linux-next/drivers/ata/ahci_imx.c
Thomas Gleixner 9952f6918d treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 201
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not see http www gnu org
  licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 228 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171438.107155473@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:29:52 -07:00

1243 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* copyright (c) 2013 Freescale Semiconductor, Inc.
* Freescale IMX AHCI SATA platform driver
*
* based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/ahci_platform.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
#include <linux/libata.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/thermal.h>
#include "ahci.h"
#define DRV_NAME "ahci-imx"
enum {
/* Timer 1-ms Register */
IMX_TIMER1MS = 0x00e0,
/* Port0 PHY Control Register */
IMX_P0PHYCR = 0x0178,
IMX_P0PHYCR_TEST_PDDQ = 1 << 20,
IMX_P0PHYCR_CR_READ = 1 << 19,
IMX_P0PHYCR_CR_WRITE = 1 << 18,
IMX_P0PHYCR_CR_CAP_DATA = 1 << 17,
IMX_P0PHYCR_CR_CAP_ADDR = 1 << 16,
/* Port0 PHY Status Register */
IMX_P0PHYSR = 0x017c,
IMX_P0PHYSR_CR_ACK = 1 << 18,
IMX_P0PHYSR_CR_DATA_OUT = 0xffff << 0,
/* Lane0 Output Status Register */
IMX_LANE0_OUT_STAT = 0x2003,
IMX_LANE0_OUT_STAT_RX_PLL_STATE = 1 << 1,
/* Clock Reset Register */
IMX_CLOCK_RESET = 0x7f3f,
IMX_CLOCK_RESET_RESET = 1 << 0,
/* IMX8QM HSIO AHCI definitions */
IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET = 0x03,
IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET = 0x09,
IMX8QM_SATA_PHY_IMPED_RATIO_85OHM = 0x6c,
IMX8QM_LPCG_PHYX2_OFFSET = 0x00000,
IMX8QM_CSR_PHYX2_OFFSET = 0x90000,
IMX8QM_CSR_PHYX1_OFFSET = 0xa0000,
IMX8QM_CSR_PHYX_STTS0_OFFSET = 0x4,
IMX8QM_CSR_PCIEA_OFFSET = 0xb0000,
IMX8QM_CSR_PCIEB_OFFSET = 0xc0000,
IMX8QM_CSR_SATA_OFFSET = 0xd0000,
IMX8QM_CSR_PCIE_CTRL2_OFFSET = 0x8,
IMX8QM_CSR_MISC_OFFSET = 0xe0000,
IMX8QM_LPCG_PHYX2_PCLK0_MASK = (0x3 << 16),
IMX8QM_LPCG_PHYX2_PCLK1_MASK = (0x3 << 20),
IMX8QM_PHY_APB_RSTN_0 = BIT(0),
IMX8QM_PHY_MODE_SATA = BIT(19),
IMX8QM_PHY_MODE_MASK = (0xf << 17),
IMX8QM_PHY_PIPE_RSTN_0 = BIT(24),
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0 = BIT(25),
IMX8QM_PHY_PIPE_RSTN_1 = BIT(26),
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1 = BIT(27),
IMX8QM_STTS0_LANE0_TX_PLL_LOCK = BIT(4),
IMX8QM_MISC_IOB_RXENA = BIT(0),
IMX8QM_MISC_IOB_TXENA = BIT(1),
IMX8QM_MISC_PHYX1_EPCS_SEL = BIT(12),
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 = BIT(24),
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 = BIT(25),
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 = BIT(28),
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0 = BIT(29),
IMX8QM_SATA_CTRL_RESET_N = BIT(12),
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N = BIT(7),
IMX8QM_CTRL_BUTTON_RST_N = BIT(21),
IMX8QM_CTRL_POWER_UP_RST_N = BIT(23),
IMX8QM_CTRL_LTSSM_ENABLE = BIT(4),
};
enum ahci_imx_type {
AHCI_IMX53,
AHCI_IMX6Q,
AHCI_IMX6QP,
AHCI_IMX8QM,
};
struct imx_ahci_priv {
struct platform_device *ahci_pdev;
enum ahci_imx_type type;
struct clk *sata_clk;
struct clk *sata_ref_clk;
struct clk *ahb_clk;
struct clk *epcs_tx_clk;
struct clk *epcs_rx_clk;
struct clk *phy_apbclk;
struct clk *phy_pclk0;
struct clk *phy_pclk1;
void __iomem *phy_base;
int clkreq_gpio;
struct regmap *gpr;
bool no_device;
bool first_time;
u32 phy_params;
u32 imped_ratio;
};
static int ahci_imx_hotplug;
module_param_named(hotplug, ahci_imx_hotplug, int, 0644);
MODULE_PARM_DESC(hotplug, "AHCI IMX hot-plug support (0=Don't support, 1=support)");
static void ahci_imx_host_stop(struct ata_host *host);
static int imx_phy_crbit_assert(void __iomem *mmio, u32 bit, bool assert)
{
int timeout = 10;
u32 crval;
u32 srval;
/* Assert or deassert the bit */
crval = readl(mmio + IMX_P0PHYCR);
if (assert)
crval |= bit;
else
crval &= ~bit;
writel(crval, mmio + IMX_P0PHYCR);
/* Wait for the cr_ack signal */
do {
srval = readl(mmio + IMX_P0PHYSR);
if ((assert ? srval : ~srval) & IMX_P0PHYSR_CR_ACK)
break;
usleep_range(100, 200);
} while (--timeout);
return timeout ? 0 : -ETIMEDOUT;
}
static int imx_phy_reg_addressing(u16 addr, void __iomem *mmio)
{
u32 crval = addr;
int ret;
/* Supply the address on cr_data_in */
writel(crval, mmio + IMX_P0PHYCR);
/* Assert the cr_cap_addr signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, true);
if (ret)
return ret;
/* Deassert cr_cap_addr */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_ADDR, false);
if (ret)
return ret;
return 0;
}
static int imx_phy_reg_write(u16 val, void __iomem *mmio)
{
u32 crval = val;
int ret;
/* Supply the data on cr_data_in */
writel(crval, mmio + IMX_P0PHYCR);
/* Assert the cr_cap_data signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, true);
if (ret)
return ret;
/* Deassert cr_cap_data */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_CAP_DATA, false);
if (ret)
return ret;
if (val & IMX_CLOCK_RESET_RESET) {
/*
* In case we're resetting the phy, it's unable to acknowledge,
* so we return immediately here.
