mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-01 10:42:11 +00:00
1251580983
bio_split_rw is designed to split read and write bios with a payload. Currently it is called by __bio_split_to_limits for all operations not explicitly list, which works because bio_may_need_split explicitly checks for bi_vcnt == 1 and thus skips the bypass if there is no payload and bio_for_each_bvec loop will never execute it's body if bi_size is 0. But all this is hard to understand, fragile and wasted pointless cycles. Switch __bio_split_to_limits to only call bio_split_rw for READ and WRITE command and don't attempt any kind split for operation that do not require splitting. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Damien Le Moal <dlemoal@kernel.org> Tested-by: Hans Holmberg <hans.holmberg@wdc.com> Reviewed-by: Hans Holmberg <hans.holmberg@wdc.com> Link: https://lore.kernel.org/r/20240826173820.1690925-5-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
733 lines
22 KiB
C
733 lines
22 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef BLK_INTERNAL_H
|
|
#define BLK_INTERNAL_H
|
|
|
|
#include <linux/bio-integrity.h>
|
|
#include <linux/blk-crypto.h>
|
|
#include <linux/memblock.h> /* for max_pfn/max_low_pfn */
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/timekeeping.h>
|
|
#include <xen/xen.h>
|
|
#include "blk-crypto-internal.h"
|
|
|
|
struct elevator_type;
|
|
|
|
/* Max future timer expiry for timeouts */
|
|
#define BLK_MAX_TIMEOUT (5 * HZ)
|
|
|
|
extern struct dentry *blk_debugfs_root;
|
|
|
|
struct blk_flush_queue {
|
|
spinlock_t mq_flush_lock;
|
|
unsigned int flush_pending_idx:1;
|
|
unsigned int flush_running_idx:1;
|
|
blk_status_t rq_status;
|
|
unsigned long flush_pending_since;
|
|
struct list_head flush_queue[2];
|
|
unsigned long flush_data_in_flight;
|
|
struct request *flush_rq;
|
|
};
|
|
|
|
bool is_flush_rq(struct request *req);
|
|
|
|
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
|
|
gfp_t flags);
|
|
void blk_free_flush_queue(struct blk_flush_queue *q);
|
|
|
|
void blk_freeze_queue(struct request_queue *q);
|
|
void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
|
|
void blk_queue_start_drain(struct request_queue *q);
|
|
int __bio_queue_enter(struct request_queue *q, struct bio *bio);
|
|
void submit_bio_noacct_nocheck(struct bio *bio);
|
|
void bio_await_chain(struct bio *bio);
|
|
|
|
static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
|
|
{
|
|
rcu_read_lock();
|
|
if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
|
|
goto fail;
|
|
|
|
/*
|
|
* The code that increments the pm_only counter must ensure that the
|
|
* counter is globally visible before the queue is unfrozen.
|
|
*/
|
|
if (blk_queue_pm_only(q) &&
|
|
(!pm || queue_rpm_status(q) == RPM_SUSPENDED))
|
|
goto fail_put;
|
|
|
|
rcu_read_unlock();
|
|
return true;
|
|
|
|
fail_put:
|
|
blk_queue_exit(q);
|
|
fail:
|
|
rcu_read_unlock();
|
|
return false;
|
|
}
|
|
|
|
static inline int bio_queue_enter(struct bio *bio)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
|
|
|
|
if (blk_try_enter_queue(q, false))
|
|
return 0;
|
|
return __bio_queue_enter(q, bio);
|
|
}
|
|
|
|
static inline void blk_wait_io(struct completion *done)
|
|
{
|
|
/* Prevent hang_check timer from firing at us during very long I/O */
|
|
unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
|
|
|
|
if (timeout)
|
|
while (!wait_for_completion_io_timeout(done, timeout))
|
|
;
|
|
else
|
|
wait_for_completion_io(done);
|
|
}
|
|
|
|
#define BIO_INLINE_VECS 4
|
|
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
|
|
gfp_t gfp_mask);
|
|
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
|
|
|
|
bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
|
|
struct page *page, unsigned len, unsigned offset,
|
|
bool *same_page);
|
|
|
|
static inline bool biovec_phys_mergeable(struct request_queue *q,
|
|
struct bio_vec *vec1, struct bio_vec *vec2)
|
|
{
|
|
unsigned long mask = queue_segment_boundary(q);
|
|
phys_addr_t addr1 = bvec_phys(vec1);
|
|
phys_addr_t addr2 = bvec_phys(vec2);
|
|
|
|
/*
|
|
* Merging adjacent physical pages may not work correctly under KMSAN
|
|
* if their metadata pages aren't adjacent. Just disable merging.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KMSAN))
|
|
return false;
|
|
|
|
if (addr1 + vec1->bv_len != addr2)
|
|
return false;
|
|
if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
|
|
return false;
|
|
if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
|
|
struct bio_vec *bprv, unsigned int offset)
|
|
{
|
|
return (offset & lim->virt_boundary_mask) ||
|
|
((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
|
|
}
|
|
|
|
/*
|
|
* Check if adding a bio_vec after bprv with offset would create a gap in
|
|
* the SG list. Most drivers don't care about this, but some do.
