core_request_world = {
.initiator = NL80211_REGDOM_SET_BY_CORE,
.alpha2[0] = '0',
.alpha2[1] = '0',
.intersect = false,
.processed = true,
.country_ie_env = ENVIRON_ANY,
};
/*
* Receipt of information from last regulatory request,
* protected by RTNL (and can be accessed with RCU protection)
*/
static struct regulatory_request __rcu *last_request =
(void __force __rcu *)&core_request_world;
/* To trigger userspace events and load firmware */
static struct platform_device *reg_pdev;
/*
* Central wireless core regulatory domains, we only need two,
* the current one and a world regulatory domain in case we have no
* information to give us an alpha2.
* (protected by RTNL, can be read under RCU)
*/
const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
/*
* Number of devices that registered to the core
* that support cellular base station regulatory hints
* (protected by RTNL)
*/
static int reg_num_devs_support_basehint;
/*
* State variable indicating if the platform on which the devices
* are attached is operating in an indoor environment. The state variable
* is relevant for all registered devices.
*/
static bool reg_is_indoor;
static spinlock_t reg_indoor_lock;
/* Used to track the userspace process controlling the indoor setting */
static u32 reg_is_indoor_portid;
static void restore_regulatory_settings(bool reset_user, bool cached);
static void print_regdomain(const struct ieee80211_regdomain *rd);
static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
{
return rcu_dereference_rtnl(cfg80211_regdomain);
}
const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
{
return rcu_dereference_rtnl(wiphy->regd);
}
static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_UNSET:
return "unset";
case NL80211_DFS_FCC:
return "FCC";
case NL80211_DFS_ETSI:
return "ETSI";
case NL80211_DFS_JP:
return "JP";
}
return "Unknown";
}
enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
{
const struct ieee80211_regdomain *regd = NULL;
const struct ieee80211_regdomain *wiphy_regd = NULL;
regd = get_cfg80211_regdom();
if (!wiphy)
goto out;
wiphy_regd = get_wiphy_regdom(wiphy);
if (!wiphy_regd)
goto out;
if (wiphy_regd->dfs_region == regd->dfs_region)
goto out;
pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
dev_name(&wiphy->dev),
reg_dfs_region_str(wiphy_regd->dfs_region),
reg_dfs_region_str(regd->dfs_region));
out:
return regd->dfs_region;
}
static void rcu_free_regdom(const struct ieee80211_regdomain *r)
{
if (!r)
return;
kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
}
static struct regulatory_request *get_last_request(void)
{
return rcu_dereference_rtnl(last_request);
}
/* Used to queue up regulatory hints */
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;
/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);
struct reg_beacon {
struct list_head list;
struct ieee80211_channel chan;
};
static void reg_check_chans_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
.n_reg_rules = 8,
.alpha2 = "00",
.reg_rules = {
/* IEEE 802.11b/g, channels 1..11 */
REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
/* IEEE 802.11b/g, channels 12..13. */
REG_RULE(2467-10, 2472+10, 20, 6, 20,
NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
/* IEEE 802.11 channel 14 - Only JP enables
* this and for 802.11b only */
REG_RULE(2484-10, 2484+10, 20, 6, 20,
NL80211_RRF_NO_IR |
NL80211_RRF_NO_OFDM),
/* IEEE 802.11a, channel 36..48 */
REG_RULE(5180-10, 5240+10, 80, 6, 20,
NL80211_RRF_NO_IR |
NL80211_RRF_AUTO_BW),
/* IEEE 802.11a, channel 52..64 - DFS required */
REG_RULE(5260-10, 5320+10, 80, 6, 20,
NL80211_RRF_NO_IR |
NL80211_RRF_AUTO_BW |
NL80211_RRF_DFS),
/* IEEE 802.11a, channel 100..144 - DFS required */
REG_RULE(5500-10, 5720+10, 160, 6, 20,
NL80211_RRF_NO_IR |
NL80211_RRF_DFS),
/* IEEE 802.11a, channel 149..165 */
REG_RULE(5745-10, 5825+10, 80, 6, 20,
NL80211_RRF_NO_IR),
/* IEEE 802.11ad (60GHz), channels 1..3 */
REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
}
};
/* protected by RTNL */
static const struct ieee80211_regdomain *cfg80211_world_regdom =
&world_regdom;
static char *ieee80211_regdom = "00";
static char user_alpha2[2];
static const struct ieee80211_regdomain *cfg80211_user_regdom;
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
static void reg_free_request(struct regulatory_request *request)
{
if (request == &core_request_world)
return;
if (request != get_last_request())
kfree(request);
}
static void reg_free_last_request(void)
{
struct regulatory_request *lr = get_last_request();
if (lr != &core_request_world && lr)
kfree_rcu(lr, rcu_head);
}
static void reg_update_last_request(struct regulatory_request *request)
{
struct regulatory_request *lr;
lr = get_last_request();
if (lr == request)
return;
reg_free_last_request();
rcu_assign_pointer(last_request, request);
}
static void reset_regdomains(bool full_reset,
const struct ieee80211_regdomain *new_regdom)
{
const struct ieee80211_regdomain *r;
ASSERT_RTNL();
r = get_cfg80211_regdom();
/* avoid freeing static information or freeing something twice */
if (r == cfg80211_world_regdom)
r = NULL;
if (cfg80211_world_regdom == &world_regdom)
cfg80211_world_regdom = NULL;
if (r == &world_regdom)
r = NULL;
rcu_free_regdom(r);
rcu_free_regdom(cfg80211_world_regdom);
cfg80211_world_regdom = &world_regdom;
rcu_assign_pointer(cfg80211_regdomain, new_regdom);
if (!full_reset)
return;
reg_update_last_request(&core_request_world);
}
/*
* Dynamic world regulatory domain requested by the wireless
* core upon initialization
*/
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
{
struct regulatory_request *lr;
lr = get_last_request();
WARN_ON(!lr);
reset_regdomains(false, rd);
cfg80211_world_regdom = rd;
}
bool is_world_regdom(const char *alpha2)
{
if (!alpha2)
return false;
return alpha2[0] == '0' && alpha2[1] == '0';
}
static bool is_alpha2_set(const char *alpha2)
{
if (!alpha2)
return false;
return alpha2[0] && alpha2[1];
}
static bool is_unknown_alpha2(const char *alpha2)
{
if (!alpha2)
return false;
/*
* Special case where regulatory domain was built by driver
* but a specific alpha2 cannot be determined
*/
return alpha2[0] == '9' && alpha2[1] == '9';
}
static bool is_intersected_alpha2(const char *alpha2)
{
if (!alpha2)
return false;
/*
* Special case where regulatory domain is the
* result of an intersection between two regulatory domain
* structures
*/
return alpha2[0] == '9' && alpha2[1] == '8';
}
static bool is_an_alpha2(const char *alpha2)
{
if (!alpha2)
return false;
return isalpha(alpha2[0]) && isalpha(alpha2[1]);
}
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
{
if (!alpha2_x || !alpha2_y)
return false;
return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
}
static bool regdom_changes(const char *alpha2)
{
const struct ieee80211_regdomain *r = get_cfg80211_regdom();
if (!r)
return true;
return !alpha2_equal(r->alpha2, alpha2);
}
/*
* The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
* you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
* has ever been issued.
*/
static bool is_user_regdom_saved(void)
{
if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
return false;
/* This would indicate a mistake on the design */
if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
"Unexpected user alpha2: %c%c\n",
user_alpha2[0], user_alpha2[1]))
return false;
return true;
}
static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain *src_regd)
{
struct ieee80211_regdomain *regd;
unsigned int i;
regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
GFP_KERNEL);
if (!regd)
return ERR_PTR(-ENOMEM);
memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
for (i = 0; i < src_regd->n_reg_rules; i++)
memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
sizeof(struct ieee80211_reg_rule));
return regd;
}
static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
{
ASSERT_RTNL();
if (!IS_ERR(cfg80211_user_regdom))
kfree(cfg80211_user_regdom);
cfg80211_user_regdom = reg_copy_regd(rd);
}
struct reg_regdb_apply_request {
struct list_head list;
const struct ieee80211_regdomain *regdom;
};
static LIST_HEAD(reg_regdb_apply_list);
static DEFINE_MUTEX(reg_regdb_apply_mutex);
static void reg_regdb_apply(struct work_struct *work)
{
struct reg_regdb_apply_request *request;
rtnl_lock();
mutex_lock(&reg_regdb_apply_mutex);
while (!list_empty(&reg_regdb_apply_list)) {
request = list_first_entry(&reg_regdb_apply_list,
struct reg_regdb_apply_request,
list);
list_del(&request->list);
set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
kfree(request);
}
mutex_unlock(&reg_regdb_apply_mutex);
rtnl_unlock();
}
static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
{
struct reg_regdb_apply_request *request;
request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
if (!request) {
kfree(regdom);
return -ENOMEM;
}
request->regdom = regdom;
mutex_lock(&reg_regdb_apply_mutex);
list_add_tail(&request->list, &reg_regdb_apply_list);
mutex_unlock(&reg_regdb_apply_mutex);
schedule_work(&reg_regdb_work);
return 0;
}
#ifdef CONFIG_CFG80211_CRDA_SUPPORT
/* Max number of consecutive attempts to communicate with CRDA */
#define REG_MAX_CRDA_TIMEOUTS 10
static u32 reg_crda_timeouts;
static void crda_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
static void crda_timeout_work(struct work_struct *work)
{
pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
rtnl_lock();
reg_crda_timeouts++;
restore_regulatory_settings(true, false);
rtnl_unlock();
}
static void cancel_crda_timeout(void)
{
cancel_delayed_work(&crda_timeout);
}
static void cancel_crda_timeout_sync(void)
{
cancel_delayed_work_sync(&crda_timeout);
}
static void reset_crda_timeouts(void)
{
reg_crda_timeouts = 0;
}
/*
* This lets us keep regulatory code which is updated on a regulatory
* basis in userspace.
