linux-next/drivers/s390/crypto/ap_bus.c
Harald Freudenberger 5ac8c72462 s390/zcrypt: remove CEX2 and CEX3 device drivers
Remove the legacy device driver code for CEX2 and CEX3 cards.

The last machines which are able to handle CEX2 crypto cards
are z10 EC first available 2008 and z10 BC first available 2009.
The last machines able to handle a CEX3 crypto card are
z196 first available 2010 and z114 first available 2011.

Please note that this does not imply to drop CEX2 and CEX3
support in general. With older kernels on hardware up to the
aforementioned machine models these crypto cards will get
support by IBM.

The removal of the CEX2 and CEX3 device drivers code opens up
some simplifications, for example support for crypto cards
without rng support can be removed also.

Signed-off-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2023-07-24 12:12:22 +02:00

2306 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright IBM Corp. 2006, 2023
* Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Ralph Wuerthner <rwuerthn@de.ibm.com>
* Felix Beck <felix.beck@de.ibm.com>
* Holger Dengler <hd@linux.vnet.ibm.com>
* Harald Freudenberger <freude@linux.ibm.com>
*
* Adjunct processor bus.
*/
#define KMSG_COMPONENT "ap"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel_stat.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <asm/airq.h>
#include <asm/tpi.h>
#include <linux/atomic.h>
#include <asm/isc.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <asm/facility.h>
#include <linux/crypto.h>
#include <linux/mod_devicetable.h>
#include <linux/debugfs.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include "ap_bus.h"
#include "ap_debug.h"
/*
* Module parameters; note though this file itself isn't modular.
*/
int ap_domain_index = -1; /* Adjunct Processor Domain Index */
static DEFINE_SPINLOCK(ap_domain_lock);
module_param_named(domain, ap_domain_index, int, 0440);
MODULE_PARM_DESC(domain, "domain index for ap devices");
EXPORT_SYMBOL(ap_domain_index);
static int ap_thread_flag;
module_param_named(poll_thread, ap_thread_flag, int, 0440);
MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
static char *apm_str;
module_param_named(apmask, apm_str, charp, 0440);
MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
static char *aqm_str;
module_param_named(aqmask, aqm_str, charp, 0440);
MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
static int ap_useirq = 1;
module_param_named(useirq, ap_useirq, int, 0440);
MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
EXPORT_SYMBOL(ap_max_msg_size);
static struct device *ap_root_device;
/* Hashtable of all queue devices on the AP bus */
DEFINE_HASHTABLE(ap_queues, 8);
/* lock used for the ap_queues hashtable */
DEFINE_SPINLOCK(ap_queues_lock);
/* Default permissions (ioctl, card and domain masking) */
struct ap_perms ap_perms;
EXPORT_SYMBOL(ap_perms);
DEFINE_MUTEX(ap_perms_mutex);
EXPORT_SYMBOL(ap_perms_mutex);
/* # of bus scans since init */
static atomic64_t ap_scan_bus_count;
/* # of bindings complete since init */
static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
/* completion for initial APQN bindings complete */
static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
static struct ap_config_info *ap_qci_info;
static struct ap_config_info *ap_qci_info_old;
/*
* AP bus related debug feature things.
*/
debug_info_t *ap_dbf_info;
/*
* Workqueue timer for bus rescan.
*/
static struct timer_list ap_config_timer;
static int ap_config_time = AP_CONFIG_TIME;
static void ap_scan_bus(struct work_struct *);
static DECLARE_WORK(ap_scan_work, ap_scan_bus);
/*
* Tasklet & timer for AP request polling and interrupts
*/
static void ap_tasklet_fn(unsigned long);
static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
static struct task_struct *ap_poll_kthread;
static DEFINE_MUTEX(ap_poll_thread_mutex);
static DEFINE_SPINLOCK(ap_poll_timer_lock);
static struct hrtimer ap_poll_timer;
/*
* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
* If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
*/
static unsigned long poll_high_timeout = 250000UL;
/*
* Some state machine states only require a low frequency polling.
* We use 25 Hz frequency for these.
*/
static unsigned long poll_low_timeout = 40000000UL;
/* Maximum domain id, if not given via qci */
static int ap_max_domain_id = 15;
/* Maximum adapter id, if not given via qci */
static int ap_max_adapter_id = 63;
static struct bus_type ap_bus_type;
/* Adapter interrupt definitions */
static void ap_interrupt_handler(struct airq_struct *airq,
struct tpi_info *tpi_info);
static bool ap_irq_flag;
static struct airq_struct ap_airq = {
.handler = ap_interrupt_handler,
.isc = AP_ISC,
};
/**
* ap_airq_ptr() - Get the address of the adapter interrupt indicator
*
* Returns the address of the local-summary-indicator of the adapter
* interrupt handler for AP, or NULL if adapter interrupts are not
* available.