|
|
*/
|
|
static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
|
|
struct bio_vec *bprv, unsigned int offset)
|
|
{
|
|
if (!lim->virt_boundary_mask)
|
|
return false;
|
|
return __bvec_gap_to_prev(lim, bprv, offset);
|
|
}
|
|
|
|
static inline bool rq_mergeable(struct request *rq)
|
|
{
|
|
if (blk_rq_is_passthrough(rq))
|
|
return false;
|
|
|
|
if (req_op(rq) == REQ_OP_FLUSH)
|
|
return false;
|
|
|
|
if (req_op(rq) == REQ_OP_WRITE_ZEROES)
|
|
return false;
|
|
|
|
if (req_op(rq) == REQ_OP_ZONE_APPEND)
|
|
return false;
|
|
|
|
if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
|
|
return false;
|
|
if (rq->rq_flags & RQF_NOMERGE_FLAGS)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* There are two different ways to handle DISCARD merges:
|
|
* 1) If max_discard_segments > 1, the driver treats every bio as a range and
|
|
* send the bios to controller together. The ranges don't need to be
|
|
* contiguous.
|
|
* 2) Otherwise, the request will be normal read/write requests. The ranges
|
|
* need to be contiguous.
|
|
*/
|
|
static inline bool blk_discard_mergable(struct request *req)
|
|
{
|
|
if (req_op(req) == REQ_OP_DISCARD &&
|
|
queue_max_discard_segments(req->q) > 1)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline unsigned int blk_rq_get_max_segments(struct request *rq)
|
|
{
|
|
if (req_op(rq) == REQ_OP_DISCARD)
|
|
return queue_max_discard_segments(rq->q);
|
|
return queue_max_segments(rq->q);
|
|
}
|
|
|
|
static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
enum req_op op = req_op(rq);
|
|
|
|
if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
|
|
return min(q->limits.max_discard_sectors,
|
|
UINT_MAX >> SECTOR_SHIFT);
|
|
|
|
if (unlikely(op == REQ_OP_WRITE_ZEROES))
|
|
return q->limits.max_write_zeroes_sectors;
|
|
|
|
if (rq->cmd_flags & REQ_ATOMIC)
|
|
return q->limits.atomic_write_max_sectors;
|
|
|
|
return q->limits.max_sectors;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
void blk_flush_integrity(void);
|
|
void bio_integrity_free(struct bio *bio);
|
|
|
|
/*
|
|
* Integrity payloads can either be owned by the submitter, in which case
|
|
* bio_uninit will free them, or owned and generated by the block layer,
|
|
* in which case we'll verify them here (for reads) and free them before
|
|
* the bio is handed back to the submitted.