*/
crval |= IMX_P0PHYCR_CR_WRITE;
writel(crval, mmio + IMX_P0PHYCR);
goto out;
}
/* Assert the cr_write signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, true);
if (ret)
return ret;
/* Deassert cr_write */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_WRITE, false);
if (ret)
return ret;
out:
return 0;
}
static int imx_phy_reg_read(u16 *val, void __iomem *mmio)
{
int ret;
/* Assert the cr_read signal */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, true);
if (ret)
return ret;
/* Capture the data from cr_data_out[] */
*val = readl(mmio + IMX_P0PHYSR) & IMX_P0PHYSR_CR_DATA_OUT;
/* Deassert cr_read */
ret = imx_phy_crbit_assert(mmio, IMX_P0PHYCR_CR_READ, false);
if (ret)
return ret;
return 0;
}
static int imx_sata_phy_reset(struct ahci_host_priv *hpriv)
{
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
void __iomem *mmio = hpriv->mmio;
int timeout = 10;
u16 val;
int ret;
if (imxpriv->type == AHCI_IMX6QP) {
/* 6qp adds the sata reset mechanism, use it for 6qp sata */
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_PD, 0);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_RST, 0);
udelay(50);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_RST,
IMX6Q_GPR5_SATA_SW_RST);
return 0;
}
/* Reset SATA PHY by setting RESET bit of PHY register CLOCK_RESET */
ret = imx_phy_reg_addressing(IMX_CLOCK_RESET, mmio);
if (ret)
return ret;
ret = imx_phy_reg_write(IMX_CLOCK_RESET_RESET, mmio);
if (ret)
return ret;
/* Wait for PHY RX_PLL to be stable */
do {
usleep_range(100, 200);
ret = imx_phy_reg_addressing(IMX_LANE0_OUT_STAT, mmio);
if (ret)
return ret;
ret = imx_phy_reg_read(&val, mmio);
if (ret)
return ret;
if (val & IMX_LANE0_OUT_STAT_RX_PLL_STATE)
break;
} while (--timeout);
return timeout ? 0 : -ETIMEDOUT;
}
enum {
/* SATA PHY Register */
SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT = 0x0001,
SATA_PHY_CR_CLOCK_DAC_CTL = 0x0008,
SATA_PHY_CR_CLOCK_RTUNE_CTL = 0x0009,
SATA_PHY_CR_CLOCK_ADC_OUT = 0x000A,
SATA_PHY_CR_CLOCK_MPLL_TST = 0x0017,
};
static int read_adc_sum(void *dev, u16 rtune_ctl_reg, void __iomem * mmio)
{
u16 adc_out_reg, read_sum;
u32 index, read_attempt;
const u32 attempt_limit = 200;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
imx_phy_reg_write(rtune_ctl_reg, mmio);
/* two dummy read */
index = 0;
read_attempt = 0;
adc_out_reg = 0;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_ADC_OUT, mmio);
while (index < 2) {
imx_phy_reg_read(&adc_out_reg, mmio);
/* check if valid */
if (adc_out_reg & 0x400)
index++;
read_attempt++;
if (read_attempt > attempt_limit) {
dev_err(dev, "Read REG more than %d times!\n",
attempt_limit);
break;
}
}
index = 0;
read_attempt = 0;
read_sum = 0;
while (index < 80) {
imx_phy_reg_read(&adc_out_reg, mmio);
if (adc_out_reg & 0x400) {
read_sum = read_sum + (adc_out_reg & 0x3FF);
index++;
}
read_attempt++;
if (read_attempt > attempt_limit) {
dev_err(dev, "Read REG more than %d times!\n",
attempt_limit);
break;
}
}
/* Use the U32 to make 1000 precision */
return (read_sum * 1000) / 80;
}
/* SATA AHCI temperature monitor */
static int sata_ahci_read_temperature(void *dev, int *temp)
{
u16 mpll_test_reg, rtune_ctl_reg, dac_ctl_reg, read_sum;
u32 str1, str2, str3, str4;
int m1, m2, a;
struct ahci_host_priv *hpriv = dev_get_drvdata(dev);
void __iomem *mmio = hpriv->mmio;
/* check rd-wr to reg */
read_sum = 0;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_CRCMP_LT_LIMIT, mmio);
imx_phy_reg_write(read_sum, mmio);
imx_phy_reg_read(&read_sum, mmio);
if ((read_sum & 0xffff) != 0)
dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum);
imx_phy_reg_write(0x5A5A, mmio);
imx_phy_reg_read(&read_sum, mmio);
if ((read_sum & 0xffff) != 0x5A5A)
dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum);
imx_phy_reg_write(0x1234, mmio);
imx_phy_reg_read(&read_sum, mmio);
if ((read_sum & 0xffff) != 0x1234)
dev_err(dev, "Read/Write REG error, 0x%x!\n", read_sum);
/* start temperature test */
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
imx_phy_reg_read(&mpll_test_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
imx_phy_reg_read(&rtune_ctl_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
imx_phy_reg_read(&dac_ctl_reg, mmio);
/* mpll_tst.meas_iv ([12:2]) */
str1 = (mpll_test_reg >> 2) & 0x7FF;
/* rtune_ctl.mode ([1:0]) */
str2 = (rtune_ctl_reg) & 0x3;
/* dac_ctl.dac_mode ([14:12]) */
str3 = (dac_ctl_reg >> 12) & 0x7;
/* rtune_ctl.sel_atbp ([4]) */
str4 = (rtune_ctl_reg >> 4);
/* Calculate the m1 */