*/
static int call_crda(const char *alpha2)
{
char country[12];
char *env[] = { country, NULL };
int ret;
snprintf(country, sizeof(country), "COUNTRY=%c%c",
alpha2[0], alpha2[1]);
if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
return -EINVAL;
}
if (!is_world_regdom((char *) alpha2))
pr_debug("Calling CRDA for country: %c%c\n",
alpha2[0], alpha2[1]);
else
pr_debug("Calling CRDA to update world regulatory domain\n");
ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
if (ret)
return ret;
queue_delayed_work(system_power_efficient_wq,
&crda_timeout, msecs_to_jiffies(3142));
return 0;
}
#else
static inline void cancel_crda_timeout(void) {}
static inline void cancel_crda_timeout_sync(void) {}
static inline void reset_crda_timeouts(void) {}
static inline int call_crda(const char *alpha2)
{
return -ENODATA;
}
#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
/* code to directly load a firmware database through request_firmware */
static const struct fwdb_header *regdb;
struct fwdb_country {
u8 alpha2[2];
__be16 coll_ptr;
/* this struct cannot be extended */
} __packed __aligned(4);
struct fwdb_collection {
u8 len;
u8 n_rules;
u8 dfs_region;
/* no optional data yet */
/* aligned to 2, then followed by __be16 array of rule pointers */
} __packed __aligned(4);
enum fwdb_flags {
FWDB_FLAG_NO_OFDM = BIT(0),
FWDB_FLAG_NO_OUTDOOR = BIT(1),
FWDB_FLAG_DFS = BIT(2),
FWDB_FLAG_NO_IR = BIT(3),
FWDB_FLAG_AUTO_BW = BIT(4),
};
struct fwdb_wmm_ac {
u8 ecw;
u8 aifsn;
__be16 cot;
} __packed;
struct fwdb_wmm_rule {
struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
} __packed;
struct fwdb_rule {
u8 len;
u8 flags;
__be16 max_eirp;
__be32 start, end, max_bw;
/* start of optional data */
__be16 cac_timeout;
__be16 wmm_ptr;
} __packed __aligned(4);
#define FWDB_MAGIC 0x52474442
#define FWDB_VERSION 20
struct fwdb_header {
__be32 magic;
__be32 version;
struct fwdb_country country[];
} __packed __aligned(4);
static int ecw2cw(int ecw)
{
return (1 << ecw) - 1;
}
static bool valid_wmm(struct fwdb_wmm_rule *rule)
{
struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
int i;
for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
u8 aifsn = ac[i].aifsn;
if (cw_min >= cw_max)
return false;
if (aifsn < 1)
return false;
}
return true;
}
static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
{
struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
if ((u8 *)rule + sizeof(rule->len) > data + size)
return false;
/* mandatory fields */
if (rule->len < offsetofend(struct fwdb_rule, max_bw))
return false;
if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
struct fwdb_wmm_rule *wmm;
if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
return false;
wmm = (void *)(data + wmm_ptr);
if (!valid_wmm(wmm))
return false;
}
return true;
}
static bool valid_country(const u8 *data, unsigned int size,
const struct fwdb_country *country)
{
unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
struct fwdb_collection *coll = (void *)(data + ptr);
__be16 *rules_ptr;
unsigned int i;
/* make sure we can read len/n_rules */
if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
return false;
/* make sure base struct and all rules fit */
if ((u8 *)coll + ALIGN(coll->len, 2) +
(coll->n_rules * 2) > data + size)
return false;
/* mandatory fields must exist */
if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
return false;
rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
for (i = 0; i < coll->n_rules; i++) {
u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
if (!valid_rule(data, size, rule_ptr))
return false;
}
return true;
}
#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
static struct key *builtin_regdb_keys;
static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
{
const u8 *end = p + buflen;
size_t plen;
key_ref_t key;
while (p < end) {
/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
* than 256 bytes in size.
*/
if (end - p < 4)
goto dodgy_cert;
if (p[0] != 0x30 &&
p[1] != 0x82)
goto dodgy_cert;
plen = (p[2] << 8) | p[3];
plen += 4;
if (plen > end - p)
goto dodgy_cert;
key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
"asymmetric", NULL, p, plen,
((KEY_POS_ALL & ~KEY_POS_SETATTR) |
KEY_USR_VIEW | KEY_USR_READ),
KEY_ALLOC_NOT_IN_QUOTA |
KEY_ALLOC_BUILT_IN |
KEY_ALLOC_BYPASS_RESTRICTION);
if (IS_ERR(key)) {
pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
PTR_ERR(key));
} else {
pr_notice("Loaded X.509 cert '%s'\n",
key_ref_to_ptr(key)->description);
key_ref_put(key);
}
p += plen;
}
return;
dodgy_cert:
pr_err("Problem parsing in-kernel X.509 certificate list\n");
}
static int __init load_builtin_regdb_keys(void)
{
builtin_regdb_keys =
keyring_alloc(".builtin_regdb_keys",
KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
((KEY_POS_ALL & ~KEY_POS_SETATTR) |
KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
if (IS_ERR(builtin_regdb_keys))
return PTR_ERR(builtin_regdb_keys);
pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
#endif
#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
#endif
return 0;
}
static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
{
const struct firmware *sig;
bool result;
if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
return false;
result = verify_pkcs7_signature(data, size, sig->data, sig->size,
builtin_regdb_keys,
VERIFYING_UNSPECIFIED_SIGNATURE,
NULL, NULL) == 0;
release_firmware(sig);
return result;
}
static void free_regdb_keyring(void)
{
key_put(builtin_regdb_keys);
}
#else
static int load_builtin_regdb_keys(void)
{
return 0;
}
static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
{
return true;
}
static void free_regdb_keyring(void)
{
}
#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
static bool valid_regdb(const u8 *data, unsigned int size)
{
const struct fwdb_header *hdr = (void *)data;
const struct fwdb_country *country;
if (size < sizeof(*hdr))
return false;
if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
return false;
if (hdr->version != cpu_to_be32(FWDB_VERSION))
return false;
if (!regdb_has_valid_signature(data, size))
return false;
country = &hdr->country[0];
while ((u8 *)(country + 1) <= data + size) {
if (!country->coll_ptr)
break;
if (!valid_country(data, size, country))
return false;
country++;
}
return true;
}
static void set_wmm_rule(const struct fwdb_header *db,
const struct fwdb_country *country,
const struct fwdb_rule *rule,
struct ieee80211_reg_rule *rrule)
{
struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
struct fwdb_wmm_rule *wmm;
unsigned int i, wmm_ptr;
wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
wmm = (void *)((u8 *)db + wmm_ptr);
if (!valid_wmm(wmm)) {
pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
be32_to_cpu(rule->start), be32_to_cpu(rule->end),
country->alpha2[0], country->alpha2[1]);
return;
}
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
wmm_rule->client[i].cw_min =
ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
wmm_rule->client[i].cot =
1000 * be16_to_cpu(wmm->client[i].cot);
wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
}
rrule->has_wmm = true;
}
static int __regdb_query_wmm(const struct fwdb_header *db,
const struct fwdb_country *country, int freq,
struct ieee80211_reg_rule *rrule)
{
unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
int i;
for (i = 0; i < coll->n_rules; i++) {
__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
continue;
if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
set_wmm_rule(db, country, rule, rrule);
return 0;
}
}
return -ENODATA;
}
int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
{
const struct fwdb_header *hdr = regdb;
const struct fwdb_country *country;
if (!regdb)
return -ENODATA;
if (IS_ERR(regdb))
return PTR_ERR(regdb);
country = &hdr->country[0];
while (country->coll_ptr) {
if (alpha2_equal(alpha2, country->alpha2))
return __regdb_query_wmm(regdb, country, freq, rule);
country++;
}
return -ENODATA;
}
EXPORT_SYMBOL(reg_query_regdb_wmm);
static int regdb_query_country(const struct fwdb_header *db,
const struct fwdb_country *country)
{
unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
struct ieee80211_regdomain *regdom;
unsigned int i;
regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
GFP_KERNEL);
if (!regdom)
return -ENOMEM;
regdom->n_reg_rules = coll->n_rules;
regdom->alpha2[0] = country->alpha2[0];
regdom->alpha2[1] = country->alpha2[1];
regdom->dfs_region = coll->dfs_region;
for (i = 0; i < regdom->n_reg_rules; i++) {
__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
rrule->power_rule.max_antenna_gain = 0;
rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
rrule->flags = 0;
if (rule->flags & FWDB_FLAG_NO_OFDM)
rrule->flags |= NL80211_RRF_NO_OFDM;
if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
rrule->flags |= NL80211_RRF_NO_OUTDOOR;
if (rule->flags & FWDB_FLAG_DFS)
rrule->flags |= NL80211_RRF_DFS;
if (rule->flags & FWDB_FLAG_NO_IR)
rrule->flags |= NL80211_RRF_NO_IR;
if (rule->flags & FWDB_FLAG_AUTO_BW)
rrule->flags |= NL80211_RRF_AUTO_BW;
rrule->dfs_cac_ms = 0;
/* handle optional data */
if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
rrule->dfs_cac_ms =
1000 * be16_to_cpu(rule->cac_timeout);
if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
set_wmm_rule(db, country, rule, rrule);
}
return reg_schedule_apply(regdom);
}
static int query_regdb(const char *alpha2)
{
const struct fwdb_header *hdr = regdb;
const struct fwdb_country *country;
ASSERT_RTNL();
if (IS_ERR(regdb))
return PTR_ERR(regdb);
country = &hdr->country[0];
while (country->coll_ptr) {
if (alpha2_equal(alpha2, country->alpha2))
return regdb_query_country(regdb, country);
country++;
}
return -ENODATA;
}
static void regdb_fw_cb(const struct firmware *fw, void *context)
{
int set_error = 0;
bool restore = true;
void *db;
if (!fw) {
pr_info("failed to load regulatory.db\n");
set_error = -ENODATA;
} else if (!valid_regdb(fw->data, fw->size)) {
pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
set_error = -EINVAL;
}
rtnl_lock();
if (regdb && !IS_ERR(regdb)) {
/* negative case - a bug
* positive case - can happen due to race in case of multiple cb's in
* queue, due to usage of asynchronous callback
*
* Either case, just restore and free new db.
*/
} else if (set_error) {
regdb = ERR_PTR(set_error);
} else if (fw) {
db = kmemdup(fw->data, fw->size, GFP_KERNEL);
if (db) {
regdb = db;
restore = context && query_regdb(context);
} else {
restore = true;
}
}
if (restore)
restore_regulatory_settings(true, false);
rtnl_unlock();
kfree(context);
release_firmware(fw);
}
static int query_regdb_file(const char *alpha2)
{
ASSERT_RTNL();
if (regdb)
return query_regdb(alpha2);
alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
if (!alpha2)
return -ENOMEM;
return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
&reg_pdev->dev, GFP_KERNEL,
(void *)alpha2, regdb_fw_cb);
}
int reg_reload_regdb(void)
{
const struct firmware *fw;
void *db;
int err;
err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
if (err)
return err;
if (!valid_regdb(fw->data, fw->size)) {
err = -ENODATA;
goto out;
}
db = kmemdup(fw->data, fw->size, GFP_KERNEL);
if (!db) {
err = -ENOMEM;
goto out;
}
rtnl_lock();
if (!IS_ERR_OR_NULL(regdb))
kfree(regdb);
regdb = db;
rtnl_unlock();
out:
release_firmware(fw);
return err;
}
static bool reg_query_database(struct regulatory_request *request)
{
if (query_regdb_file(request->alpha2) == 0)
return true;
if (call_crda(request->alpha2) == 0)
return true;
return false;
}
bool reg_is_valid_request(const char *alpha2)
{
struct regulatory_request *lr = get_last_request();
if (!lr || lr->processed)
return false;
return alpha2_equal(lr->alpha2, alpha2);
}
static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
{
struct regulatory_request *lr = get_last_request();
/*
* Follow the driver's regulatory domain, if present, unless a country
* IE has been processed or a user wants to help complaince further
*/
if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
lr->initiator != NL80211_REGDOM_SET_BY_USER &&
wiphy->regd)
return get_wiphy_regdom(wiphy);
return get_cfg80211_regdom();
}
static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
const struct ieee80211_reg_rule *rule)
{
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
const struct ieee80211_freq_range *freq_range_tmp;
const struct ieee80211_reg_rule *tmp;
u32 start_freq, end_freq, idx, no;
for (idx = 0; idx < rd->n_reg_rules; idx++)
if (rule == &rd->reg_rules[idx])
break;
if (idx == rd->n_reg_rules)
return 0;
/* get start_freq */
no = idx;
while (no) {
tmp = &rd->reg_rules[--no];
freq_range_tmp = &tmp->freq_range;
if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
break;
freq_range = freq_range_tmp;
}
start_freq = freq_range->start_freq_khz;
/* get end_freq */
freq_range = &rule->freq_range;
no = idx;
while (no < rd->n_reg_rules - 1) {
tmp = &rd->reg_rules[++no];
freq_range_tmp = &tmp->freq_range;
if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
break;
freq_range = freq_range_tmp;
}
end_freq = freq_range->end_freq_khz;
return end_freq - start_freq;
}
unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
const struct ieee80211_reg_rule *rule)
{
unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
if (rule->flags & NL80211_RRF_NO_160MHZ)
bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
if (rule->flags & NL80211_RRF_NO_80MHZ)
bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
/*
* HT40+/HT40- limits are handled per-channel. Only limit BW if both
* are not allowed.