|
|
*/
|
|
bool __bio_integrity_endio(struct bio *bio);
|
|
static inline bool bio_integrity_endio(struct bio *bio)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(bio);
|
|
|
|
if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
|
|
return __bio_integrity_endio(bio);
|
|
return true;
|
|
}
|
|
|
|
bool blk_integrity_merge_rq(struct request_queue *, struct request *,
|
|
struct request *);
|
|
bool blk_integrity_merge_bio(struct request_queue *, struct request *,
|
|
struct bio *);
|
|
|
|
static inline bool integrity_req_gap_back_merge(struct request *req,
|
|
struct bio *next)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(req->bio);
|
|
struct bio_integrity_payload *bip_next = bio_integrity(next);
|
|
|
|
return bvec_gap_to_prev(&req->q->limits,
|
|
&bip->bip_vec[bip->bip_vcnt - 1],
|
|
bip_next->bip_vec[0].bv_offset);
|
|
}
|
|
|
|
static inline bool integrity_req_gap_front_merge(struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(bio);
|
|
struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
|
|
|
|
return bvec_gap_to_prev(&req->q->limits,
|
|
&bip->bip_vec[bip->bip_vcnt - 1],
|
|
bip_next->bip_vec[0].bv_offset);
|
|
}
|
|
|
|
extern const struct attribute_group blk_integrity_attr_group;
|
|
#else /* CONFIG_BLK_DEV_INTEGRITY */
|
|
static inline bool blk_integrity_merge_rq(struct request_queue *rq,
|
|
struct request *r1, struct request *r2)
|
|
{
|
|
return true;
|
|
}
|
|
static inline bool blk_integrity_merge_bio(struct request_queue *rq,
|
|
struct request *r, struct bio *b)
|
|
{
|
|
return true;
|
|
}
|
|
static inline bool integrity_req_gap_back_merge(struct request *req,
|
|
struct bio *next)
|
|
{
|
|
return false;
|
|
}
|
|
static inline bool integrity_req_gap_front_merge(struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void blk_flush_integrity(void)
|
|
{
|
|
}
|
|
static inline bool bio_integrity_endio(struct bio *bio)
|
|
{
|
|
return true;
|
|
}
|
|
static inline void bio_integrity_free(struct bio *bio)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
unsigned long blk_rq_timeout(unsigned long timeout);
|
|
void blk_add_timer(struct request *req);
|
|
|
|
enum bio_merge_status {
|
|
BIO_MERGE_OK,
|
|
BIO_MERGE_NONE,
|
|
BIO_MERGE_FAILED,
|
|
};
|
|
|
|
enum bio_merge_status bio_attempt_back_merge(struct request *req,
|
|
struct bio *bio, unsigned int nr_segs);
|
|
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
|
|
struct bio *bio, unsigned int nr_segs);
|
|
|
|
/*
|
|
* Plug flush limits
|
|
*/
|
|
#define BLK_MAX_REQUEST_COUNT 32
|
|
#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
|
|
|
|
/*
|
|
* Internal elevator interface
|
|
*/
|
|
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
|
|
|
|
bool blk_insert_flush(struct request *rq);
|
|
|
|
int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
|
|
void elevator_disable(struct request_queue *q);
|
|
void elevator_exit(struct request_queue *q);
|
|
int elv_register_queue(struct request_queue *q, bool uevent);
|
|
void elv_unregister_queue(struct request_queue *q);
|
|
|
|
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count);
|
|
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
|
|
ssize_t part_timeout_store(struct device *, struct device_attribute *,
|
|
const char *, size_t);
|
|
|
|
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
|
|
unsigned *nsegs);
|
|
struct bio *bio_split_write_zeroes(struct bio *bio,
|
|
const struct queue_limits *lim, unsigned *nsegs);
|
|
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
|
|
unsigned *nr_segs);
|
|
struct bio *bio_split_zone_append(struct bio *bio,
|
|
const struct queue_limits *lim, unsigned *nr_segs);
|
|
|
|
/*
|
|
* All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
|
|
*
|
|
* This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
|
|
* always valid if a bio has data. The check might lead to occasional false
|
|
* positives when bios are cloned, but compared to the performance impact of
|
|
* cloned bios themselves the loop below doesn't matter anyway.
|
|
*/
|
|
static inline bool bio_may_need_split(struct bio *bio,
|
|
const struct queue_limits *lim)
|
|
{
|
|
return lim->chunk_sectors || bio->bi_vcnt != 1 ||
|
|
bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
|
|
}
|
|
|
|
/**
|
|
* __bio_split_to_limits - split a bio to fit the queue limits
|
|
* @bio: bio to be split
|
|
* @lim: queue limits to split based on
|
|
* @nr_segs: returns the number of segments in the returned bio
|
|
*
|
|
* Check if @bio needs splitting based on the queue limits, and if so split off
|
|
* a bio fitting the limits from the beginning of @bio and return it. @bio is
|
|
* shortened to the remainder and re-submitted.
|
|
*
|
|
* The split bio is allocated from @q->bio_split, which is provided by the
|
|
* block layer.