*/
void *ap_airq_ptr(void)
{
if (ap_irq_flag)
return ap_airq.lsi_ptr;
return NULL;
}
/**
* ap_interrupts_available(): Test if AP interrupts are available.
*
* Returns 1 if AP interrupts are available.
*/
static int ap_interrupts_available(void)
{
return test_facility(65);
}
/**
* ap_qci_available(): Test if AP configuration
* information can be queried via QCI subfunction.
*
* Returns 1 if subfunction PQAP(QCI) is available.
*/
static int ap_qci_available(void)
{
return test_facility(12);
}
/**
* ap_apft_available(): Test if AP facilities test (APFT)
* facility is available.
*
* Returns 1 if APFT is available.
*/
static int ap_apft_available(void)
{
return test_facility(15);
}
/*
* ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
*
* Returns 1 if the QACT subfunction is available.
*/
static inline int ap_qact_available(void)
{
if (ap_qci_info)
return ap_qci_info->qact;
return 0;
}
/*
* ap_sb_available(): Test if the AP secure binding facility is available.
*
* Returns 1 if secure binding facility is available.
*/
int ap_sb_available(void)
{
if (ap_qci_info)
return ap_qci_info->apsb;
return 0;
}
/*
* ap_fetch_qci_info(): Fetch cryptographic config info
*
* Returns the ap configuration info fetched via PQAP(QCI).
* On success 0 is returned, on failure a negative errno
* is returned, e.g. if the PQAP(QCI) instruction is not
* available, the return value will be -EOPNOTSUPP.
*/
static inline int ap_fetch_qci_info(struct ap_config_info *info)
{
if (!ap_qci_available())
return -EOPNOTSUPP;
if (!info)
return -EINVAL;
return ap_qci(info);
}
/**
* ap_init_qci_info(): Allocate and query qci config info.
* Does also update the static variables ap_max_domain_id
* and ap_max_adapter_id if this info is available.
*/
static void __init ap_init_qci_info(void)
{
if (!ap_qci_available()) {
AP_DBF_INFO("%s QCI not supported\n", __func__);
return;
}
ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
if (!ap_qci_info)
return;
ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
if (!ap_qci_info_old) {
kfree(ap_qci_info);
ap_qci_info = NULL;
return;
}
if (ap_fetch_qci_info(ap_qci_info) != 0) {
kfree(ap_qci_info);
kfree(ap_qci_info_old);
ap_qci_info = NULL;
ap_qci_info_old = NULL;
return;
}
AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
if (ap_qci_info->apxa) {
if (ap_qci_info->na) {
ap_max_adapter_id = ap_qci_info->na;
AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
__func__, ap_max_adapter_id);
}
if (ap_qci_info->nd) {
ap_max_domain_id = ap_qci_info->nd;
AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
__func__, ap_max_domain_id);
}
}
memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
}
/*
* ap_test_config(): helper function to extract the nrth bit
* within the unsigned int array field.
*/
static inline int ap_test_config(unsigned int *field, unsigned int nr)
{
return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
}
/*
* ap_test_config_card_id(): Test, whether an AP card ID is configured.
*
* Returns 0 if the card is not configured
* 1 if the card is configured or
* if the configuration information is not available
*/
static inline int ap_test_config_card_id(unsigned int id)
{
if (id > ap_max_adapter_id)
return 0;
if (ap_qci_info)
return ap_test_config(ap_qci_info->apm, id);
return 1;
}
/*
* ap_test_config_usage_domain(): Test, whether an AP usage domain
* is configured.
*
* Returns 0 if the usage domain is not configured
* 1 if the usage domain is configured or
* if the configuration information is not available
*/
int ap_test_config_usage_domain(unsigned int domain)
{
if (domain > ap_max_domain_id)
return 0;
if (ap_qci_info)
return ap_test_config(ap_qci_info->aqm, domain);
return 1;
}
EXPORT_SYMBOL(ap_test_config_usage_domain);
/*
* ap_test_config_ctrl_domain(): Test, whether an AP control domain
* is configured.
* @domain AP control domain ID
*
* Returns 1 if the control domain is configured
* 0 in all other cases
*/
int ap_test_config_ctrl_domain(unsigned int domain)
{
if (!ap_qci_info || domain > ap_max_domain_id)
return 0;
return ap_test_config(ap_qci_info->adm, domain);
}
EXPORT_SYMBOL(ap_test_config_ctrl_domain);
/*
* ap_queue_info(): Check and get AP queue info.
* Returns: 1 if APQN exists and info is filled,
* 0 if APQN seems to exit but there is no info
* available (eg. caused by an asynch pending error)
* -1 invalid APQN, TAPQ error or AP queue status which
* indicates there is no APQN.