/* mpll_tst.meas_iv */
mpll_test_reg = (mpll_test_reg & 0xE03) | (512) << 2;
/* rtune_ctl.mode */
rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (1);
/* dac_ctl.dac_mode */
dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (4) << 12;
/* rtune_ctl.sel_atbp */
rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (0) << 4;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
imx_phy_reg_write(mpll_test_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
imx_phy_reg_write(dac_ctl_reg, mmio);
m1 = read_adc_sum(dev, rtune_ctl_reg, mmio);
/* Calculate the m2 */
/* rtune_ctl.sel_atbp */
rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (1) << 4;
m2 = read_adc_sum(dev, rtune_ctl_reg, mmio);
/* restore the status */
/* mpll_tst.meas_iv */
mpll_test_reg = (mpll_test_reg & 0xE03) | (str1) << 2;
/* rtune_ctl.mode */
rtune_ctl_reg = (rtune_ctl_reg & 0xFFC) | (str2);
/* dac_ctl.dac_mode */
dac_ctl_reg = (dac_ctl_reg & 0x8FF) | (str3) << 12;
/* rtune_ctl.sel_atbp */
rtune_ctl_reg = (rtune_ctl_reg & 0xFEF) | (str4) << 4;
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_MPLL_TST, mmio);
imx_phy_reg_write(mpll_test_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_DAC_CTL, mmio);
imx_phy_reg_write(dac_ctl_reg, mmio);
imx_phy_reg_addressing(SATA_PHY_CR_CLOCK_RTUNE_CTL, mmio);
imx_phy_reg_write(rtune_ctl_reg, mmio);
/* Compute temperature */
if (!(m2 / 1000))
m2 = 1000;
a = (m2 - m1) / (m2/1000);
*temp = ((-559) * a * a) / 1000 + (1379) * a + (-458000);
return 0;
}
static ssize_t sata_ahci_show_temp(struct device *dev,
struct device_attribute *da,
char *buf)
{
unsigned int temp = 0;
int err;
err = sata_ahci_read_temperature(dev, &temp);
if (err < 0)
return err;
return sprintf(buf, "%u\n", temp);
}
static const struct thermal_zone_of_device_ops fsl_sata_ahci_of_thermal_ops = {
.get_temp = sata_ahci_read_temperature,
};
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, sata_ahci_show_temp, NULL, 0);
static struct attribute *fsl_sata_ahci_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(fsl_sata_ahci);
static int imx8_sata_enable(struct ahci_host_priv *hpriv)
{
u32 val, reg;
int i, ret;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
struct device *dev = &imxpriv->ahci_pdev->dev;
/* configure the hsio for sata */
ret = clk_prepare_enable(imxpriv->phy_pclk0);
if (ret < 0) {
dev_err(dev, "can't enable phy_pclk0.\n");
return ret;
}
ret = clk_prepare_enable(imxpriv->phy_pclk1);
if (ret < 0) {
dev_err(dev, "can't enable phy_pclk1.\n");
goto disable_phy_pclk0;
}
ret = clk_prepare_enable(imxpriv->epcs_tx_clk);
if (ret < 0) {
dev_err(dev, "can't enable epcs_tx_clk.\n");
goto disable_phy_pclk1;
}
ret = clk_prepare_enable(imxpriv->epcs_rx_clk);
if (ret < 0) {
dev_err(dev, "can't enable epcs_rx_clk.\n");
goto disable_epcs_tx_clk;
}
ret = clk_prepare_enable(imxpriv->phy_apbclk);
if (ret < 0) {
dev_err(dev, "can't enable phy_apbclk.\n");
goto disable_epcs_rx_clk;
}
/* Configure PHYx2 PIPE_RSTN */
regmap_read(imxpriv->gpr, IMX8QM_CSR_PCIEA_OFFSET +
IMX8QM_CSR_PCIE_CTRL2_OFFSET, &val);
if ((val & IMX8QM_CTRL_LTSSM_ENABLE) == 0) {
/* The link of the PCIEA of HSIO is down */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX2_OFFSET,
IMX8QM_PHY_PIPE_RSTN_0 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0,
IMX8QM_PHY_PIPE_RSTN_0 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_0);
}
regmap_read(imxpriv->gpr, IMX8QM_CSR_PCIEB_OFFSET +
IMX8QM_CSR_PCIE_CTRL2_OFFSET, &reg);
if ((reg & IMX8QM_CTRL_LTSSM_ENABLE) == 0) {
/* The link of the PCIEB of HSIO is down */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX2_OFFSET,
IMX8QM_PHY_PIPE_RSTN_1 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1,
IMX8QM_PHY_PIPE_RSTN_1 |
IMX8QM_PHY_PIPE_RSTN_OVERRIDE_1);
}
if (((reg | val) & IMX8QM_CTRL_LTSSM_ENABLE) == 0) {
/* The links of both PCIA and PCIEB of HSIO are down */
regmap_update_bits(imxpriv->gpr,
IMX8QM_LPCG_PHYX2_OFFSET,
IMX8QM_LPCG_PHYX2_PCLK0_MASK |
IMX8QM_LPCG_PHYX2_PCLK1_MASK,
0);
}
/* set PWR_RST and BT_RST of csr_pciea */
val = IMX8QM_CSR_PCIEA_OFFSET + IMX8QM_CSR_PCIE_CTRL2_OFFSET;
regmap_update_bits(imxpriv->gpr,
val,
IMX8QM_CTRL_BUTTON_RST_N,
IMX8QM_CTRL_BUTTON_RST_N);
regmap_update_bits(imxpriv->gpr,
val,
IMX8QM_CTRL_POWER_UP_RST_N,
IMX8QM_CTRL_POWER_UP_RST_N);
/* PHYX1_MODE to SATA */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX1_OFFSET,
IMX8QM_PHY_MODE_MASK,
IMX8QM_PHY_MODE_SATA);
/*
* BIT0 RXENA 1, BIT1 TXENA 0
* BIT12 PHY_X1_EPCS_SEL 1.