*/
if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
rule->flags & NL80211_RRF_NO_HT40PLUS)
bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
return bw;
}
/* Sanity check on a regulatory rule */
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
{
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
u32 freq_diff;
if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
return false;
if (freq_range->start_freq_khz > freq_range->end_freq_khz)
return false;
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
freq_range->max_bandwidth_khz > freq_diff)
return false;
return true;
}
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
{
const struct ieee80211_reg_rule *reg_rule = NULL;
unsigned int i;
if (!rd->n_reg_rules)
return false;
if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
return false;
for (i = 0; i < rd->n_reg_rules; i++) {
reg_rule = &rd->reg_rules[i];
if (!is_valid_reg_rule(reg_rule))
return false;
}
return true;
}
/**
* freq_in_rule_band - tells us if a frequency is in a frequency band
* @freq_range: frequency rule we want to query
* @freq_khz: frequency we are inquiring about
*
* This lets us know if a specific frequency rule is or is not relevant to
* a specific frequency's band. Bands are device specific and artificial
* definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
* however it is safe for now to assume that a frequency rule should not be
* part of a frequency's band if the start freq or end freq are off by more
* than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
* 60 GHz band.
* This resolution can be lowered and should be considered as we add
* regulatory rule support for other "bands".
**/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ 1000000
/*
* From 802.11ad: directional multi-gigabit (DMG):
* Pertaining to operation in a frequency band containing a channel
* with the Channel starting frequency above 45 GHz.
*/
u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
return true;
if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
return true;
return false;
#undef ONE_GHZ_IN_KHZ
}
/*
* Later on we can perhaps use the more restrictive DFS
* region but we don't have information for that yet so
* for now simply disallow conflicts.
*/
static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
const enum nl80211_dfs_regions dfs_region2)
{
if (dfs_region1 != dfs_region2)
return NL80211_DFS_UNSET;
return dfs_region1;
}
static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
const struct ieee80211_wmm_ac *wmm_ac2,
struct ieee80211_wmm_ac *intersect)
{
intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
}
/*
* Helper for regdom_intersect(), this does the real
* mathematical intersection fun
*/
static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
const struct ieee80211_regdomain *rd2,
const struct ieee80211_reg_rule *rule1,
const struct ieee80211_reg_rule *rule2,
struct ieee80211_reg_rule *intersected_rule)
{
const struct ieee80211_freq_range *freq_range1, *freq_range2;
struct ieee80211_freq_range *freq_range;
const struct ieee80211_power_rule *power_rule1, *power_rule2;
struct ieee80211_power_rule *power_rule;
const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
struct ieee80211_wmm_rule *wmm_rule;
u32 freq_diff, max_bandwidth1, max_bandwidth2;
freq_range1 = &rule1->freq_range;
freq_range2 = &rule2->freq_range;
freq_range = &intersected_rule->freq_range;
power_rule1 = &rule1->power_rule;
power_rule2 = &rule2->power_rule;
power_rule = &intersected_rule->power_rule;
wmm_rule1 = &rule1->wmm_rule;
wmm_rule2 = &rule2->wmm_rule;
wmm_rule = &intersected_rule->wmm_rule;
freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
freq_range2->start_freq_khz);
freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
freq_range2->end_freq_khz);
max_bandwidth1 = freq_range1->max_bandwidth_khz;
max_bandwidth2 = freq_range2->max_bandwidth_khz;
if (rule1->flags & NL80211_RRF_AUTO_BW)
max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
if (rule2->flags & NL80211_RRF_AUTO_BW)
max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
intersected_rule->flags = rule1->flags | rule2->flags;
/*
* In case NL80211_RRF_AUTO_BW requested for both rules
* set AUTO_BW in intersected rule also. Next we will
* calculate BW correctly in handle_channel function.
* In other case remove AUTO_BW flag while we calculate
* maximum bandwidth correctly and auto calculation is
* not required.
*/
if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
(rule2->flags & NL80211_RRF_AUTO_BW))
intersected_rule->flags |= NL80211_RRF_AUTO_BW;
else
intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
if (freq_range->max_bandwidth_khz > freq_diff)
freq_range->max_bandwidth_khz = freq_diff;
power_rule->max_eirp = min(power_rule1->max_eirp,
power_rule2->max_eirp);
power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
power_rule2->max_antenna_gain);
intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
rule2->dfs_cac_ms);
if (rule1->has_wmm && rule2->has_wmm) {
u8 ac;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
reg_wmm_rules_intersect(&wmm_rule1->client[ac],
&wmm_rule2->client[ac],
&wmm_rule->client[ac]);
reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
&wmm_rule2->ap[ac],
&wmm_rule->ap[ac]);
}
intersected_rule->has_wmm = true;
} else if (rule1->has_wmm) {
*wmm_rule = *wmm_rule1;
intersected_rule->has_wmm = true;
} else if (rule2->has_wmm) {
*wmm_rule = *wmm_rule2;
intersected_rule->has_wmm = true;
} else {
intersected_rule->has_wmm = false;
}
if (!is_valid_reg_rule(intersected_rule))
return -EINVAL;
return 0;
}
/* check whether old rule contains new rule */
static bool rule_contains(struct ieee80211_reg_rule *r1,
struct ieee80211_reg_rule *r2)
{
/* for simplicity, currently consider only same flags */
if (r1->flags != r2->flags)
return false;
/* verify r1 is more restrictive */
if ((r1->power_rule.max_antenna_gain >
r2->power_rule.max_antenna_gain) ||
r1->power_rule.max_eirp > r2->power_rule.max_eirp)
return false;
/* make sure r2's range is contained within r1 */
if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
return false;
/* and finally verify that r1.max_bw >= r2.max_bw */
if (r1->freq_range.max_bandwidth_khz <
r2->freq_range.max_bandwidth_khz)
return false;
return true;
}
/* add or extend current rules. do nothing if rule is already contained */
static void add_rule(struct ieee80211_reg_rule *rule,
struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
{
struct ieee80211_reg_rule *tmp_rule;
int i;
for (i = 0; i < *n_rules; i++) {
tmp_rule = &reg_rules[i];
/* rule is already contained - do nothing */
if (rule_contains(tmp_rule, rule))
return;
/* extend rule if possible */
if (rule_contains(rule, tmp_rule)) {
memcpy(tmp_rule, rule, sizeof(*rule));
return;
}
}
memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
(*n_rules)++;
}
/**
* regdom_intersect - do the intersection between two regulatory domains
* @rd1: first regulatory domain
* @rd2: second regulatory domain
*
* Use this function to get the intersection between two regulatory domains.
* Once completed we will mark the alpha2 for the rd as intersected, "98",
* as no one single alpha2 can represent this regulatory domain.
*
* Returns a pointer to the regulatory domain structure which will hold the
* resulting intersection of rules between rd1 and rd2. We will
* kzalloc() this structure for you.
*/
static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain *rd1,
const struct ieee80211_regdomain *rd2)
{
int r;
unsigned int x, y;
unsigned int num_rules = 0;
const struct ieee80211_reg_rule *rule1, *rule2;
struct ieee80211_reg_rule intersected_rule;
struct ieee80211_regdomain *rd;
if (!rd1 || !rd2)
return NULL;
/*
* First we get a count of the rules we'll need, then we actually
* build them. This is to so we can malloc() and free() a
* regdomain once. The reason we use reg_rules_intersect() here
* is it will return -EINVAL if the rule computed makes no sense.
* All rules that do check out OK are valid.