*/
static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
{
struct ap_queue_status status;
struct ap_tapq_gr2 tapq_info;
tapq_info.value = 0;
/* make sure we don't run into a specifiation exception */
if (AP_QID_CARD(qid) > ap_max_adapter_id ||
AP_QID_QUEUE(qid) > ap_max_domain_id)
return -1;
/* call TAPQ on this APQN */
status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
/* handle pending async error with return 'no info available' */
if (status.async)
return 0;
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
case AP_RESPONSE_BUSY:
/*
* According to the architecture in all these cases the
* info should be filled. All bits 0 is not possible as
* there is at least one of the mode bits set.
*/
if (WARN_ON_ONCE(!tapq_info.value))
return 0;
*q_type = tapq_info.at;
*q_fac = tapq_info.fac;
*q_depth = tapq_info.qd;
*q_ml = tapq_info.ml;
*q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
*q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
return 1;
default:
/*
* A response code which indicates, there is no info available.
*/
return -1;
}
}
void ap_wait(enum ap_sm_wait wait)
{
ktime_t hr_time;
switch (wait) {
case AP_SM_WAIT_AGAIN:
case AP_SM_WAIT_INTERRUPT:
if (ap_irq_flag)
break;
if (ap_poll_kthread) {
wake_up(&ap_poll_wait);
break;
}
fallthrough;
case AP_SM_WAIT_LOW_TIMEOUT:
case AP_SM_WAIT_HIGH_TIMEOUT:
spin_lock_bh(&ap_poll_timer_lock);
if (!hrtimer_is_queued(&ap_poll_timer)) {
hr_time =
wait == AP_SM_WAIT_LOW_TIMEOUT ?
poll_low_timeout : poll_high_timeout;
hrtimer_forward_now(&ap_poll_timer, hr_time);
hrtimer_restart(&ap_poll_timer);
}
spin_unlock_bh(&ap_poll_timer_lock);
break;
case AP_SM_WAIT_NONE:
default:
break;
}
}
/**
* ap_request_timeout(): Handling of request timeouts
* @t: timer making this callback
*
* Handles request timeouts.
*/
void ap_request_timeout(struct timer_list *t)
{
struct ap_queue *aq = from_timer(aq, t, timeout);
spin_lock_bh(&aq->lock);
ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
spin_unlock_bh(&aq->lock);
}
/**
* ap_poll_timeout(): AP receive polling for finished AP requests.
* @unused: Unused pointer.
*
* Schedules the AP tasklet using a high resolution timer.
*/
static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
{
tasklet_schedule(&ap_tasklet);
return HRTIMER_NORESTART;
}
/**
* ap_interrupt_handler() - Schedule ap_tasklet on interrupt
* @airq: pointer to adapter interrupt descriptor
* @tpi_info: ignored
*/
static void ap_interrupt_handler(struct airq_struct *airq,
struct tpi_info *tpi_info)
{
inc_irq_stat(IRQIO_APB);
tasklet_schedule(&ap_tasklet);
}
/**
* ap_tasklet_fn(): Tasklet to poll all AP devices.
* @dummy: Unused variable
*
* Poll all AP devices on the bus.
*/
static void ap_tasklet_fn(unsigned long dummy)
{
int bkt;
struct ap_queue *aq;
enum ap_sm_wait wait = AP_SM_WAIT_NONE;
/* Reset the indicator if interrupts are used. Thus new interrupts can
* be received. Doing it in the beginning of the tasklet is therefore
* important that no requests on any AP get lost.
*/
if (ap_irq_flag)
xchg(ap_airq.lsi_ptr, 0);
spin_lock_bh(&ap_queues_lock);
hash_for_each(ap_queues, bkt, aq, hnode) {
spin_lock_bh(&aq->lock);
wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
spin_unlock_bh(&aq->lock);
}
spin_unlock_bh(&ap_queues_lock);
ap_wait(wait);
}
static int ap_pending_requests(void)
{
int bkt;
struct ap_queue *aq;
spin_lock_bh(&ap_queues_lock);
hash_for_each(ap_queues, bkt, aq, hnode) {
if (aq->queue_count == 0)
continue;
spin_unlock_bh(&ap_queues_lock);
return 1;
}
spin_unlock_bh(&ap_queues_lock);
return 0;
}
/**
* ap_poll_thread(): Thread that polls for finished requests.
* @data: Unused pointer
*
* AP bus poll thread. The purpose of this thread is to poll for
* finished requests in a loop if there is a "free" cpu - that is
* a cpu that doesn't have anything better to do. The polling stops
* as soon as there is another task or if all messages have been
* delivered.