*/
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_IOB_RXENA,
IMX8QM_MISC_IOB_RXENA);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_IOB_TXENA,
0);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_PHYX1_EPCS_SEL,
IMX8QM_MISC_PHYX1_EPCS_SEL);
/*
* It is possible, for PCIe and SATA are sharing
* the same clock source, HPLL or external oscillator.
* When PCIe is in low power modes (L1.X or L2 etc),
* the clock source can be turned off. In this case,
* if this clock source is required to be toggling by
* SATA, then SATA functions will be abnormal.
* Set the override here to avoid it.
*/
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_MISC_OFFSET,
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0,
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_OUT_OVERRIDE_0 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_1 |
IMX8QM_MISC_CLKREQN_IN_OVERRIDE_0);
/* clear PHY RST, then set it */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N,
0);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N,
IMX8QM_SATA_CTRL_EPCS_PHYRESET_N);
/* CTRL RST: SET -> delay 1 us -> CLEAR -> SET */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_RESET_N,
IMX8QM_SATA_CTRL_RESET_N);
udelay(1);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_RESET_N,
0);
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_SATA_OFFSET,
IMX8QM_SATA_CTRL_RESET_N,
IMX8QM_SATA_CTRL_RESET_N);
/* APB reset */
regmap_update_bits(imxpriv->gpr,
IMX8QM_CSR_PHYX1_OFFSET,
IMX8QM_PHY_APB_RSTN_0,
IMX8QM_PHY_APB_RSTN_0);
for (i = 0; i < 100; i++) {
reg = IMX8QM_CSR_PHYX1_OFFSET +
IMX8QM_CSR_PHYX_STTS0_OFFSET;
regmap_read(imxpriv->gpr, reg, &val);
val &= IMX8QM_STTS0_LANE0_TX_PLL_LOCK;
if (val == IMX8QM_STTS0_LANE0_TX_PLL_LOCK)
break;
udelay(1);
}
if (val != IMX8QM_STTS0_LANE0_TX_PLL_LOCK) {
dev_err(dev, "TX PLL of the PHY is not locked\n");
ret = -ENODEV;
} else {
writeb(imxpriv->imped_ratio, imxpriv->phy_base +
IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET);
writeb(imxpriv->imped_ratio, imxpriv->phy_base +
IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET);
reg = readb(imxpriv->phy_base +
IMX8QM_SATA_PHY_RX_IMPED_RATIO_OFFSET);
if (unlikely(reg != imxpriv->imped_ratio))
dev_info(dev, "Can't set PHY RX impedance ratio.\n");
reg = readb(imxpriv->phy_base +
IMX8QM_SATA_PHY_TX_IMPED_RATIO_OFFSET);
if (unlikely(reg != imxpriv->imped_ratio))
dev_info(dev, "Can't set PHY TX impedance ratio.\n");
usleep_range(50, 100);
/*
* To reduce the power consumption, gate off
* the PHY clks
*/
clk_disable_unprepare(imxpriv->phy_apbclk);
clk_disable_unprepare(imxpriv->phy_pclk1);
clk_disable_unprepare(imxpriv->phy_pclk0);
return ret;
}
clk_disable_unprepare(imxpriv->phy_apbclk);
disable_epcs_rx_clk:
clk_disable_unprepare(imxpriv->epcs_rx_clk);
disable_epcs_tx_clk:
clk_disable_unprepare(imxpriv->epcs_tx_clk);
disable_phy_pclk1:
clk_disable_unprepare(imxpriv->phy_pclk1);
disable_phy_pclk0:
clk_disable_unprepare(imxpriv->phy_pclk0);
return ret;
}
static int imx_sata_enable(struct ahci_host_priv *hpriv)
{
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
struct device *dev = &imxpriv->ahci_pdev->dev;
int ret;
if (imxpriv->no_device)
return 0;
ret = ahci_platform_enable_regulators(hpriv);
if (ret)
return ret;
ret = clk_prepare_enable(imxpriv->sata_ref_clk);
if (ret < 0)
goto disable_regulator;
if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) {
/*
* set PHY Paremeters, two steps to configure the GPR13,
* one write for rest of parameters, mask of first write
* is 0x07ffffff, and the other one write for setting
* the mpll_clk_en.