*/
for (x = 0; x < rd1->n_reg_rules; x++) {
rule1 = &rd1->reg_rules[x];
for (y = 0; y < rd2->n_reg_rules; y++) {
rule2 = &rd2->reg_rules[y];
if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
&intersected_rule))
num_rules++;
}
}
if (!num_rules)
return NULL;
rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
if (!rd)
return NULL;
for (x = 0; x < rd1->n_reg_rules; x++) {
rule1 = &rd1->reg_rules[x];
for (y = 0; y < rd2->n_reg_rules; y++) {
rule2 = &rd2->reg_rules[y];
r = reg_rules_intersect(rd1, rd2, rule1, rule2,
&intersected_rule);
/*
* No need to memset here the intersected rule here as
* we're not using the stack anymore
*/
if (r)
continue;
add_rule(&intersected_rule, rd->reg_rules,
&rd->n_reg_rules);
}
}
rd->alpha2[0] = '9';
rd->alpha2[1] = '8';
rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
rd2->dfs_region);
return rd;
}
/*
* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
* want to just have the channel structure use these
*/
static u32 map_regdom_flags(u32 rd_flags)
{
u32 channel_flags = 0;
if (rd_flags & NL80211_RRF_NO_IR_ALL)
channel_flags |= IEEE80211_CHAN_NO_IR;
if (rd_flags & NL80211_RRF_DFS)
channel_flags |= IEEE80211_CHAN_RADAR;
if (rd_flags & NL80211_RRF_NO_OFDM)
channel_flags |= IEEE80211_CHAN_NO_OFDM;
if (rd_flags & NL80211_RRF_NO_OUTDOOR)
channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
if (rd_flags & NL80211_RRF_IR_CONCURRENT)
channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
if (rd_flags & NL80211_RRF_NO_HT40MINUS)
channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
if (rd_flags & NL80211_RRF_NO_HT40PLUS)
channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
if (rd_flags & NL80211_RRF_NO_80MHZ)
channel_flags |= IEEE80211_CHAN_NO_80MHZ;
if (rd_flags & NL80211_RRF_NO_160MHZ)
channel_flags |= IEEE80211_CHAN_NO_160MHZ;
return channel_flags;
}
static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,
const struct ieee80211_regdomain *regd, u32 bw)
{
int i;
bool band_rule_found = false;
bool bw_fits = false;
if (!regd)
return ERR_PTR(-EINVAL);
for (i = 0; i < regd->n_reg_rules; i++) {
const struct ieee80211_reg_rule *rr;
const struct ieee80211_freq_range *fr = NULL;
rr = &regd->reg_rules[i];
fr = &rr->freq_range;
/*
* We only need to know if one frequency rule was
* was in center_freq's band, that's enough, so lets
* not overwrite it once found
*/
if (!band_rule_found)
band_rule_found = freq_in_rule_band(fr, center_freq);
bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
if (band_rule_found && bw_fits)
return rr;
}
if (!band_rule_found)
return ERR_PTR(-ERANGE);
return ERR_PTR(-EINVAL);
}
static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
{
const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
const struct ieee80211_reg_rule *reg_rule = NULL;
u32 bw;
for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
reg_rule = freq_reg_info_regd(center_freq, regd, bw);
if (!IS_ERR(reg_rule))
return reg_rule;
}
return reg_rule;
}
const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
u32 center_freq)
{
return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
}
EXPORT_SYMBOL(freq_reg_info);
const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
switch (initiator) {
case NL80211_REGDOM_SET_BY_CORE:
return "core";
case NL80211_REGDOM_SET_BY_USER:
return "user";
case NL80211_REGDOM_SET_BY_DRIVER:
return "driver";
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
return "country element";
default:
WARN_ON(1);
return "bug";
}
}
EXPORT_SYMBOL(reg_initiator_name);
static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
const struct ieee80211_reg_rule *reg_rule,
const struct ieee80211_channel *chan)
{
const struct ieee80211_freq_range *freq_range = NULL;
u32 max_bandwidth_khz, bw_flags = 0;
freq_range = &reg_rule->freq_range;
max_bandwidth_khz = freq_range->max_bandwidth_khz;
/* Check if auto calculation requested */
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
/* If we get a reg_rule we can assume that at least 5Mhz fit */
if (!cfg80211_does_bw_fit_range(freq_range,
MHZ_TO_KHZ(chan->center_freq),
MHZ_TO_KHZ(10)))
bw_flags |= IEEE80211_CHAN_NO_10MHZ;
if (!cfg80211_does_bw_fit_range(freq_range,
MHZ_TO_KHZ(chan->center_freq),
MHZ_TO_KHZ(20)))
bw_flags |= IEEE80211_CHAN_NO_20MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(10))
bw_flags |= IEEE80211_CHAN_NO_10MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(20))
bw_flags |= IEEE80211_CHAN_NO_20MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(40))
bw_flags |= IEEE80211_CHAN_NO_HT40;
if (max_bandwidth_khz < MHZ_TO_KHZ(80))
bw_flags |= IEEE80211_CHAN_NO_80MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(160))
bw_flags |= IEEE80211_CHAN_NO_160MHZ;
return bw_flags;
}
/*
* Note that right now we assume the desired channel bandwidth
* is always 20 MHz for each individual channel (HT40 uses 20 MHz
* per channel, the primary and the extension channel).
*/
static void handle_channel(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator,
struct ieee80211_channel *chan)
{
u32 flags, bw_flags = 0;
const struct ieee80211_reg_rule *reg_rule = NULL;
const struct ieee80211_power_rule *power_rule = NULL;
struct wiphy *request_wiphy = NULL;
struct regulatory_request *lr = get_last_request();
const struct ieee80211_regdomain *regd;
request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
flags = chan->orig_flags;
reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
if (IS_ERR(reg_rule)) {
/*
* We will disable all channels that do not match our
* received regulatory rule unless the hint is coming
* from a Country IE and the Country IE had no information
* about a band. The IEEE 802.11 spec allows for an AP
* to send only a subset of the regulatory rules allowed,
* so an AP in the US that only supports 2.4 GHz may only send
* a country IE with information for the 2.4 GHz band
* while 5 GHz is still supported.
*/
if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
PTR_ERR(reg_rule) == -ERANGE)
return;
if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
request_wiphy && request_wiphy == wiphy &&
request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
pr_debug("Disabling freq %d MHz for good\n",
chan->center_freq);
chan->orig_flags |= IEEE80211_CHAN_DISABLED;
chan->flags = chan->orig_flags;
} else {
pr_debug("Disabling freq %d MHz\n",
chan->center_freq);
chan->flags |= IEEE80211_CHAN_DISABLED;
}
return;
}
regd = reg_get_regdomain(wiphy);
power_rule = &reg_rule->power_rule;
bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
request_wiphy && request_wiphy == wiphy &&
request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
/*
* This guarantees the driver's requested regulatory domain
* will always be used as a base for further regulatory
* settings
*/
chan->flags = chan->orig_flags =
map_regdom_flags(reg_rule->flags) | bw_flags;
chan->max_antenna_gain = chan->orig_mag =
(int) MBI_TO_DBI(power_rule->max_antenna_gain);
chan->max_reg_power = chan->max_power = chan->orig_mpwr =
(int) MBM_TO_DBM(power_rule->max_eirp);
if (chan->flags & IEEE80211_CHAN_RADAR) {
chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
if (reg_rule->dfs_cac_ms)
chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
}
return;
}
chan->dfs_state = NL80211_DFS_USABLE;
chan->dfs_state_entered = jiffies;
chan->beacon_found = false;
chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
chan->max_antenna_gain =
min_t(int, chan->orig_mag,
MBI_TO_DBI(power_rule->max_antenna_gain));
chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
if (chan->flags & IEEE80211_CHAN_RADAR) {
if (reg_rule->dfs_cac_ms)
chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
else
chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
}
if (chan->orig_mpwr) {
/*
* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
* will always follow the passed country IE power settings.
*/
if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
chan->max_power = chan->max_reg_power;
else
chan->max_power = min(chan->orig_mpwr,
chan->max_reg_power);
} else
chan->max_power = chan->max_reg_power;
}
static void handle_band(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator,
struct ieee80211_supported_band *sband)
{
unsigned int i;
if (!sband)
return;
for (i = 0; i < sband->n_channels; i++)
handle_channel(wiphy, initiator, &sband->channels[i]);
}
static bool reg_request_cell_base(struct regulatory_request *request)
{
if (request->initiator != NL80211_REGDOM_SET_BY_USER)
return false;
return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
}
bool reg_last_request_cell_base(void)
{
return reg_request_cell_base(get_last_request());
}
#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
/* Core specific check */
static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
struct regulatory_request *lr = get_last_request();
if (!reg_num_devs_support_basehint)
return REG_REQ_IGNORE;
if (reg_request_cell_base(lr) &&
!regdom_changes(pending_request->alpha2))
return REG_REQ_ALREADY_SET;
return REG_REQ_OK;
}
/* Device specific check */
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
}
#else
static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
return REG_REQ_IGNORE;
}
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
return true;
}
#endif
static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
{
if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
return true;
return false;
}
static bool ignore_reg_update(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator)
{
struct regulatory_request *lr = get_last_request();
if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
return true;
if (!lr) {
pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
reg_initiator_name(initiator));
return true;
}
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
reg_initiator_name(initiator));
return true;
}
/*
* wiphy->regd will be set once the device has its own
* desired regulatory domain set
*/
if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
!is_world_regdom(lr->alpha2)) {
pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
reg_initiator_name(initiator));
return true;
}
if (reg_request_cell_base(lr))
return reg_dev_ignore_cell_hint(wiphy);
return false;
}
static bool reg_is_world_roaming(struct wiphy *wiphy)
{
const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
struct regulatory_request *lr = get_last_request();
if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
return true;
if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
return true;
return false;
}
static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
struct reg_beacon *reg_beacon)
{
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
bool channel_changed = false;
struct ieee80211_channel chan_before;
sband = wiphy->bands[reg_beacon->chan.band];
chan = &sband->channels[chan_idx];
if (likely(chan->center_freq != reg_beacon->chan.center_freq))
return;
if (chan->beacon_found)
return;
chan->beacon_found = true;
if (!reg_is_world_roaming(wiphy))
return;
if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
return;
chan_before = *chan;
if (chan->flags & IEEE80211_CHAN_NO_IR) {
chan->flags &= ~IEEE80211_CHAN_NO_IR;
channel_changed = true;
}
if (channel_changed)
nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
}
/*
* Called when a scan on a wiphy finds a beacon on
* new channel
*/
static void wiphy_update_new_beacon(struct wiphy *wiphy,
struct reg_beacon *reg_beacon)
{
unsigned int i;
struct ieee80211_supported_band *sband;
if (!wiphy->bands[reg_beacon->chan.band])
return;
sband = wiphy->bands[reg_beacon->chan.band];
for (i = 0; i < sband->n_channels; i++)
handle_reg_beacon(wiphy, i, reg_beacon);
}
/*
* Called upon reg changes or a new wiphy is added
*/
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
unsigned int i;
struct ieee80211_supported_band *sband;
struct reg_beacon *reg_beacon;
list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
if (!wiphy->bands[reg_beacon->chan.band])
continue;
sband = wiphy->bands[reg_beacon->chan.band];
for (i = 0; i < sband->n_channels; i++)
handle_reg_beacon(wiphy, i, reg_beacon);
}
}
/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
/*
* Means we are just firing up cfg80211, so no beacons would
* have been processed yet.
*/
if (!last_request)
return;
wiphy_update_beacon_reg(wiphy);
}
static bool is_ht40_allowed(struct ieee80211_channel *chan)
{
if (!chan)
return false;
if (chan->flags & IEEE80211_CHAN_DISABLED)
return false;
/* This would happen when regulatory rules disallow HT40 completely */
if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
return false;
return true;
}
static void reg_process_ht_flags_channel(struct wiphy *wiphy,
struct ieee80211_channel *channel)
{
struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
const struct ieee80211_regdomain *regd;
unsigned int i;
u32 flags;
if (!is_ht40_allowed(channel)) {
channel->flags |= IEEE80211_CHAN_NO_HT40;
return;
}
/*
* We need to ensure the extension channels exist to
* be able to use HT40- or HT40+, this finds them (or not)
*/
for (i = 0; i < sband->n_channels; i++) {
struct ieee80211_channel *c = &sband->channels[i];
if (c->center_freq == (channel->center_freq - 20))
channel_before = c;
if (c->center_freq == (channel->center_freq + 20))
channel_after = c;
}
flags = 0;
regd = get_wiphy_regdom(wiphy);
if (regd) {
const struct ieee80211_reg_rule *reg_rule =
freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
regd, MHZ_TO_KHZ(20));
if (!IS_ERR(reg_rule))
flags = reg_rule->flags;
}
/*
* Please note that this assumes target bandwidth is 20 MHz,
* if that ever changes we also need to change the below logic
* to include that as well.