|
|
*/
|
|
static inline struct bio *__bio_split_to_limits(struct bio *bio,
|
|
const struct queue_limits *lim, unsigned int *nr_segs)
|
|
{
|
|
switch (bio_op(bio)) {
|
|
case REQ_OP_READ:
|
|
case REQ_OP_WRITE:
|
|
if (bio_may_need_split(bio, lim))
|
|
return bio_split_rw(bio, lim, nr_segs);
|
|
*nr_segs = 1;
|
|
return bio;
|
|
case REQ_OP_ZONE_APPEND:
|
|
return bio_split_zone_append(bio, lim, nr_segs);
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_SECURE_ERASE:
|
|
return bio_split_discard(bio, lim, nr_segs);
|
|
case REQ_OP_WRITE_ZEROES:
|
|
return bio_split_write_zeroes(bio, lim, nr_segs);
|
|
default:
|
|
/* other operations can't be split */
|
|
*nr_segs = 0;
|
|
return bio;
|
|
}
|
|
}
|
|
|
|
int ll_back_merge_fn(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
|
|
struct request *next);
|
|
unsigned int blk_recalc_rq_segments(struct request *rq);
|
|
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
|
|
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
|
|
|
|
int blk_set_default_limits(struct queue_limits *lim);
|
|
void blk_apply_bdi_limits(struct backing_dev_info *bdi,
|
|
struct queue_limits *lim);
|
|
int blk_dev_init(void);
|
|
|
|
/*
|
|
* Contribute to IO statistics IFF:
|
|
*
|
|
* a) it's attached to a gendisk, and
|
|
* b) the queue had IO stats enabled when this request was started
|
|
*/
|
|
static inline bool blk_do_io_stat(struct request *rq)
|
|
{
|
|
return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
|
|
}
|
|
|
|
void update_io_ticks(struct block_device *part, unsigned long now, bool end);
|
|
unsigned int part_in_flight(struct block_device *part);
|
|
|
|
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
|
|
{
|
|
req->cmd_flags |= REQ_NOMERGE;
|
|
if (req == q->last_merge)
|
|
q->last_merge = NULL;
|
|
}
|
|
|
|
/*
|
|
* Internal io_context interface
|
|
*/
|
|
struct io_cq *ioc_find_get_icq(struct request_queue *q);
|
|
struct io_cq *ioc_lookup_icq(struct request_queue *q);
|
|
#ifdef CONFIG_BLK_ICQ
|
|
void ioc_clear_queue(struct request_queue *q);
|
|
#else
|
|
static inline void ioc_clear_queue(struct request_queue *q)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_ICQ */
|
|
|
|
struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
|
|
|
|
static inline bool blk_queue_may_bounce(struct request_queue *q)
|
|
{
|
|
return IS_ENABLED(CONFIG_BOUNCE) &&
|
|
(q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
|
|
max_low_pfn >= max_pfn;
|
|
}
|
|
|
|
static inline struct bio *blk_queue_bounce(struct bio *bio,
|
|
struct request_queue *q)
|
|
{
|
|
if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
|
|
return __blk_queue_bounce(bio, q);
|
|
return bio;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
void disk_init_zone_resources(struct gendisk *disk);
|
|
void disk_free_zone_resources(struct gendisk *disk);
|
|
static inline bool bio_zone_write_plugging(struct bio *bio)
|
|
{
|
|
return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
|
|
}
|
|
static inline bool bio_is_zone_append(struct bio *bio)
|
|
{
|
|
return bio_op(bio) == REQ_OP_ZONE_APPEND ||
|
|
bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
|
|
}
|
|
void blk_zone_write_plug_bio_merged(struct bio *bio);
|
|
void blk_zone_write_plug_init_request(struct request *rq);
|
|
static inline void blk_zone_update_request_bio(struct request *rq,
|
|
struct bio *bio)
|
|
{
|
|
/*
|
|
* For zone append requests, the request sector indicates the location
|
|
* at which the BIO data was written. Return this value to the BIO
|
|
* issuer through the BIO iter sector.
|
|
* For plugged zone writes, which include emulated zone append, we need
|
|
* the original BIO sector so that blk_zone_write_plug_bio_endio() can
|
|
* lookup the zone write plug.