*/
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_RX_EQ_VAL_MASK |
IMX6Q_GPR13_SATA_RX_LOS_LVL_MASK |
IMX6Q_GPR13_SATA_RX_DPLL_MODE_MASK |
IMX6Q_GPR13_SATA_SPD_MODE_MASK |
IMX6Q_GPR13_SATA_MPLL_SS_EN |
IMX6Q_GPR13_SATA_TX_ATTEN_MASK |
IMX6Q_GPR13_SATA_TX_BOOST_MASK |
IMX6Q_GPR13_SATA_TX_LVL_MASK |
IMX6Q_GPR13_SATA_MPLL_CLK_EN |
IMX6Q_GPR13_SATA_TX_EDGE_RATE,
imxpriv->phy_params);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_MPLL_CLK_EN,
IMX6Q_GPR13_SATA_MPLL_CLK_EN);
usleep_range(100, 200);
ret = imx_sata_phy_reset(hpriv);
if (ret) {
dev_err(dev, "failed to reset phy: %d\n", ret);
goto disable_clk;
}
} else if (imxpriv->type == AHCI_IMX8QM) {
ret = imx8_sata_enable(hpriv);
}
usleep_range(1000, 2000);
return 0;
disable_clk:
clk_disable_unprepare(imxpriv->sata_ref_clk);
disable_regulator:
ahci_platform_disable_regulators(hpriv);
return ret;
}
static void imx_sata_disable(struct ahci_host_priv *hpriv)
{
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
if (imxpriv->no_device)
return;
switch (imxpriv->type) {
case AHCI_IMX6QP:
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR5,
IMX6Q_GPR5_SATA_SW_PD,
IMX6Q_GPR5_SATA_SW_PD);
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_MPLL_CLK_EN,
!IMX6Q_GPR13_SATA_MPLL_CLK_EN);
break;
case AHCI_IMX6Q:
regmap_update_bits(imxpriv->gpr, IOMUXC_GPR13,
IMX6Q_GPR13_SATA_MPLL_CLK_EN,
!IMX6Q_GPR13_SATA_MPLL_CLK_EN);
break;
case AHCI_IMX8QM:
clk_disable_unprepare(imxpriv->epcs_rx_clk);
clk_disable_unprepare(imxpriv->epcs_tx_clk);
break;
default:
break;
}
clk_disable_unprepare(imxpriv->sata_ref_clk);
ahci_platform_disable_regulators(hpriv);
}
static void ahci_imx_error_handler(struct ata_port *ap)
{
u32 reg_val;
struct ata_device *dev;
struct ata_host *host = dev_get_drvdata(ap->dev);
struct ahci_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->mmio;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
ahci_error_handler(ap);
if (!(imxpriv->first_time) || ahci_imx_hotplug)
return;
imxpriv->first_time = false;
ata_for_each_dev(dev, &ap->link, ENABLED)
return;
/*
* Disable link to save power. An imx ahci port can't be recovered
* without full reset once the pddq mode is enabled making it
* impossible to use as part of libata LPM.
*/
reg_val = readl(mmio + IMX_P0PHYCR);
writel(reg_val | IMX_P0PHYCR_TEST_PDDQ, mmio + IMX_P0PHYCR);
imx_sata_disable(hpriv);
imxpriv->no_device = true;
dev_info(ap->dev, "no device found, disabling link.\n");
dev_info(ap->dev, "pass " MODULE_PARAM_PREFIX ".hotplug=1 to enable hotplug\n");
}
static int ahci_imx_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct ata_host *host = dev_get_drvdata(ap->dev);
struct ahci_host_priv *hpriv = host->private_data;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
int ret = -EIO;
if (imxpriv->type == AHCI_IMX53)
ret = ahci_pmp_retry_srst_ops.softreset(link, class, deadline);
else
ret = ahci_ops.softreset(link, class, deadline);
return ret;
}
static struct ata_port_operations ahci_imx_ops = {
.inherits = &ahci_ops,
.host_stop = ahci_imx_host_stop,
.error_handler = ahci_imx_error_handler,
.softreset = ahci_imx_softreset,
};
static const struct ata_port_info ahci_imx_port_info = {
.flags = AHCI_FLAG_COMMON,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &ahci_imx_ops,
};
static const struct of_device_id imx_ahci_of_match[] = {
{ .compatible = "fsl,imx53-ahci", .data = (void *)AHCI_IMX53 },
{ .compatible = "fsl,imx6q-ahci", .data = (void *)AHCI_IMX6Q },
{ .compatible = "fsl,imx6qp-ahci", .data = (void *)AHCI_IMX6QP },
{ .compatible = "fsl,imx8qm-ahci", .data = (void *)AHCI_IMX8QM },
{},
};
MODULE_DEVICE_TABLE(of, imx_ahci_of_match);
struct reg_value {
u32 of_value;
u32 reg_value;
};
struct reg_property {
const char *name;
const struct reg_value *values;
size_t num_values;