*/
if (!is_ht40_allowed(channel_before) ||
flags & NL80211_RRF_NO_HT40MINUS)
channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
else
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
if (!is_ht40_allowed(channel_after) ||
flags & NL80211_RRF_NO_HT40PLUS)
channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
else
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
}
static void reg_process_ht_flags_band(struct wiphy *wiphy,
struct ieee80211_supported_band *sband)
{
unsigned int i;
if (!sband)
return;
for (i = 0; i < sband->n_channels; i++)
reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
}
static void reg_process_ht_flags(struct wiphy *wiphy)
{
enum nl80211_band band;
if (!wiphy)
return;
for (band = 0; band < NUM_NL80211_BANDS; band++)
reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
}
static void reg_call_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
if (wiphy->reg_notifier)
wiphy->reg_notifier(wiphy, request);
}
static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
{
struct cfg80211_chan_def chandef = {};
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
enum nl80211_iftype iftype;
wdev_lock(wdev);
iftype = wdev->iftype;
/* make sure the interface is active */
if (!wdev->netdev || !netif_running(wdev->netdev))
goto wdev_inactive_unlock;
switch (iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
if (!wdev->beacon_interval)
goto wdev_inactive_unlock;
chandef = wdev->chandef;
break;
case NL80211_IFTYPE_ADHOC:
if (!wdev->ssid_len)
goto wdev_inactive_unlock;
chandef = wdev->chandef;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
if (!wdev->current_bss ||
!wdev->current_bss->pub.channel)
goto wdev_inactive_unlock;
if (!rdev->ops->get_channel ||
rdev_get_channel(rdev, wdev, &chandef))
cfg80211_chandef_create(&chandef,
wdev->current_bss->pub.channel,
NL80211_CHAN_NO_HT);
break;
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_DEVICE:
/* no enforcement required */
break;
default:
/* others not implemented for now */
WARN_ON(1);
break;
}
wdev_unlock(wdev);
switch (iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_ADHOC:
return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
return cfg80211_chandef_usable(wiphy, &chandef,
IEEE80211_CHAN_DISABLED);
default:
break;
}
return true;
wdev_inactive_unlock:
wdev_unlock(wdev);
return true;
}
static void reg_leave_invalid_chans(struct wiphy *wiphy)
{
struct wireless_dev *wdev;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
ASSERT_RTNL();
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
if (!reg_wdev_chan_valid(wiphy, wdev))
cfg80211_leave(rdev, wdev);
}
static void reg_check_chans_work(struct work_struct *work)
{
struct cfg80211_registered_device *rdev;
pr_debug("Verifying active interfaces after reg change\n");
rtnl_lock();
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
if (!(rdev->wiphy.regulatory_flags &
REGULATORY_IGNORE_STALE_KICKOFF))
reg_leave_invalid_chans(&rdev->wiphy);
rtnl_unlock();
}
static void reg_check_channels(void)
{
/*
* Give usermode a chance to do something nicer (move to another
* channel, orderly disconnection), before forcing a disconnection.
*/
mod_delayed_work(system_power_efficient_wq,
&reg_check_chans,
msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
}
static void wiphy_update_regulatory(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator)
{
enum nl80211_band band;
struct regulatory_request *lr = get_last_request();
if (ignore_reg_update(wiphy, initiator)) {
/*
* Regulatory updates set by CORE are ignored for custom
* regulatory cards. Let us notify the changes to the driver,
* as some drivers used this to restore its orig_* reg domain.
*/
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
!(wiphy->regulatory_flags &
REGULATORY_WIPHY_SELF_MANAGED))
reg_call_notifier(wiphy, lr);
return;
}
lr->dfs_region = get_cfg80211_regdom()->dfs_region;
for (band = 0; band < NUM_NL80211_BANDS; band++)
handle_band(wiphy, initiator, wiphy->bands[band]);
reg_process_beacons(wiphy);
reg_process_ht_flags(wiphy);
reg_call_notifier(wiphy, lr);
}
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
ASSERT_RTNL();
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
wiphy = &rdev->wiphy;
wiphy_update_regulatory(wiphy, initiator);
}
reg_check_channels();
}
static void handle_channel_custom(struct wiphy *wiphy,
struct ieee80211_channel *chan,
const struct ieee80211_regdomain *regd)
{
u32 bw_flags = 0;
const struct ieee80211_reg_rule *reg_rule = NULL;
const struct ieee80211_power_rule *power_rule = NULL;
u32 bw;
for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
regd, bw);
if (!IS_ERR(reg_rule))
break;
}
if (IS_ERR(reg_rule)) {
pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
chan->center_freq);
if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
chan->flags |= IEEE80211_CHAN_DISABLED;
} else {
chan->orig_flags |= IEEE80211_CHAN_DISABLED;
chan->flags = chan->orig_flags;
}
return;
}
power_rule = &reg_rule->power_rule;
bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
chan->dfs_state_entered = jiffies;
chan->dfs_state = NL80211_DFS_USABLE;
chan->beacon_found = false;
if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
chan->flags = chan->orig_flags | bw_flags |
map_regdom_flags(reg_rule->flags);
else
chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
chan->max_reg_power = chan->max_power =
(int) MBM_TO_DBM(power_rule->max_eirp);
if (chan->flags & IEEE80211_CHAN_RADAR) {
if (reg_rule->dfs_cac_ms)
chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
else
chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
}
chan->max_power = chan->max_reg_power;
}
static void handle_band_custom(struct wiphy *wiphy,
struct ieee80211_supported_band *sband,
const struct ieee80211_regdomain *regd)
{
unsigned int i;
if (!sband)
return;
for (i = 0; i < sband->n_channels; i++)
handle_channel_custom(wiphy, &sband->channels[i], regd);
}
/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
const struct ieee80211_regdomain *regd)
{
enum nl80211_band band;
unsigned int bands_set = 0;
WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
"wiphy should have REGULATORY_CUSTOM_REG\n");
wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!wiphy->bands[band])
continue;
handle_band_custom(wiphy, wiphy->bands[band], regd);
bands_set++;
}
/*
* no point in calling this if it won't have any effect
* on your device's supported bands.
*/
WARN_ON(!bands_set);
}
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
static void reg_set_request_processed(void)
{
bool need_more_processing = false;
struct regulatory_request *lr = get_last_request();
lr->processed = true;
spin_lock(&reg_requests_lock);
if (!list_empty(&reg_requests_list))
need_more_processing = true;
spin_unlock(&reg_requests_lock);
cancel_crda_timeout();
if (need_more_processing)
schedule_work(&reg_work);
}
/**
* reg_process_hint_core - process core regulatory requests
* @pending_request: a pending core regulatory request
*
* The wireless subsystem can use this function to process
* a regulatory request issued by the regulatory core.
*/
static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request *core_request)
{
if (reg_query_database(core_request)) {
core_request->intersect = false;
core_request->processed = false;
reg_update_last_request(core_request);
return REG_REQ_OK;
}
return REG_REQ_IGNORE;
}
static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request *user_request)
{
struct regulatory_request *lr = get_last_request();
if (reg_request_cell_base(user_request))
return reg_ignore_cell_hint(user_request);
if (reg_request_cell_base(lr))
return REG_REQ_IGNORE;
if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
return REG_REQ_INTERSECT;
/*
* If the user knows better the user should set the regdom
* to their country before the IE is picked up
*/
if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
lr->intersect)
return REG_REQ_IGNORE;
/*
* Process user requests only after previous user/driver/core
* requests have been processed
*/
if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
regdom_changes(lr->alpha2))
return REG_REQ_IGNORE;
if (!regdom_changes(user_request->alpha2))
return REG_REQ_ALREADY_SET;
return REG_REQ_OK;
}
/**
* reg_process_hint_user - process user regulatory requests
* @user_request: a pending user regulatory request
*
* The wireless subsystem can use this function to process
* a regulatory request initiated by userspace.
*/
static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request *user_request)
{
enum reg_request_treatment treatment;
treatment = __reg_process_hint_user(user_request);
if (treatment == REG_REQ_IGNORE ||
treatment == REG_REQ_ALREADY_SET)
return REG_REQ_IGNORE;
user_request->intersect = treatment == REG_REQ_INTERSECT;
user_request->processed = false;
if (reg_query_database(user_request)) {
reg_update_last_request(user_request);
user_alpha2[0] = user_request->alpha2[0];
user_alpha2[1] = user_request->alpha2[1];
return REG_REQ_OK;
}
return REG_REQ_IGNORE;
}
static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request *driver_request)
{
struct regulatory_request *lr = get_last_request();
if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
if (regdom_changes(driver_request->alpha2))
return REG_REQ_OK;
return REG_REQ_ALREADY_SET;
}
/*
* This would happen if you unplug and plug your card
* back in or if you add a new device for which the previously
* loaded card also agrees on the regulatory domain.
*/
if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
!regdom_changes(driver_request->alpha2))
return REG_REQ_ALREADY_SET;
return REG_REQ_INTERSECT;
}
/**
* reg_process_hint_driver - process driver regulatory requests
* @driver_request: a pending driver regulatory request
*
* The wireless subsystem can use this function to process
* a regulatory request issued by an 802.11 driver.
*
* Returns one of the different reg request treatment values.
*/
static enum reg_request_treatment
reg_process_hint_driver(struct wiphy *wiphy,
struct regulatory_request *driver_request)
{
const struct ieee80211_regdomain *regd, *tmp;
enum reg_request_treatment treatment;
treatment = __reg_process_hint_driver(driver_request);
switch (treatment) {
case REG_REQ_OK:
break;
case REG_REQ_IGNORE:
return REG_REQ_IGNORE;
case REG_REQ_INTERSECT:
case REG_REQ_ALREADY_SET:
regd = reg_copy_regd(get_cfg80211_regdom());
if (IS_ERR(regd))
return REG_REQ_IGNORE;
tmp = get_wiphy_regdom(wiphy);
rcu_assign_pointer(wiphy->regd, regd);
rcu_free_regdom(tmp);
}
driver_request->intersect = treatment == REG_REQ_INTERSECT;
driver_request->processed = false;
/*
* Since CRDA will not be called in this case as we already
* have applied the requested regulatory domain before we just
* inform userspace we have processed the request
*/
if (treatment == REG_REQ_ALREADY_SET) {
nl80211_send_reg_change_event(driver_request);
reg_update_last_request(driver_request);
reg_set_request_processed();
return REG_REQ_ALREADY_SET;
}
if (reg_query_database(driver_request)) {
reg_update_last_request(driver_request);
return REG_REQ_OK;
}
return REG_REQ_IGNORE;
}
static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy *wiphy,
struct regulatory_request *country_ie_request)
{
struct wiphy *last_wiphy = NULL;
struct regulatory_request *lr = get_last_request();
if (reg_request_cell_base(lr)) {
/* Trust a Cell base station over the AP's country IE */
if (regdom_changes(country_ie_request->alpha2))
return REG_REQ_IGNORE;
return REG_REQ_ALREADY_SET;
} else {
if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
return REG_REQ_IGNORE;
}
if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
return -EINVAL;
if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
return REG_REQ_OK;
last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
if (last_wiphy != wiphy) {
/*
* Two cards with two APs claiming different
* Country IE alpha2s. We could
* intersect them, but that seems unlikely
* to be correct. Reject second one for now.