*/
static int ap_poll_thread(void *data)
{
DECLARE_WAITQUEUE(wait, current);
set_user_nice(current, MAX_NICE);
set_freezable();
while (!kthread_should_stop()) {
add_wait_queue(&ap_poll_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
if (!ap_pending_requests()) {
schedule();
try_to_freeze();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&ap_poll_wait, &wait);
if (need_resched()) {
schedule();
try_to_freeze();
continue;
}
ap_tasklet_fn(0);
}
return 0;
}
static int ap_poll_thread_start(void)
{
int rc;
if (ap_irq_flag || ap_poll_kthread)
return 0;
mutex_lock(&ap_poll_thread_mutex);
ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
if (rc)
ap_poll_kthread = NULL;
mutex_unlock(&ap_poll_thread_mutex);
return rc;
}
static void ap_poll_thread_stop(void)
{
if (!ap_poll_kthread)
return;
mutex_lock(&ap_poll_thread_mutex);
kthread_stop(ap_poll_kthread);
ap_poll_kthread = NULL;
mutex_unlock(&ap_poll_thread_mutex);
}
#define is_card_dev(x) ((x)->parent == ap_root_device)
#define is_queue_dev(x) ((x)->parent != ap_root_device)
/**
* ap_bus_match()
* @dev: Pointer to device
* @drv: Pointer to device_driver
*
* AP bus driver registration/unregistration.
*/
static int ap_bus_match(struct device *dev, struct device_driver *drv)
{
struct ap_driver *ap_drv = to_ap_drv(drv);
struct ap_device_id *id;
/*
* Compare device type of the device with the list of
* supported types of the device_driver.
*/
for (id = ap_drv->ids; id->match_flags; id++) {
if (is_card_dev(dev) &&
id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
id->dev_type == to_ap_dev(dev)->device_type)
return 1;
if (is_queue_dev(dev) &&
id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
id->dev_type == to_ap_dev(dev)->device_type)
return 1;
}
return 0;
}
/**
* ap_uevent(): Uevent function for AP devices.
* @dev: Pointer to device
* @env: Pointer to kobj_uevent_env
*
* It sets up a single environment variable DEV_TYPE which contains the
* hardware device type.
*/
static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
int rc = 0;
const struct ap_device *ap_dev = to_ap_dev(dev);
/* Uevents from ap bus core don't need extensions to the env */
if (dev == ap_root_device)
return 0;
if (is_card_dev(dev)) {
struct ap_card *ac = to_ap_card(&ap_dev->device);
/* Set up DEV_TYPE environment variable. */
rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
if (rc)
return rc;
/* Add MODALIAS= */
rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
if (rc)
return rc;
/* Add MODE=<accel|cca|ep11> */
if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
rc = add_uevent_var(env, "MODE=accel");
else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
rc = add_uevent_var(env, "MODE=cca");
else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
rc = add_uevent_var(env, "MODE=ep11");
if (rc)
return rc;
} else {
struct ap_queue *aq = to_ap_queue(&ap_dev->device);
/* Add MODE=<accel|cca|ep11> */
if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
rc = add_uevent_var(env, "MODE=accel");
else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
rc = add_uevent_var(env, "MODE=cca");
else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
rc = add_uevent_var(env, "MODE=ep11");
if (rc)
return rc;
}
return 0;
}
static void ap_send_init_scan_done_uevent(void)
{
char *envp[] = { "INITSCAN=done", NULL };
kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
}
static void ap_send_bindings_complete_uevent(void)
{
char buf[32];
char *envp[] = { "BINDINGS=complete", buf, NULL };
snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
atomic64_inc_return(&ap_bindings_complete_count));
kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
}
void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
{
char buf[16];
char *envp[] = { buf, NULL };
snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
}
EXPORT_SYMBOL(ap_send_config_uevent);
void ap_send_online_uevent(struct ap_device *ap_dev, int online)
{
char buf[16];
char *envp[] = { buf, NULL };
snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
}
EXPORT_SYMBOL(ap_send_online_uevent);
static void ap_send_mask_changed_uevent(unsigned long *newapm,
unsigned long *newaqm)
{
char buf[100];
char *envp[] = { buf, NULL };
if (newapm)
snprintf(buf, sizeof(buf),
"APMASK=0x%016lx%016lx%016lx%016lx\n",
newapm[0], newapm[1], newapm[2], newapm[3]);
else
snprintf(buf, sizeof(buf),
"AQMASK=0x%016lx%016lx%016lx%016lx\n",
newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
}
/*
* calc # of bound APQNs
*/
struct __ap_calc_ctrs {
unsigned int apqns;
unsigned int bound;
};
static int __ap_calc_helper(struct device *dev, void *arg)
{
struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
if (is_queue_dev(dev)) {
pctrs->apqns++;
if (dev->driver)
pctrs->bound++;
}
return 0;
}
static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
{
struct __ap_calc_ctrs ctrs;
memset(&ctrs, 0, sizeof(ctrs));
bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
*apqns = ctrs.apqns;
*bound = ctrs.bound;
}
/*
* After initial ap bus scan do check if all existing APQNs are
* bound to device drivers.