u32 def_value;
u32 set_value;
};
static const struct reg_value gpr13_tx_level[] = {
{ 937, IMX6Q_GPR13_SATA_TX_LVL_0_937_V },
{ 947, IMX6Q_GPR13_SATA_TX_LVL_0_947_V },
{ 957, IMX6Q_GPR13_SATA_TX_LVL_0_957_V },
{ 966, IMX6Q_GPR13_SATA_TX_LVL_0_966_V },
{ 976, IMX6Q_GPR13_SATA_TX_LVL_0_976_V },
{ 986, IMX6Q_GPR13_SATA_TX_LVL_0_986_V },
{ 996, IMX6Q_GPR13_SATA_TX_LVL_0_996_V },
{ 1005, IMX6Q_GPR13_SATA_TX_LVL_1_005_V },
{ 1015, IMX6Q_GPR13_SATA_TX_LVL_1_015_V },
{ 1025, IMX6Q_GPR13_SATA_TX_LVL_1_025_V },
{ 1035, IMX6Q_GPR13_SATA_TX_LVL_1_035_V },
{ 1045, IMX6Q_GPR13_SATA_TX_LVL_1_045_V },
{ 1054, IMX6Q_GPR13_SATA_TX_LVL_1_054_V },
{ 1064, IMX6Q_GPR13_SATA_TX_LVL_1_064_V },
{ 1074, IMX6Q_GPR13_SATA_TX_LVL_1_074_V },
{ 1084, IMX6Q_GPR13_SATA_TX_LVL_1_084_V },
{ 1094, IMX6Q_GPR13_SATA_TX_LVL_1_094_V },
{ 1104, IMX6Q_GPR13_SATA_TX_LVL_1_104_V },
{ 1113, IMX6Q_GPR13_SATA_TX_LVL_1_113_V },
{ 1123, IMX6Q_GPR13_SATA_TX_LVL_1_123_V },
{ 1133, IMX6Q_GPR13_SATA_TX_LVL_1_133_V },
{ 1143, IMX6Q_GPR13_SATA_TX_LVL_1_143_V },
{ 1152, IMX6Q_GPR13_SATA_TX_LVL_1_152_V },
{ 1162, IMX6Q_GPR13_SATA_TX_LVL_1_162_V },
{ 1172, IMX6Q_GPR13_SATA_TX_LVL_1_172_V },
{ 1182, IMX6Q_GPR13_SATA_TX_LVL_1_182_V },
{ 1191, IMX6Q_GPR13_SATA_TX_LVL_1_191_V },
{ 1201, IMX6Q_GPR13_SATA_TX_LVL_1_201_V },
{ 1211, IMX6Q_GPR13_SATA_TX_LVL_1_211_V },
{ 1221, IMX6Q_GPR13_SATA_TX_LVL_1_221_V },
{ 1230, IMX6Q_GPR13_SATA_TX_LVL_1_230_V },
{ 1240, IMX6Q_GPR13_SATA_TX_LVL_1_240_V }
};
static const struct reg_value gpr13_tx_boost[] = {
{ 0, IMX6Q_GPR13_SATA_TX_BOOST_0_00_DB },
{ 370, IMX6Q_GPR13_SATA_TX_BOOST_0_37_DB },
{ 740, IMX6Q_GPR13_SATA_TX_BOOST_0_74_DB },
{ 1110, IMX6Q_GPR13_SATA_TX_BOOST_1_11_DB },
{ 1480, IMX6Q_GPR13_SATA_TX_BOOST_1_48_DB },
{ 1850, IMX6Q_GPR13_SATA_TX_BOOST_1_85_DB },
{ 2220, IMX6Q_GPR13_SATA_TX_BOOST_2_22_DB },
{ 2590, IMX6Q_GPR13_SATA_TX_BOOST_2_59_DB },
{ 2960, IMX6Q_GPR13_SATA_TX_BOOST_2_96_DB },
{ 3330, IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB },
{ 3700, IMX6Q_GPR13_SATA_TX_BOOST_3_70_DB },
{ 4070, IMX6Q_GPR13_SATA_TX_BOOST_4_07_DB },
{ 4440, IMX6Q_GPR13_SATA_TX_BOOST_4_44_DB },
{ 4810, IMX6Q_GPR13_SATA_TX_BOOST_4_81_DB },
{ 5280, IMX6Q_GPR13_SATA_TX_BOOST_5_28_DB },
{ 5750, IMX6Q_GPR13_SATA_TX_BOOST_5_75_DB }
};
static const struct reg_value gpr13_tx_atten[] = {
{ 8, IMX6Q_GPR13_SATA_TX_ATTEN_8_16 },
{ 9, IMX6Q_GPR13_SATA_TX_ATTEN_9_16 },
{ 10, IMX6Q_GPR13_SATA_TX_ATTEN_10_16 },
{ 12, IMX6Q_GPR13_SATA_TX_ATTEN_12_16 },
{ 14, IMX6Q_GPR13_SATA_TX_ATTEN_14_16 },
{ 16, IMX6Q_GPR13_SATA_TX_ATTEN_16_16 },
};
static const struct reg_value gpr13_rx_eq[] = {
{ 500, IMX6Q_GPR13_SATA_RX_EQ_VAL_0_5_DB },
{ 1000, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_0_DB },
{ 1500, IMX6Q_GPR13_SATA_RX_EQ_VAL_1_5_DB },
{ 2000, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_0_DB },
{ 2500, IMX6Q_GPR13_SATA_RX_EQ_VAL_2_5_DB },
{ 3000, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB },
{ 3500, IMX6Q_GPR13_SATA_RX_EQ_VAL_3_5_DB },
{ 4000, IMX6Q_GPR13_SATA_RX_EQ_VAL_4_0_DB },
};
static const struct reg_property gpr13_props[] = {
{
.name = "fsl,transmit-level-mV",
.values = gpr13_tx_level,
.num_values = ARRAY_SIZE(gpr13_tx_level),
.def_value = IMX6Q_GPR13_SATA_TX_LVL_1_025_V,
}, {
.name = "fsl,transmit-boost-mdB",
.values = gpr13_tx_boost,
.num_values = ARRAY_SIZE(gpr13_tx_boost),
.def_value = IMX6Q_GPR13_SATA_TX_BOOST_3_33_DB,
}, {
.name = "fsl,transmit-atten-16ths",
.values = gpr13_tx_atten,
.num_values = ARRAY_SIZE(gpr13_tx_atten),
.def_value = IMX6Q_GPR13_SATA_TX_ATTEN_9_16,
}, {
.name = "fsl,receive-eq-mdB",
.values = gpr13_rx_eq,
.num_values = ARRAY_SIZE(gpr13_rx_eq),
.def_value = IMX6Q_GPR13_SATA_RX_EQ_VAL_3_0_DB,
}, {
.name = "fsl,no-spread-spectrum",
.def_value = IMX6Q_GPR13_SATA_MPLL_SS_EN,