|
|
*/
|
|
if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
|
|
bio->bi_iter.bi_sector = rq->__sector;
|
|
}
|
|
void blk_zone_write_plug_bio_endio(struct bio *bio);
|
|
static inline void blk_zone_bio_endio(struct bio *bio)
|
|
{
|
|
/*
|
|
* For write BIOs to zoned devices, signal the completion of the BIO so
|
|
* that the next write BIO can be submitted by zone write plugging.
|
|
*/
|
|
if (bio_zone_write_plugging(bio))
|
|
blk_zone_write_plug_bio_endio(bio);
|
|
}
|
|
|
|
void blk_zone_write_plug_finish_request(struct request *rq);
|
|
static inline void blk_zone_finish_request(struct request *rq)
|
|
{
|
|
if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
|
|
blk_zone_write_plug_finish_request(rq);
|
|
}
|
|
int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
|
|
unsigned long arg);
|
|
int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
|
|
unsigned int cmd, unsigned long arg);
|
|
#else /* CONFIG_BLK_DEV_ZONED */
|
|
static inline void disk_init_zone_resources(struct gendisk *disk)
|
|
{
|
|
}
|
|
static inline void disk_free_zone_resources(struct gendisk *disk)
|
|
{
|
|
}
|
|
static inline bool bio_zone_write_plugging(struct bio *bio)
|
|
{
|
|
return false;
|
|
}
|
|
static inline bool bio_is_zone_append(struct bio *bio)
|
|
{
|
|
return false;
|
|
}
|
|
static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
|
|
{
|
|
}
|
|
static inline void blk_zone_write_plug_init_request(struct request *rq)
|
|
{
|
|
}
|
|
static inline void blk_zone_update_request_bio(struct request *rq,
|
|
struct bio *bio)
|
|
{
|
|
}
|
|
static inline void blk_zone_bio_endio(struct bio *bio)
|
|
{
|
|
}
|
|
static inline void blk_zone_finish_request(struct request *rq)
|
|
{
|
|
}
|
|
static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return -ENOTTY;
|
|
}
|
|
static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
|
|
blk_mode_t mode, unsigned int cmd, unsigned long arg)
|
|
{
|
|
return -ENOTTY;
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_ZONED */
|
|
|
|
struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
|
|
void bdev_add(struct block_device *bdev, dev_t dev);
|
|
void bdev_unhash(struct block_device *bdev);
|
|
void bdev_drop(struct block_device *bdev);
|
|
|
|
int blk_alloc_ext_minor(void);
|
|
void blk_free_ext_minor(unsigned int minor);
|
|
#define ADDPART_FLAG_NONE 0
|
|
#define ADDPART_FLAG_RAID 1
|
|
#define ADDPART_FLAG_WHOLEDISK 2
|
|
int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
|
|
sector_t length);
|
|
int bdev_del_partition(struct gendisk *disk, int partno);
|
|
int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
|
|
sector_t length);
|
|
void drop_partition(struct block_device *part);
|
|
|
|
void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
|
|
|
|
struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
|
|
struct lock_class_key *lkclass);
|
|
|
|
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
|
|
struct page *page, unsigned int len, unsigned int offset,
|
|
unsigned int max_sectors, bool *same_page);
|
|
|
|
/*
|
|
* Clean up a page appropriately, where the page may be pinned, may have a
|
|
* ref taken on it or neither.