*/
static void ap_check_bindings_complete(void)
{
unsigned int apqns, bound;
if (atomic64_read(&ap_scan_bus_count) >= 1) {
ap_calc_bound_apqns(&apqns, &bound);
if (bound == apqns) {
if (!completion_done(&ap_init_apqn_bindings_complete)) {
complete_all(&ap_init_apqn_bindings_complete);
AP_DBF_INFO("%s complete\n", __func__);
}
ap_send_bindings_complete_uevent();
}
}
}
/*
* Interface to wait for the AP bus to have done one initial ap bus
* scan and all detected APQNs have been bound to device drivers.
* If these both conditions are not fulfilled, this function blocks
* on a condition with wait_for_completion_interruptible_timeout().
* If these both conditions are fulfilled (before the timeout hits)
* the return value is 0. If the timeout (in jiffies) hits instead
* -ETIME is returned. On failures negative return values are
* returned to the caller.
*/
int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
{
long l;
if (completion_done(&ap_init_apqn_bindings_complete))
return 0;
if (timeout)
l = wait_for_completion_interruptible_timeout(
&ap_init_apqn_bindings_complete, timeout);
else
l = wait_for_completion_interruptible(
&ap_init_apqn_bindings_complete);
if (l < 0)
return l == -ERESTARTSYS ? -EINTR : l;
else if (l == 0 && timeout)
return -ETIME;
return 0;
}
EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
{
if (is_queue_dev(dev) &&
AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
device_unregister(dev);
return 0;
}
static int __ap_revise_reserved(struct device *dev, void *dummy)
{
int rc, card, queue, devres, drvres;
if (is_queue_dev(dev)) {
card = AP_QID_CARD(to_ap_queue(dev)->qid);
queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
mutex_lock(&ap_perms_mutex);
devres = test_bit_inv(card, ap_perms.apm) &&
test_bit_inv(queue, ap_perms.aqm);
mutex_unlock(&ap_perms_mutex);
drvres = to_ap_drv(dev->driver)->flags
& AP_DRIVER_FLAG_DEFAULT;
if (!!devres != !!drvres) {
AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
__func__, card, queue);
rc = device_reprobe(dev);
if (rc)
AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
__func__, card, queue);
}
}
return 0;
}
static void ap_bus_revise_bindings(void)
{
bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
}
/**
* ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
* default host driver or not.
* @card: the APID of the adapter card to check
* @queue: the APQI of the queue to check
*
* Note: the ap_perms_mutex must be locked by the caller of this function.
*
* Return: an int specifying whether the AP adapter is reserved for the host (1)
* or not (0).
*/
int ap_owned_by_def_drv(int card, int queue)
{
int rc = 0;
if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
return -EINVAL;
if (test_bit_inv(card, ap_perms.apm) &&
test_bit_inv(queue, ap_perms.aqm))
rc = 1;
return rc;
}
EXPORT_SYMBOL(ap_owned_by_def_drv);
/**
* ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
* a set is reserved for the host drivers
* or not.
* @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
* @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
*
* Note: the ap_perms_mutex must be locked by the caller of this function.
*
* Return: an int specifying whether each APQN is reserved for the host (1) or
* not (0)
*/
int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
unsigned long *aqm)
{
int card, queue, rc = 0;
for (card = 0; !rc && card < AP_DEVICES; card++)
if (test_bit_inv(card, apm) &&
test_bit_inv(card, ap_perms.apm))
for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
if (test_bit_inv(queue, aqm) &&
test_bit_inv(queue, ap_perms.aqm))
rc = 1;
return rc;
}
EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
static int ap_device_probe(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(dev->driver);
int card, queue, devres, drvres, rc = -ENODEV;
if (!get_device(dev))
return rc;
if (is_queue_dev(dev)) {
/*
* If the apqn is marked as reserved/used by ap bus and
* default drivers, only probe with drivers with the default
* flag set. If it is not marked, only probe with drivers
* with the default flag not set.