*/
if (regdom_changes(country_ie_request->alpha2))
return REG_REQ_IGNORE;
return REG_REQ_ALREADY_SET;
}
if (regdom_changes(country_ie_request->alpha2))
return REG_REQ_OK;
return REG_REQ_ALREADY_SET;
}
/**
* reg_process_hint_country_ie - process regulatory requests from country IEs
* @country_ie_request: a regulatory request from a country IE
*
* The wireless subsystem can use this function to process
* a regulatory request issued by a country Information Element.
*
* Returns one of the different reg request treatment values.
*/
static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy *wiphy,
struct regulatory_request *country_ie_request)
{
enum reg_request_treatment treatment;
treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
switch (treatment) {
case REG_REQ_OK:
break;
case REG_REQ_IGNORE:
return REG_REQ_IGNORE;
case REG_REQ_ALREADY_SET:
reg_free_request(country_ie_request);
return REG_REQ_ALREADY_SET;
case REG_REQ_INTERSECT:
/*
* This doesn't happen yet, not sure we
* ever want to support it for this case.
*/
WARN_ONCE(1, "Unexpected intersection for country elements");
return REG_REQ_IGNORE;
}
country_ie_request->intersect = false;
country_ie_request->processed = false;
if (reg_query_database(country_ie_request)) {
reg_update_last_request(country_ie_request);
return REG_REQ_OK;
}
return REG_REQ_IGNORE;
}
bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
{
const struct ieee80211_regdomain *wiphy1_regd = NULL;
const struct ieee80211_regdomain *wiphy2_regd = NULL;
const struct ieee80211_regdomain *cfg80211_regd = NULL;
bool dfs_domain_same;
rcu_read_lock();
cfg80211_regd = rcu_dereference(cfg80211_regdomain);
wiphy1_regd = rcu_dereference(wiphy1->regd);
if (!wiphy1_regd)
wiphy1_regd = cfg80211_regd;
wiphy2_regd = rcu_dereference(wiphy2->regd);
if (!wiphy2_regd)
wiphy2_regd = cfg80211_regd;
dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
rcu_read_unlock();
return dfs_domain_same;
}
static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
struct ieee80211_channel *src_chan)
{
if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
!(src_chan->flags & IEEE80211_CHAN_RADAR))
return;
if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
src_chan->flags & IEEE80211_CHAN_DISABLED)
return;
if (src_chan->center_freq == dst_chan->center_freq &&
dst_chan->dfs_state == NL80211_DFS_USABLE) {
dst_chan->dfs_state = src_chan->dfs_state;
dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
}
}
static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
struct wiphy *src_wiphy)
{
struct ieee80211_supported_band *src_sband, *dst_sband;
struct ieee80211_channel *src_chan, *dst_chan;
int i, j, band;
if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
return;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
dst_sband = dst_wiphy->bands[band];
src_sband = src_wiphy->bands[band];
if (!dst_sband || !src_sband)
continue;
for (i = 0; i < dst_sband->n_channels; i++) {
dst_chan = &dst_sband->channels[i];
for (j = 0; j < src_sband->n_channels; j++) {
src_chan = &src_sband->channels[j];
reg_copy_dfs_chan_state(dst_chan, src_chan);
}
}
}
}
static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
{
struct cfg80211_registered_device *rdev;
ASSERT_RTNL();
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
if (wiphy == &rdev->wiphy)
continue;
wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
}
}
/* This processes *all* regulatory hints */
static void reg_process_hint(struct regulatory_request *reg_request)
{
struct wiphy *wiphy = NULL;
enum reg_request_treatment treatment;
enum nl80211_reg_initiator initiator = reg_request->initiator;
if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
switch (initiator) {
case NL80211_REGDOM_SET_BY_CORE:
treatment = reg_process_hint_core(reg_request);
break;
case NL80211_REGDOM_SET_BY_USER:
treatment = reg_process_hint_user(reg_request);
break;
case NL80211_REGDOM_SET_BY_DRIVER:
if (!wiphy)
goto out_free;
treatment = reg_process_hint_driver(wiphy, reg_request);
break;
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
if (!wiphy)
goto out_free;
treatment = reg_process_hint_country_ie(wiphy, reg_request);
break;
default:
WARN(1, "invalid initiator %d\n", initiator);
goto out_free;
}
if (treatment == REG_REQ_IGNORE)
goto out_free;
WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
"unexpected treatment value %d\n", treatment);
/* This is required so that the orig_* parameters are saved.
* NOTE: treatment must be set for any case that reaches here!
*/
if (treatment == REG_REQ_ALREADY_SET && wiphy &&
wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
wiphy_update_regulatory(wiphy, initiator);
wiphy_all_share_dfs_chan_state(wiphy);
reg_check_channels();
}
return;
out_free:
reg_free_request(reg_request);
}
static void notify_self_managed_wiphys(struct regulatory_request *request)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
wiphy = &rdev->wiphy;
if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
request->initiator == NL80211_REGDOM_SET_BY_USER)
reg_call_notifier(wiphy, request);
}
}
/*
* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
* Regulatory hints come on a first come first serve basis and we
* must process each one atomically.
*/
static void reg_process_pending_hints(void)
{
struct regulatory_request *reg_request, *lr;
lr = get_last_request();
/* When last_request->processed becomes true this will be rescheduled */
if (lr && !lr->processed) {
pr_debug("Pending regulatory request, waiting for it to be processed...\n");
return;
}
spin_lock(&reg_requests_lock);
if (list_empty(&reg_requests_list)) {
spin_unlock(&reg_requests_lock);
return;
}
reg_request = list_first_entry(&reg_requests_list,
struct regulatory_request,
list);
list_del_init(&reg_request->list);
spin_unlock(&reg_requests_lock);
notify_self_managed_wiphys(reg_request);
reg_process_hint(reg_request);
lr = get_last_request();
spin_lock(&reg_requests_lock);
if (!list_empty(&reg_requests_list) && lr && lr->processed)
schedule_work(&reg_work);
spin_unlock(&reg_requests_lock);
}
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
struct cfg80211_registered_device *rdev;
struct reg_beacon *pending_beacon, *tmp;
/* This goes through the _pending_ beacon list */
spin_lock_bh(&reg_pending_beacons_lock);
list_for_each_entry_safe(pending_beacon, tmp,
&reg_pending_beacons, list) {
list_del_init(&pending_beacon->list);
/* Applies the beacon hint to current wiphys */
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
/* Remembers the beacon hint for new wiphys or reg changes */
list_add_tail(&pending_beacon->list, &reg_beacon_list);
}
spin_unlock_bh(&reg_pending_beacons_lock);
}
static void reg_process_self_managed_hints(void)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
const struct ieee80211_regdomain *tmp;
const struct ieee80211_regdomain *regd;
enum nl80211_band band;
struct regulatory_request request = {};
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
wiphy = &rdev->wiphy;
spin_lock(&reg_requests_lock);
regd = rdev->requested_regd;
rdev->requested_regd = NULL;
spin_unlock(&reg_requests_lock);
if (regd == NULL)
continue;
tmp = get_wiphy_regdom(wiphy);
rcu_assign_pointer(wiphy->regd, regd);
rcu_free_regdom(tmp);
for (band = 0; band < NUM_NL80211_BANDS; band++)
handle_band_custom(wiphy, wiphy->bands[band], regd);
reg_process_ht_flags(wiphy);
request.wiphy_idx = get_wiphy_idx(wiphy);
request.alpha2[0] = regd->alpha2[0];
request.alpha2[1] = regd->alpha2[1];
request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
nl80211_send_wiphy_reg_change_event(&request);
}
reg_check_channels();
}
static void reg_todo(struct work_struct *work)
{
rtnl_lock();
reg_process_pending_hints();
reg_process_pending_beacon_hints();
reg_process_self_managed_hints();
rtnl_unlock();
}
static void queue_regulatory_request(struct regulatory_request *request)
{
request->alpha2[0] = toupper(request->alpha2[0]);
request->alpha2[1] = toupper(request->alpha2[1]);
spin_lock(&reg_requests_lock);
list_add_tail(&request->list, &reg_requests_list);
spin_unlock(&reg_requests_lock);
schedule_work(&reg_work);
}
/*
* Core regulatory hint -- happens during cfg80211_init()
* and when we restore regulatory settings.
*/
static int regulatory_hint_core(const char *alpha2)
{
struct regulatory_request *request;
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
if (!request)
return -ENOMEM;
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_CORE;
request->wiphy_idx = WIPHY_IDX_INVALID;
queue_regulatory_request(request);
return 0;
}
/* User hints */
int regulatory_hint_user(const char *alpha2,
enum nl80211_user_reg_hint_type user_reg_hint_type)
{
struct regulatory_request *request;
if (WARN_ON(!alpha2))
return -EINVAL;
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
if (!request)
return -ENOMEM;
request->wiphy_idx = WIPHY_IDX_INVALID;
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_USER;
request->user_reg_hint_type = user_reg_hint_type;
/* Allow calling CRDA again */
reset_crda_timeouts();
queue_regulatory_request(request);
return 0;
}
int regulatory_hint_indoor(bool is_indoor, u32 portid)
{
spin_lock(&reg_indoor_lock);
/* It is possible that more than one user space process is trying to
* configure the indoor setting. To handle such cases, clear the indoor
* setting in case that some process does not think that the device
* is operating in an indoor environment. In addition, if a user space
* process indicates that it is controlling the indoor setting, save its
* portid, i.e., make it the owner.
*/
reg_is_indoor = is_indoor;
if (reg_is_indoor) {
if (!reg_is_indoor_portid)
reg_is_indoor_portid = portid;
} else {
reg_is_indoor_portid = 0;
}
spin_unlock(&reg_indoor_lock);
if (!is_indoor)
reg_check_channels();
return 0;
}
void regulatory_netlink_notify(u32 portid)
{
spin_lock(&reg_indoor_lock);
if (reg_is_indoor_portid != portid) {
spin_unlock(&reg_indoor_lock);
return;
}
reg_is_indoor = false;
reg_is_indoor_portid = 0;
spin_unlock(&reg_indoor_lock);
reg_check_channels();
}
/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
struct regulatory_request *request;
if (WARN_ON(!alpha2 || !wiphy))
return -EINVAL;
wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
if (!request)
return -ENOMEM;
request->wiphy_idx = get_wiphy_idx(wiphy);
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
/* Allow calling CRDA again */
reset_crda_timeouts();
queue_regulatory_request(request);
return 0;
}
EXPORT_SYMBOL(regulatory_hint);
void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
const u8 *country_ie, u8 country_ie_len)
{
char alpha2[2];
enum environment_cap env = ENVIRON_ANY;
struct regulatory_request *request = NULL, *lr;
/* IE len must be evenly divisible by 2 */
if (country_ie_len & 0x01)
return;
if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
return;
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (!request)
return;
alpha2[0] = country_ie[0];
alpha2[1] = country_ie[1];
if (country_ie[2] == 'I')
env = ENVIRON_INDOOR;
else if (country_ie[2] == 'O')
env = ENVIRON_OUTDOOR;
rcu_read_lock();
lr = get_last_request();
if (unlikely(!lr))
goto out;
/*
* We will run this only upon a successful connection on cfg80211.
* We leave conflict resolution to the workqueue, where can hold
* the RTNL.