|
|
*/
|
|
static inline void bio_release_page(struct bio *bio, struct page *page)
|
|
{
|
|
if (bio_flagged(bio, BIO_PAGE_PINNED))
|
|
unpin_user_page(page);
|
|
}
|
|
|
|
struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
|
|
|
|
int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
|
|
|
|
int disk_alloc_events(struct gendisk *disk);
|
|
void disk_add_events(struct gendisk *disk);
|
|
void disk_del_events(struct gendisk *disk);
|
|
void disk_release_events(struct gendisk *disk);
|
|
void disk_block_events(struct gendisk *disk);
|
|
void disk_unblock_events(struct gendisk *disk);
|
|
void disk_flush_events(struct gendisk *disk, unsigned int mask);
|
|
extern struct device_attribute dev_attr_events;
|
|
extern struct device_attribute dev_attr_events_async;
|
|
extern struct device_attribute dev_attr_events_poll_msecs;
|
|
|
|
extern struct attribute_group blk_trace_attr_group;
|
|
|
|
blk_mode_t file_to_blk_mode(struct file *file);
|
|
int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
|
|
loff_t lstart, loff_t lend);
|
|
long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
|
|
long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
|
|
|
|
extern const struct address_space_operations def_blk_aops;
|
|
|
|
int disk_register_independent_access_ranges(struct gendisk *disk);
|
|
void disk_unregister_independent_access_ranges(struct gendisk *disk);
|
|
|
|
#ifdef CONFIG_FAIL_MAKE_REQUEST
|
|
bool should_fail_request(struct block_device *part, unsigned int bytes);
|
|
#else /* CONFIG_FAIL_MAKE_REQUEST */
|
|
static inline bool should_fail_request(struct block_device *part,
|
|
unsigned int bytes)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_FAIL_MAKE_REQUEST */
|
|
|
|
/*
|
|
* Optimized request reference counting. Ideally we'd make timeouts be more
|
|
* clever, as that's the only reason we need references at all... But until
|
|
* this happens, this is faster than using refcount_t. Also see:
|
|
*
|
|
* abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
|
|
*/
|
|
#define req_ref_zero_or_close_to_overflow(req) \
|
|
((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
|
|
|
|
static inline bool req_ref_inc_not_zero(struct request *req)
|
|
{
|
|
return atomic_inc_not_zero(&req->ref);
|
|
}
|
|
|
|
static inline bool req_ref_put_and_test(struct request *req)
|
|
{
|
|
WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
|
|
return atomic_dec_and_test(&req->ref);
|
|
}
|
|
|
|
static inline void req_ref_set(struct request *req, int value)
|
|
{
|
|
atomic_set(&req->ref, value);
|
|
}
|
|
|
|
static inline int req_ref_read(struct request *req)
|
|
{
|
|
return atomic_read(&req->ref);
|
|
}
|
|
|
|
static inline u64 blk_time_get_ns(void)
|
|
{
|
|
struct blk_plug *plug = current->plug;
|
|
|
|
if (!plug || !in_task())
|
|
return ktime_get_ns();
|
|
|
|
/*
|
|
* 0 could very well be a valid time, but rather than flag "this is
|
|
* a valid timestamp" separately, just accept that we'll do an extra
|
|
* ktime_get_ns() if we just happen to get 0 as the current time.
|
|
*/
|
|
if (!plug->cur_ktime) {
|
|
plug->cur_ktime = ktime_get_ns();
|
|
current->flags |= PF_BLOCK_TS;
|
|
}
|
|
return plug->cur_ktime;
|
|
}
|
|
|
|
static inline ktime_t blk_time_get(void)
|
|
{
|
|
return ns_to_ktime(blk_time_get_ns());
|
|
}
|
|
|
|
/*
|
|
* From most significant bit:
|
|
* 1 bit: reserved for other usage, see below
|
|
* 12 bits: original size of bio
|
|
* 51 bits: issue time of bio
|
|
*/
|
|
#define BIO_ISSUE_RES_BITS 1
|
|
#define BIO_ISSUE_SIZE_BITS 12
|
|
#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
|
|
#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
|
|
#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
|
|
#define BIO_ISSUE_SIZE_MASK \
|
|
(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
|
|
#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
|
|
|
|
/* Reserved bit for blk-throtl */
|
|
#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
|
|
|
|
static inline u64 __bio_issue_time(u64 time)
|
|
{
|
|
return time & BIO_ISSUE_TIME_MASK;
|
|
}
|
|
|
|
static inline u64 bio_issue_time(struct bio_issue *issue)
|
|
{
|
|
return __bio_issue_time(issue->value);
|
|
}
|
|
|
|
static inline sector_t bio_issue_size(struct bio_issue *issue)
|
|
{
|
|
return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
|
|
}
|
|
|
|
static inline void bio_issue_init(struct bio_issue *issue,
|
|
sector_t size)
|
|
{
|
|
size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
|
|
issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
|
|
(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
|
|
((u64)size << BIO_ISSUE_SIZE_SHIFT));
|
|
}
|
|
|
|
void bdev_release(struct file *bdev_file);
|
|
int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
|
|
const struct blk_holder_ops *hops, struct file *bdev_file);
|
|
int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
|
|
|
|
void blk_integrity_generate(struct bio *bio);
|
|
void blk_integrity_verify(struct bio *bio);
|
|
void blk_integrity_prepare(struct request *rq);
|
|
void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
|
|
|
|
#endif /* BLK_INTERNAL_H */
|