*/
card = AP_QID_CARD(to_ap_queue(dev)->qid);
queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
mutex_lock(&ap_perms_mutex);
devres = test_bit_inv(card, ap_perms.apm) &&
test_bit_inv(queue, ap_perms.aqm);
mutex_unlock(&ap_perms_mutex);
drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
if (!!devres != !!drvres)
goto out;
}
/* Add queue/card to list of active queues/cards */
spin_lock_bh(&ap_queues_lock);
if (is_queue_dev(dev))
hash_add(ap_queues, &to_ap_queue(dev)->hnode,
to_ap_queue(dev)->qid);
spin_unlock_bh(&ap_queues_lock);
rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
if (rc) {
spin_lock_bh(&ap_queues_lock);
if (is_queue_dev(dev))
hash_del(&to_ap_queue(dev)->hnode);
spin_unlock_bh(&ap_queues_lock);
} else {
ap_check_bindings_complete();
}
out:
if (rc)
put_device(dev);
return rc;
}
static void ap_device_remove(struct device *dev)
{
struct ap_device *ap_dev = to_ap_dev(dev);
struct ap_driver *ap_drv = to_ap_drv(dev->driver);
/* prepare ap queue device removal */
if (is_queue_dev(dev))
ap_queue_prepare_remove(to_ap_queue(dev));
/* driver's chance to clean up gracefully */
if (ap_drv->remove)
ap_drv->remove(ap_dev);
/* now do the ap queue device remove */
if (is_queue_dev(dev))
ap_queue_remove(to_ap_queue(dev));
/* Remove queue/card from list of active queues/cards */
spin_lock_bh(&ap_queues_lock);
if (is_queue_dev(dev))
hash_del(&to_ap_queue(dev)->hnode);
spin_unlock_bh(&ap_queues_lock);
put_device(dev);
}
struct ap_queue *ap_get_qdev(ap_qid_t qid)
{
int bkt;
struct ap_queue *aq;
spin_lock_bh(&ap_queues_lock);
hash_for_each(ap_queues, bkt, aq, hnode) {
if (aq->qid == qid) {
get_device(&aq->ap_dev.device);
spin_unlock_bh(&ap_queues_lock);
return aq;
}
}
spin_unlock_bh(&ap_queues_lock);
return NULL;
}
EXPORT_SYMBOL(ap_get_qdev);
int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
char *name)
{
struct device_driver *drv = &ap_drv->driver;
drv->bus = &ap_bus_type;
drv->owner = owner;
drv->name = name;
return driver_register(drv);
}
EXPORT_SYMBOL(ap_driver_register);
void ap_driver_unregister(struct ap_driver *ap_drv)
{
driver_unregister(&ap_drv->driver);
}
EXPORT_SYMBOL(ap_driver_unregister);
void ap_bus_force_rescan(void)
{
/* processing a asynchronous bus rescan */
del_timer(&ap_config_timer);
queue_work(system_long_wq, &ap_scan_work);
flush_work(&ap_scan_work);
}
EXPORT_SYMBOL(ap_bus_force_rescan);
/*
* A config change has happened, force an ap bus rescan.
*/
void ap_bus_cfg_chg(void)
{
AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
ap_bus_force_rescan();
}
/*
* hex2bitmap() - parse hex mask string and set bitmap.
* Valid strings are "0x012345678" with at least one valid hex number.
* Rest of the bitmap to the right is padded with 0. No spaces allowed
* within the string, the leading 0x may be omitted.
* Returns the bitmask with exactly the bits set as given by the hex
* string (both in big endian order).
*/
static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
{
int i, n, b;
/* bits needs to be a multiple of 8 */
if (bits & 0x07)
return -EINVAL;
if (str[0] == '0' && str[1] == 'x')
str++;
if (*str == 'x')
str++;
for (i = 0; isxdigit(*str) && i < bits; str++) {
b = hex_to_bin(*str);
for (n = 0; n < 4; n++)
if (b & (0x08 >> n))
set_bit_inv(i + n, bitmap);
i += 4;
}
if (*str == '\n')
str++;
if (*str)
return -EINVAL;
return 0;
}
/*
* modify_bitmap() - parse bitmask argument and modify an existing
* bit mask accordingly. A concatenation (done with ',') of these
* terms is recognized:
* +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
* <bitnr> may be any valid number (hex, decimal or octal) in the range
* 0...bits-1; the leading + or - is required. Here are some examples:
* +0-15,+32,-128,-0xFF
* -0-255,+1-16,+0x128
* +1,+2,+3,+4,-5,-7-10
* Returns the new bitmap after all changes have been applied. Every
* positive value in the string will set a bit and every negative value
* in the string will clear a bit. As a bit may be touched more than once,
* the last 'operation' wins:
* +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
* cleared again. All other bits are unmodified.