*/
if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
lr->wiphy_idx != WIPHY_IDX_INVALID)
goto out;
request->wiphy_idx = get_wiphy_idx(wiphy);
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
request->country_ie_env = env;
/* Allow calling CRDA again */
reset_crda_timeouts();
queue_regulatory_request(request);
request = NULL;
out:
kfree(request);
rcu_read_unlock();
}
static void restore_alpha2(char *alpha2, bool reset_user)
{
/* indicates there is no alpha2 to consider for restoration */
alpha2[0] = '9';
alpha2[1] = '7';
/* The user setting has precedence over the module parameter */
if (is_user_regdom_saved()) {
/* Unless we're asked to ignore it and reset it */
if (reset_user) {
pr_debug("Restoring regulatory settings including user preference\n");
user_alpha2[0] = '9';
user_alpha2[1] = '7';
/*
* If we're ignoring user settings, we still need to
* check the module parameter to ensure we put things
* back as they were for a full restore.
*/
if (!is_world_regdom(ieee80211_regdom)) {
pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
ieee80211_regdom[0], ieee80211_regdom[1]);
alpha2[0] = ieee80211_regdom[0];
alpha2[1] = ieee80211_regdom[1];
}
} else {
pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
user_alpha2[0], user_alpha2[1]);
alpha2[0] = user_alpha2[0];
alpha2[1] = user_alpha2[1];
}
} else if (!is_world_regdom(ieee80211_regdom)) {
pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
ieee80211_regdom[0], ieee80211_regdom[1]);
alpha2[0] = ieee80211_regdom[0];
alpha2[1] = ieee80211_regdom[1];
} else
pr_debug("Restoring regulatory settings\n");
}
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
struct ieee80211_supported_band *sband;
enum nl80211_band band;
struct ieee80211_channel *chan;
int i;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
sband = wiphy->bands[band];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
chan = &sband->channels[i];
chan->flags = chan->orig_flags;
chan->max_antenna_gain = chan->orig_mag;
chan->max_power = chan->orig_mpwr;
chan->beacon_found = false;
}
}
}
/*
* Restoring regulatory settings involves ingoring any
* possibly stale country IE information and user regulatory
* settings if so desired, this includes any beacon hints
* learned as we could have traveled outside to another country
* after disconnection. To restore regulatory settings we do
* exactly what we did at bootup:
*
* - send a core regulatory hint
* - send a user regulatory hint if applicable
*
* Device drivers that send a regulatory hint for a specific country
* keep their own regulatory domain on wiphy->regd so that does does
* not need to be remembered.
*/
static void restore_regulatory_settings(bool reset_user, bool cached)
{
char alpha2[2];
char world_alpha2[2];
struct reg_beacon *reg_beacon, *btmp;
LIST_HEAD(tmp_reg_req_list);
struct cfg80211_registered_device *rdev;
ASSERT_RTNL();
/*
* Clear the indoor setting in case that it is not controlled by user
* space, as otherwise there is no guarantee that the device is still
* operating in an indoor environment.
*/
spin_lock(&reg_indoor_lock);
if (reg_is_indoor && !reg_is_indoor_portid) {
reg_is_indoor = false;
reg_check_channels();
}
spin_unlock(&reg_indoor_lock);
reset_regdomains(true, &world_regdom);
restore_alpha2(alpha2, reset_user);
/*
* If there's any pending requests we simply
* stash them to a temporary pending queue and
* add then after we've restored regulatory
* settings.
*/
spin_lock(&reg_requests_lock);
list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
spin_unlock(&reg_requests_lock);
/* Clear beacon hints */
spin_lock_bh(&reg_pending_beacons_lock);
list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
}
spin_unlock_bh(&reg_pending_beacons_lock);
list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
}
/* First restore to the basic regulatory settings */
world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
continue;
if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
restore_custom_reg_settings(&rdev->wiphy);
}
if (cached && (!is_an_alpha2(alpha2) ||
!IS_ERR_OR_NULL(cfg80211_user_regdom))) {
reset_regdomains(false, cfg80211_world_regdom);
update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
print_regdomain(get_cfg80211_regdom());
nl80211_send_reg_change_event(&core_request_world);
reg_set_request_processed();
if (is_an_alpha2(alpha2) &&
!regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
struct regulatory_request *ureq;
spin_lock(&reg_requests_lock);
ureq = list_last_entry(&reg_requests_list,
struct regulatory_request,
list);
list_del(&ureq->list);
spin_unlock(&reg_requests_lock);
notify_self_managed_wiphys(ureq);
reg_update_last_request(ureq);
set_regdom(reg_copy_regd(cfg80211_user_regdom),
REGD_SOURCE_CACHED);
}
} else {
regulatory_hint_core(world_alpha2);
/*
* This restores the ieee80211_regdom module parameter
* preference or the last user requested regulatory
* settings, user regulatory settings takes precedence.
*/
if (is_an_alpha2(alpha2))
regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
}
spin_lock(&reg_requests_lock);
list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
spin_unlock(&reg_requests_lock);
pr_debug("Kicking the queue\n");
schedule_work(&reg_work);
}
static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
{
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
wdev_lock(wdev);
if (!(wdev->wiphy->regulatory_flags & flag)) {
wdev_unlock(wdev);
return false;
}
wdev_unlock(wdev);
}
}
return true;
}
void regulatory_hint_disconnect(void)
{
/* Restore of regulatory settings is not required when wiphy(s)
* ignore IE from connected access point but clearance of beacon hints
* is required when wiphy(s) supports beacon hints.
*/
if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
struct reg_beacon *reg_beacon, *btmp;
if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
return;
spin_lock_bh(&reg_pending_beacons_lock);
list_for_each_entry_safe(reg_beacon, btmp,
&reg_pending_beacons, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
}
spin_unlock_bh(&reg_pending_beacons_lock);
list_for_each_entry_safe(reg_beacon, btmp,
&reg_beacon_list, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
}
return;
}
pr_debug("All devices are disconnected, going to restore regulatory settings\n");
restore_regulatory_settings(false, true);
}
static bool freq_is_chan_12_13_14(u32 freq)
{
if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
return true;
return false;
}
static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
{
struct reg_beacon *pending_beacon;
list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
if (beacon_chan->center_freq ==
pending_beacon->chan.center_freq)
return true;
return false;
}
int regulatory_hint_found_beacon(struct wiphy *wiphy,
struct ieee80211_channel *beacon_chan,
gfp_t gfp)
{
struct reg_beacon *reg_beacon;
bool processing;
if (beacon_chan->beacon_found ||
beacon_chan->flags & IEEE80211_CHAN_RADAR ||
(beacon_chan->band == NL80211_BAND_2GHZ &&
!freq_is_chan_12_13_14(beacon_chan->center_freq)))
return 0;
spin_lock_bh(&reg_pending_beacons_lock);
processing = pending_reg_beacon(beacon_chan);
spin_unlock_bh(&reg_pending_beacons_lock);
if (processing)
return 0;
reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
if (!reg_beacon)
return -ENOMEM;
pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
beacon_chan->center_freq,
ieee80211_frequency_to_channel(beacon_chan->center_freq),
wiphy_name(wiphy));
memcpy(&reg_beacon->chan, beacon_chan,
sizeof(struct ieee80211_channel));
/*
* Since we can be called from BH or and non-BH context
* we must use spin_lock_bh()
*/
spin_lock_bh(&reg_pending_beacons_lock);
list_add_tail(&reg_beacon->list, &reg_pending_beacons);
spin_unlock_bh(&reg_pending_beacons_lock);
schedule_work(&reg_work);
return 0;
}
static void print_rd_rules(const struct ieee80211_regdomain *rd)
{
unsigned int i;
const struct ieee80211_reg_rule *reg_rule = NULL;
const struct ieee80211_freq_range *freq_range = NULL;
const struct ieee80211_power_rule *power_rule = NULL;
char bw[32], cac_time[32];
pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
for (i = 0; i < rd->n_reg_rules; i++) {
reg_rule = &rd->reg_rules[i];
freq_range = &reg_rule->freq_range;
power_rule = &reg_rule->power_rule;
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
freq_range->max_bandwidth_khz,
reg_get_max_bandwidth(rd, reg_rule));
else
snprintf(bw, sizeof(bw), "%d KHz",
freq_range->max_bandwidth_khz);
if (reg_rule->flags & NL80211_RRF_DFS)
scnprintf(cac_time, sizeof(cac_time), "%u s",
reg_rule->dfs_cac_ms/1000);
else
scnprintf(cac_time, sizeof(cac_time), "N/A");
/*
* There may not be documentation for max antenna gain
* in certain regions
*/
if (power_rule->max_antenna_gain)
pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
freq_range->start_freq_khz,
freq_range->end_freq_khz,
bw,
power_rule->max_antenna_gain,
power_rule->max_eirp,
cac_time);
else
pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
freq_range->start_freq_khz,
freq_range->end_freq_khz,
bw,
power_rule->max_eirp,
cac_time);
}
}
bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_UNSET:
case NL80211_DFS_FCC:
case NL80211_DFS_ETSI:
case NL80211_DFS_JP:
return true;
default:
pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
return false;
}
}
static void print_regdomain(const struct ieee80211_regdomain *rd)
{
struct regulatory_request *lr = get_last_request();
if (is_intersected_alpha2(rd->alpha2)) {
if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
struct cfg80211_registered_device *rdev;
rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
if (rdev) {
pr_debug("Current regulatory domain updated by AP to: %c%c\n",
rdev->country_ie_alpha2[0],
rdev->country_ie_alpha2[1]);
} else
pr_debug("Current regulatory domain intersected:\n");
} else
pr_debug("Current regulatory domain intersected:\n");
} else if (is_world_regdom(rd->alpha2)) {
pr_debug("World regulatory domain updated:\n");
} else {
if (is_unknown_alpha2(rd->alpha2))
pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
else {
if (reg_request_cell_base(lr))
pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
rd->alpha2[0], rd->alpha2[1]);
else
pr_debug("Regulatory domain changed to country: %c%c\n",
rd->alpha2[0], rd->alpha2[1]);
}
}
pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
print_rd_rules(rd);
}
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
{
pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
print_rd_rules(rd);
}
static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
{
if (!is_world_regdom(rd->alpha2))
return -EINVAL;
update_world_regdomain(rd);
return 0;
}
static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
struct regulatory_request *user_request)
{
const struct ieee80211_regdomain *intersected_rd = NULL;
if (!regdom_changes(rd->alpha2))
return -EALREADY;
if (!is_valid_rd(rd)) {
pr_err("Invalid regulatory domain detected: %c%c\n",
rd->alpha2[0], rd->alpha2[1]);
print_regdomain_info(rd);
return -EINVAL;
}
if (!user_request->intersect) {
reset_regdomains(false, rd);
return 0;
}
intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
if (!intersected_rd)
return -EINVAL;
kfree(rd);
rd = NULL;
reset_regdomains(false, intersected_rd);
return 0;
}
static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
struct regulatory_request *driver_request)
{
const struct ieee80211_regdomain *regd;
const struct ieee80211_regdomain *intersected_rd = NULL;
const struct ieee80211_regdomain *tmp;
struct wiphy *request_wiphy;
if (is_world_regdom(rd->alpha2))
return -EINVAL;
if (!regdom_changes(rd->alpha2))
return -EALREADY;
if (!is_valid_rd(rd)) {
pr_err("Invalid regulatory domain detected: %c%c\n",
rd->alpha2[0], rd->alpha2[1]);
print_regdomain_info(rd);
return -EINVAL;
}
request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
if (!request_wiphy)
return -ENODEV;
if (!driver_request->intersect) {
if (request_wiphy->regd)
return -EALREADY;
regd = reg_copy_regd(rd);
if (IS_ERR(regd))
return PTR_ERR(regd);
rcu_assign_pointer(request_wiphy->regd, regd);
reset_regdomains(false, rd);
return 0;
}
intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
if (!intersected_rd)
return -EINVAL;
/*
* We can trash what CRDA provided now.