.set_value = 0,
},
};
static u32 imx_ahci_parse_props(struct device *dev,
const struct reg_property *prop, size_t num)
{
struct device_node *np = dev->of_node;
u32 reg_value = 0;
int i, j;
for (i = 0; i < num; i++, prop++) {
u32 of_val;
if (prop->num_values == 0) {
if (of_property_read_bool(np, prop->name))
reg_value |= prop->set_value;
else
reg_value |= prop->def_value;
continue;
}
if (of_property_read_u32(np, prop->name, &of_val)) {
dev_info(dev, "%s not specified, using %08x\n",
prop->name, prop->def_value);
reg_value |= prop->def_value;
continue;
}
for (j = 0; j < prop->num_values; j++) {
if (prop->values[j].of_value == of_val) {
dev_info(dev, "%s value %u, using %08x\n",
prop->name, of_val, prop->values[j].reg_value);
reg_value |= prop->values[j].reg_value;
break;
}
}
if (j == prop->num_values) {
dev_err(dev, "DT property %s is not a valid value\n",
prop->name);
reg_value |= prop->def_value;
}
}
return reg_value;
}
static struct scsi_host_template ahci_platform_sht = {
AHCI_SHT(DRV_NAME),
};
static int imx8_sata_probe(struct device *dev, struct imx_ahci_priv *imxpriv)
{
int ret;
struct resource *phy_res;
struct platform_device *pdev = imxpriv->ahci_pdev;
struct device_node *np = dev->of_node;
if (of_property_read_u32(np, "fsl,phy-imp", &imxpriv->imped_ratio))
imxpriv->imped_ratio = IMX8QM_SATA_PHY_IMPED_RATIO_85OHM;
phy_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
if (phy_res) {
imxpriv->phy_base = devm_ioremap(dev, phy_res->start,
resource_size(phy_res));
if (!imxpriv->phy_base) {
dev_err(dev, "error with ioremap\n");
return -ENOMEM;
}
} else {
dev_err(dev, "missing *phy* reg region.\n");
return -ENOMEM;
}
imxpriv->gpr =
syscon_regmap_lookup_by_phandle(np, "hsio");
if (IS_ERR(imxpriv->gpr)) {
dev_err(dev, "unable to find gpr registers\n");
return PTR_ERR(imxpriv->gpr);
}
imxpriv->epcs_tx_clk = devm_clk_get(dev, "epcs_tx");
if (IS_ERR(imxpriv->epcs_tx_clk)) {
dev_err(dev, "can't get epcs_tx_clk clock.\n");
return PTR_ERR(imxpriv->epcs_tx_clk);
}
imxpriv->epcs_rx_clk = devm_clk_get(dev, "epcs_rx");
if (IS_ERR(imxpriv->epcs_rx_clk)) {
dev_err(dev, "can't get epcs_rx_clk clock.\n");
return PTR_ERR(imxpriv->epcs_rx_clk);
}
imxpriv->phy_pclk0 = devm_clk_get(dev, "phy_pclk0");
if (IS_ERR(imxpriv->phy_pclk0)) {
dev_err(dev, "can't get phy_pclk0 clock.\n");
return PTR_ERR(imxpriv->phy_pclk0);
}
imxpriv->phy_pclk1 = devm_clk_get(dev, "phy_pclk1");
if (IS_ERR(imxpriv->phy_pclk1)) {
dev_err(dev, "can't get phy_pclk1 clock.\n");
return PTR_ERR(imxpriv->phy_pclk1);
}
imxpriv->phy_apbclk = devm_clk_get(dev, "phy_apbclk");
if (IS_ERR(imxpriv->phy_apbclk)) {
dev_err(dev, "can't get phy_apbclk clock.\n");
return PTR_ERR(imxpriv->phy_apbclk);
}
/* Fetch GPIO, then enable the external OSC */
imxpriv->clkreq_gpio = of_get_named_gpio(np, "clkreq-gpio", 0);
if (gpio_is_valid(imxpriv->clkreq_gpio)) {
ret = devm_gpio_request_one(dev, imxpriv->clkreq_gpio,
GPIOF_OUT_INIT_LOW,
"SATA CLKREQ");
if (ret == -EBUSY) {
dev_info(dev, "clkreq had been initialized.\n");
} else if (ret) {
dev_err(dev, "%d unable to get clkreq.\n", ret);
return ret;
}
} else if (imxpriv->clkreq_gpio == -EPROBE_DEFER) {
return imxpriv->clkreq_gpio;
}
return 0;
}
static int imx_ahci_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *of_id;
struct ahci_host_priv *hpriv;
struct imx_ahci_priv *imxpriv;
unsigned int reg_val;
int ret;
of_id = of_match_device(imx_ahci_of_match, dev);
if (!of_id)
return -EINVAL;
imxpriv = devm_kzalloc(dev, sizeof(*imxpriv), GFP_KERNEL);
if (!imxpriv)
return -ENOMEM;
imxpriv->ahci_pdev = pdev;
imxpriv->no_device = false;
imxpriv->first_time = true;
imxpriv->type = (enum ahci_imx_type)of_id->data;
imxpriv->sata_clk = devm_clk_get(dev, "sata");
if (IS_ERR(imxpriv->sata_clk)) {
dev_err(dev, "can't get sata clock.\n");