*/
static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
{
int a, i, z;
char *np, sign;
/* bits needs to be a multiple of 8 */
if (bits & 0x07)
return -EINVAL;
while (*str) {
sign = *str++;
if (sign != '+' && sign != '-')
return -EINVAL;
a = z = simple_strtoul(str, &np, 0);
if (str == np || a >= bits)
return -EINVAL;
str = np;
if (*str == '-') {
z = simple_strtoul(++str, &np, 0);
if (str == np || a > z || z >= bits)
return -EINVAL;
str = np;
}
for (i = a; i <= z; i++)
if (sign == '+')
set_bit_inv(i, bitmap);
else
clear_bit_inv(i, bitmap);
while (*str == ',' || *str == '\n')
str++;
}
return 0;
}
static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
unsigned long *newmap)
{
unsigned long size;
int rc;
size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
if (*str == '+' || *str == '-') {
memcpy(newmap, bitmap, size);
rc = modify_bitmap(str, newmap, bits);
} else {
memset(newmap, 0, size);
rc = hex2bitmap(str, newmap, bits);
}
return rc;
}
int ap_parse_mask_str(const char *str,
unsigned long *bitmap, int bits,
struct mutex *lock)
{
unsigned long *newmap, size;
int rc;
/* bits needs to be a multiple of 8 */
if (bits & 0x07)
return -EINVAL;
size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
newmap = kmalloc(size, GFP_KERNEL);
if (!newmap)
return -ENOMEM;
if (mutex_lock_interruptible(lock)) {
kfree(newmap);
return -ERESTARTSYS;
}
rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
if (rc == 0)
memcpy(bitmap, newmap, size);
mutex_unlock(lock);
kfree(newmap);
return rc;
}
EXPORT_SYMBOL(ap_parse_mask_str);
/*
* AP bus attributes.
*/
static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%d\n", ap_domain_index);
}
static ssize_t ap_domain_store(const struct bus_type *bus,
const char *buf, size_t count)
{
int domain;
if (sscanf(buf, "%i\n", &domain) != 1 ||
domain < 0 || domain > ap_max_domain_id ||
!test_bit_inv(domain, ap_perms.aqm))
return -EINVAL;
spin_lock_bh(&ap_domain_lock);
ap_domain_index = domain;
spin_unlock_bh(&ap_domain_lock);
AP_DBF_INFO("%s stored new default domain=%d\n",
__func__, domain);
return count;
}
static BUS_ATTR_RW(ap_domain);
static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
{
if (!ap_qci_info) /* QCI not supported */
return sysfs_emit(buf, "not supported\n");
return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
ap_qci_info->adm[0], ap_qci_info->adm[1],
ap_qci_info->adm[2], ap_qci_info->adm[3],
ap_qci_info->adm[4], ap_qci_info->adm[5],
ap_qci_info->adm[6], ap_qci_info->adm[7]);
}
static BUS_ATTR_RO(ap_control_domain_mask);
static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
{
if (!ap_qci_info) /* QCI not supported */
return sysfs_emit(buf, "not supported\n");
return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
ap_qci_info->aqm[0], ap_qci_info->aqm[1],
ap_qci_info->aqm[2], ap_qci_info->aqm[3],
ap_qci_info->aqm[4], ap_qci_info->aqm[5],
ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
}
static BUS_ATTR_RO(ap_usage_domain_mask);
static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
{
if (!ap_qci_info) /* QCI not supported */
return sysfs_emit(buf, "not supported\n");
return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
ap_qci_info->apm[0], ap_qci_info->apm[1],
ap_qci_info->apm[2], ap_qci_info->apm[3],
ap_qci_info->apm[4], ap_qci_info->apm[5],
ap_qci_info->apm[6], ap_qci_info->apm[7]);
}
static BUS_ATTR_RO(ap_adapter_mask);
static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
}
static BUS_ATTR_RO(ap_interrupts);
static ssize_t config_time_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%d\n", ap_config_time);
}
static ssize_t config_time_store(const struct bus_type *bus,
const char *buf, size_t count)
{
int time;
if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
return -EINVAL;
ap_config_time = time;
mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
return count;
}
static BUS_ATTR_RW(config_time);
static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
}
static ssize_t poll_thread_store(const struct bus_type *bus,
const char *buf, size_t count)
{
bool value;
int rc;
rc = kstrtobool(buf, &value);
if (rc)
return rc;
if (value) {
rc = ap_poll_thread_start();
if (rc)
count = rc;
} else {
ap_poll_thread_stop();
}
return count;
}
static BUS_ATTR_RW(poll_thread);
static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%lu\n", poll_high_timeout);
}
static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
size_t count)
{
unsigned long value;
ktime_t hr_time;
int rc;
rc = kstrtoul(buf, 0, &value);
if (rc)
return rc;
/* 120 seconds = maximum poll interval */
if (value > 120000000000UL)
return -EINVAL;
poll_high_timeout = value;
hr_time = poll_high_timeout;
spin_lock_bh(&ap_poll_timer_lock);
hrtimer_cancel(&ap_poll_timer);
hrtimer_set_expires(&ap_poll_timer, hr_time);
hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
spin_unlock_bh(&ap_poll_timer_lock);
return count;
}
static BUS_ATTR_RW(poll_timeout);
static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%d\n", ap_max_domain_id);
}
static BUS_ATTR_RO(ap_max_domain_id);
static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
}
static BUS_ATTR_RO(ap_max_adapter_id);
static ssize_t apmask_show(const struct bus_type *bus, char *buf)
{
int rc;
if (mutex_lock_interruptible(&ap_perms_mutex))
return -ERESTARTSYS;
rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
ap_perms.apm[0], ap_perms.apm[1],
ap_perms.apm[2], ap_perms.apm[3]);
mutex_unlock(&ap_perms_mutex);
return rc;
}
static int __verify_card_reservations(struct device_driver *drv, void *data)
{
int rc = 0;
struct ap_driver *ap_drv = to_ap_drv(drv);
unsigned long *newapm = (unsigned long *)data;
/*
* increase the driver's module refcounter to be sure it is not
* going away when we invoke the callback function.