* However if a driver requested this specific regulatory
* domain we keep it for its private use
*/
tmp = get_wiphy_regdom(request_wiphy);
rcu_assign_pointer(request_wiphy->regd, rd);
rcu_free_regdom(tmp);
rd = NULL;
reset_regdomains(false, intersected_rd);
return 0;
}
static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
struct regulatory_request *country_ie_request)
{
struct wiphy *request_wiphy;
if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
!is_unknown_alpha2(rd->alpha2))
return -EINVAL;
/*
* Lets only bother proceeding on the same alpha2 if the current
* rd is non static (it means CRDA was present and was used last)
* and the pending request came in from a country IE
*/
if (!is_valid_rd(rd)) {
pr_err("Invalid regulatory domain detected: %c%c\n",
rd->alpha2[0], rd->alpha2[1]);
print_regdomain_info(rd);
return -EINVAL;
}
request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
if (!request_wiphy)
return -ENODEV;
if (country_ie_request->intersect)
return -EINVAL;
reset_regdomains(false, rd);
return 0;
}
/*
* Use this call to set the current regulatory domain. Conflicts with
* multiple drivers can be ironed out later. Caller must've already
* kmalloc'd the rd structure.
*/
int set_regdom(const struct ieee80211_regdomain *rd,
enum ieee80211_regd_source regd_src)
{
struct regulatory_request *lr;
bool user_reset = false;
int r;
if (IS_ERR_OR_NULL(rd))
return -ENODATA;
if (!reg_is_valid_request(rd->alpha2)) {
kfree(rd);
return -EINVAL;
}
if (regd_src == REGD_SOURCE_CRDA)
reset_crda_timeouts();
lr = get_last_request();
/* Note that this doesn't update the wiphys, this is done below */
switch (lr->initiator) {
case NL80211_REGDOM_SET_BY_CORE:
r = reg_set_rd_core(rd);
break;
case NL80211_REGDOM_SET_BY_USER:
cfg80211_save_user_regdom(rd);
r = reg_set_rd_user(rd, lr);
user_reset = true;
break;
case NL80211_REGDOM_SET_BY_DRIVER:
r = reg_set_rd_driver(rd, lr);
break;
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
r = reg_set_rd_country_ie(rd, lr);
break;
default:
WARN(1, "invalid initiator %d\n", lr->initiator);
kfree(rd);
return -EINVAL;
}
if (r) {
switch (r) {
case -EALREADY:
reg_set_request_processed();
break;
default:
/* Back to world regulatory in case of errors */
restore_regulatory_settings(user_reset, false);
}
kfree(rd);
return r;
}
/* This would make this whole thing pointless */
if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
return -EINVAL;
/* update all wiphys now with the new established regulatory domain */
update_all_wiphy_regulatory(lr->initiator);
print_regdomain(get_cfg80211_regdom());
nl80211_send_reg_change_event(lr);
reg_set_request_processed();
return 0;
}
static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
struct ieee80211_regdomain *rd)
{
const struct ieee80211_regdomain *regd;
const struct ieee80211_regdomain *prev_regd;
struct cfg80211_registered_device *rdev;
if (WARN_ON(!wiphy || !rd))
return -EINVAL;
if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
"wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
return -EPERM;
if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
print_regdomain_info(rd);
return -EINVAL;
}
regd = reg_copy_regd(rd);
if (IS_ERR(regd))
return PTR_ERR(regd);
rdev = wiphy_to_rdev(wiphy);
spin_lock(&reg_requests_lock);
prev_regd = rdev->requested_regd;
rdev->requested_regd = regd;
spin_unlock(&reg_requests_lock);
kfree(prev_regd);
return 0;
}
int regulatory_set_wiphy_regd(struct wiphy *wiphy,
struct ieee80211_regdomain *rd)
{
int ret = __regulatory_set_wiphy_regd(wiphy, rd);
if (ret)
return ret;
schedule_work(&reg_work);
return 0;
}
EXPORT_SYMBOL(regulatory_set_wiphy_regd);
int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
struct ieee80211_regdomain *rd)
{
int ret;
ASSERT_RTNL();
ret = __regulatory_set_wiphy_regd(wiphy, rd);
if (ret)
return ret;
/* process the request immediately */
reg_process_self_managed_hints();
return 0;
}
EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
void wiphy_regulatory_register(struct wiphy *wiphy)
{
struct regulatory_request *lr = get_last_request();
/* self-managed devices ignore beacon hints and country IE */
if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
REGULATORY_COUNTRY_IE_IGNORE;
/*
* The last request may have been received before this
* registration call. Call the driver notifier if
* initiator is USER.
*/
if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
reg_call_notifier(wiphy, lr);
}
if (!reg_dev_ignore_cell_hint(wiphy))
reg_num_devs_support_basehint++;
wiphy_update_regulatory(wiphy, lr->initiator);
wiphy_all_share_dfs_chan_state(wiphy);
}
void wiphy_regulatory_deregister(struct wiphy *wiphy)
{
struct wiphy *request_wiphy = NULL;
struct regulatory_request *lr;
lr = get_last_request();
if (!reg_dev_ignore_cell_hint(wiphy))
reg_num_devs_support_basehint--;
rcu_free_regdom(get_wiphy_regdom(wiphy));
RCU_INIT_POINTER(wiphy->regd, NULL);
if (lr)
request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
if (!request_wiphy || request_wiphy != wiphy)
return;
lr->wiphy_idx = WIPHY_IDX_INVALID;
lr->country_ie_env = ENVIRON_ANY;
}
/*
* See FCC notices for UNII band definitions
* 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
* 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
*/
int cfg80211_get_unii(int freq)
{
/* UNII-1 */
if (freq >= 5150 && freq <= 5250)
return 0;
/* UNII-2A */
if (freq > 5250 && freq <= 5350)
return 1;
/* UNII-2B */
if (freq > 5350 && freq <= 5470)
return 2;
/* UNII-2C */
if (freq > 5470 && freq <= 5725)
return 3;
/* UNII-3 */
if (freq > 5725 && freq <= 5825)
return 4;
/* UNII-5 */
if (freq > 5925 && freq <= 6425)
return 5;
/* UNII-6 */
if (freq > 6425 && freq <= 6525)
return 6;
/* UNII-7 */
if (freq > 6525 && freq <= 6875)
return 7;
/* UNII-8 */
if (freq > 6875 && freq <= 7125)
return 8;
return -EINVAL;
}
bool regulatory_indoor_allowed(void)
{
return reg_is_indoor;
}
bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
{
const struct ieee80211_regdomain *regd = NULL;
const struct ieee80211_regdomain *wiphy_regd = NULL;
bool pre_cac_allowed = false;
rcu_read_lock();
regd = rcu_dereference(cfg80211_regdomain);
wiphy_regd = rcu_dereference(wiphy->regd);
if (!wiphy_regd) {
if (regd->dfs_region == NL80211_DFS_ETSI)
pre_cac_allowed = true;
rcu_read_unlock();
return pre_cac_allowed;
}
if (regd->dfs_region == wiphy_regd->dfs_region &&
wiphy_regd->dfs_region == NL80211_DFS_ETSI)
pre_cac_allowed = true;
rcu_read_unlock();
return pre_cac_allowed;
}
EXPORT_SYMBOL(regulatory_pre_cac_allowed);
void regulatory_propagate_dfs_state(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
enum nl80211_dfs_state dfs_state,
enum nl80211_radar_event event)
{
struct cfg80211_registered_device *rdev;
ASSERT_RTNL();
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return;
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
if (wiphy == &rdev->wiphy)
continue;
if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
continue;
if (!ieee80211_get_channel(&rdev->wiphy,
chandef->chan->center_freq))
continue;
cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
if (event == NL80211_RADAR_DETECTED ||
event == NL80211_RADAR_CAC_FINISHED)
cfg80211_sched_dfs_chan_update(rdev);
nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
}
}
static int __init regulatory_init_db(void)
{
int err;
/*
* It's possible that - due to other bugs/issues - cfg80211
* never called regulatory_init() below, or that it failed;
* in that case, don't try to do any further work here as
* it's doomed to lead to crashes.
*/
if (IS_ERR_OR_NULL(reg_pdev))
return -EINVAL;
err = load_builtin_regdb_keys();
if (err)
return err;
/* We always try to get an update for the static regdomain */
err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
if (err) {
if (err == -ENOMEM) {
platform_device_unregister(reg_pdev);
return err;
}
/*
* N.B. kobject_uevent_env() can fail mainly for when we're out
* memory which is handled and propagated appropriately above
* but it can also fail during a netlink_broadcast() or during
* early boot for call_usermodehelper(). For now treat these
* errors as non-fatal.
*/
pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
}
/*
* Finally, if the user set the module parameter treat it
* as a user hint.
*/
if (!is_world_regdom(ieee80211_regdom))
regulatory_hint_user(ieee80211_regdom,
NL80211_USER_REG_HINT_USER);
return 0;
}
#ifndef MODULE
late_initcall(regulatory_init_db);
#endif
int __init regulatory_init(void)
{
reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
if (IS_ERR(reg_pdev))
return PTR_ERR(reg_pdev);
spin_lock_init(&reg_requests_lock);
spin_lock_init(&reg_pending_beacons_lock);
spin_lock_init(&reg_indoor_lock);
rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
user_alpha2[0] = '9';
user_alpha2[1] = '7';
#ifdef MODULE
return regulatory_init_db();
#else
return 0;
#endif
}
void regulatory_exit(void)
{
struct regulatory_request *reg_request, *tmp;
struct reg_beacon *reg_beacon, *btmp;
cancel_work_sync(&reg_work);
cancel_crda_timeout_sync();
cancel_delayed_work_sync(&reg_check_chans);
/* Lock to suppress warnings */
rtnl_lock();
reset_regdomains(true, NULL);
rtnl_unlock();
dev_set_uevent_suppress(&reg_pdev->dev, true);
platform_device_unregister(reg_pdev);
list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
}
list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
}
list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
list_del(&reg_request->list);
kfree(reg_request);
}
if (!IS_ERR_OR_NULL(regdb))
kfree(regdb);
if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
kfree(cfg80211_user_regdom);
free_regdb_keyring();
}