return PTR_ERR(imxpriv->sata_clk);
}
imxpriv->sata_ref_clk = devm_clk_get(dev, "sata_ref");
if (IS_ERR(imxpriv->sata_ref_clk)) {
dev_err(dev, "can't get sata_ref clock.\n");
return PTR_ERR(imxpriv->sata_ref_clk);
}
imxpriv->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(imxpriv->ahb_clk)) {
dev_err(dev, "can't get ahb clock.\n");
return PTR_ERR(imxpriv->ahb_clk);
}
if (imxpriv->type == AHCI_IMX6Q || imxpriv->type == AHCI_IMX6QP) {
u32 reg_value;
imxpriv->gpr = syscon_regmap_lookup_by_compatible(
"fsl,imx6q-iomuxc-gpr");
if (IS_ERR(imxpriv->gpr)) {
dev_err(dev,
"failed to find fsl,imx6q-iomux-gpr regmap\n");
return PTR_ERR(imxpriv->gpr);
}
reg_value = imx_ahci_parse_props(dev, gpr13_props,
ARRAY_SIZE(gpr13_props));
imxpriv->phy_params =
IMX6Q_GPR13_SATA_RX_LOS_LVL_SATA2M |
IMX6Q_GPR13_SATA_RX_DPLL_MODE_2P_4F |
IMX6Q_GPR13_SATA_SPD_MODE_3P0G |
reg_value;
} else if (imxpriv->type == AHCI_IMX8QM) {
ret = imx8_sata_probe(dev, imxpriv);
if (ret)
return ret;
}
hpriv = ahci_platform_get_resources(pdev, 0);
if (IS_ERR(hpriv))
return PTR_ERR(hpriv);
hpriv->plat_data = imxpriv;
ret = clk_prepare_enable(imxpriv->sata_clk);
if (ret)
return ret;
if (imxpriv->type == AHCI_IMX53 &&
IS_ENABLED(CONFIG_HWMON)) {
/* Add the temperature monitor */
struct device *hwmon_dev;
hwmon_dev =
devm_hwmon_device_register_with_groups(dev,
"sata_ahci",
hpriv,
fsl_sata_ahci_groups);
if (IS_ERR(hwmon_dev)) {
ret = PTR_ERR(hwmon_dev);
goto disable_clk;
}
devm_thermal_zone_of_sensor_register(hwmon_dev, 0, hwmon_dev,
&fsl_sata_ahci_of_thermal_ops);
dev_info(dev, "%s: sensor 'sata_ahci'\n", dev_name(hwmon_dev));
}
ret = imx_sata_enable(hpriv);
if (ret)
goto disable_clk;
/*
* Configure the HWINIT bits of the HOST_CAP and HOST_PORTS_IMPL,
* and IP vendor specific register IMX_TIMER1MS.
* Configure CAP_SSS (support stagered spin up).
* Implement the port0.
* Get the ahb clock rate, and configure the TIMER1MS register.
*/
reg_val = readl(hpriv->mmio + HOST_CAP);
if (!(reg_val & HOST_CAP_SSS)) {
reg_val |= HOST_CAP_SSS;
writel(reg_val, hpriv->mmio + HOST_CAP);
}
reg_val = readl(hpriv->mmio + HOST_PORTS_IMPL);
if (!(reg_val & 0x1)) {
reg_val |= 0x1;
writel(reg_val, hpriv->mmio + HOST_PORTS_IMPL);
}
reg_val = clk_get_rate(imxpriv->ahb_clk) / 1000;
writel(reg_val, hpriv->mmio + IMX_TIMER1MS);
ret = ahci_platform_init_host(pdev, hpriv, &ahci_imx_port_info,
&ahci_platform_sht);
if (ret)
goto disable_sata;
return 0;
disable_sata:
imx_sata_disable(hpriv);
disable_clk:
clk_disable_unprepare(imxpriv->sata_clk);
return ret;
}
static void ahci_imx_host_stop(struct ata_host *host)
{
struct ahci_host_priv *hpriv = host->private_data;
struct imx_ahci_priv *imxpriv = hpriv->plat_data;
imx_sata_disable(hpriv);
clk_disable_unprepare(imxpriv->sata_clk);
}
#ifdef CONFIG_PM_SLEEP
static int imx_ahci_suspend(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct ahci_host_priv *hpriv = host->private_data;
int ret;
ret = ahci_platform_suspend_host(dev);
if (ret)
return ret;
imx_sata_disable(hpriv);
return 0;
}
static int imx_ahci_resume(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct ahci_host_priv *hpriv = host->private_data;
int ret;
ret = imx_sata_enable(hpriv);
if (ret)
return ret;
return ahci_platform_resume_host(dev);
}
#endif
static SIMPLE_DEV_PM_OPS(ahci_imx_pm_ops, imx_ahci_suspend, imx_ahci_resume);
static struct platform_driver imx_ahci_driver = {
.probe = imx_ahci_probe,
.remove = ata_platform_remove_one,
.driver = {
.name = DRV_NAME,
.of_match_table = imx_ahci_of_match,
.pm = &ahci_imx_pm_ops,
},
};
module_platform_driver(imx_ahci_driver);
MODULE_DESCRIPTION("Freescale i.MX AHCI SATA platform driver");
MODULE_AUTHOR("Richard Zhu <Hong-Xing.Zhu@freescale.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("ahci:imx");