*/
if (!try_module_get(drv->owner))
return 0;
if (ap_drv->in_use) {
rc = ap_drv->in_use(newapm, ap_perms.aqm);
if (rc)
rc = -EBUSY;
}
/* release the driver's module */
module_put(drv->owner);
return rc;
}
static int apmask_commit(unsigned long *newapm)
{
int rc;
unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
/*
* Check if any bits in the apmask have been set which will
* result in queues being removed from non-default drivers
*/
if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
__verify_card_reservations);
if (rc)
return rc;
}
memcpy(ap_perms.apm, newapm, APMASKSIZE);
return 0;
}
static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
size_t count)
{
int rc, changes = 0;
DECLARE_BITMAP(newapm, AP_DEVICES);
if (mutex_lock_interruptible(&ap_perms_mutex))
return -ERESTARTSYS;
rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
if (rc)
goto done;
changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
if (changes)
rc = apmask_commit(newapm);
done:
mutex_unlock(&ap_perms_mutex);
if (rc)
return rc;
if (changes) {
ap_bus_revise_bindings();
ap_send_mask_changed_uevent(newapm, NULL);
}
return count;
}
static BUS_ATTR_RW(apmask);
static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
{
int rc;
if (mutex_lock_interruptible(&ap_perms_mutex))
return -ERESTARTSYS;
rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
ap_perms.aqm[0], ap_perms.aqm[1],
ap_perms.aqm[2], ap_perms.aqm[3]);
mutex_unlock(&ap_perms_mutex);
return rc;
}
static int __verify_queue_reservations(struct device_driver *drv, void *data)
{
int rc = 0;
struct ap_driver *ap_drv = to_ap_drv(drv);
unsigned long *newaqm = (unsigned long *)data;
/*
* increase the driver's module refcounter to be sure it is not
* going away when we invoke the callback function.
*/
if (!try_module_get(drv->owner))
return 0;
if (ap_drv->in_use) {
rc = ap_drv->in_use(ap_perms.apm, newaqm);
if (rc)
rc = -EBUSY;
}
/* release the driver's module */
module_put(drv->owner);
return rc;
}
static int aqmask_commit(unsigned long *newaqm)
{
int rc;
unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
/*
* Check if any bits in the aqmask have been set which will
* result in queues being removed from non-default drivers
*/
if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
__verify_queue_reservations);
if (rc)
return rc;
}
memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
return 0;
}
static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
size_t count)
{
int rc, changes = 0;
DECLARE_BITMAP(newaqm, AP_DOMAINS);
if (mutex_lock_interruptible(&ap_perms_mutex))
return -ERESTARTSYS;
rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
if (rc)
goto done;
changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
if (changes)
rc = aqmask_commit(newaqm);
done:
mutex_unlock(&ap_perms_mutex);
if (rc)
return rc;
if (changes) {
ap_bus_revise_bindings();
ap_send_mask_changed_uevent(NULL, newaqm);
}
return count;
}
static BUS_ATTR_RW(aqmask);
static ssize_t scans_show(const struct bus_type *bus, char *buf)
{
return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
}
static ssize_t scans_store(const struct bus_type *bus, const char *buf,
size_t count)
{
AP_DBF_INFO("%s force AP bus rescan\n", __func__);
ap_bus_force_rescan();
return count;
}
static BUS_ATTR_RW(scans);
static ssize_t bindings_show(const struct bus_type *bus, char *buf)
{
int rc;
unsigned int apqns, n;
ap_calc_bound_apqns(&apqns, &n);
if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
else
rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
return rc;
}
static BUS_ATTR_RO(bindings);
static ssize_t features_show(const struct bus_type *bus, char *buf)
{
int n = 0;
if (!ap_qci_info) /* QCI not supported */
return sysfs_emit(buf, "-\n");
if (ap_qci_info->apsc)
n += sysfs_emit_at(buf, n, "APSC ");
if (ap_qci_info->apxa)
n += sysfs_emit_at(buf, n, "APXA ");
if (ap_qci_info->qact)
n += sysfs_emit_at(buf, n, "QACT ");
if (ap_qci_info->rc8a)
n += sysfs_emit_at(buf, n, "RC8A ");
if (ap_qci_info->apsb)
n += sysfs_emit_at(buf, n, "APSB ");
sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
return n;
}
static BUS_ATTR_RO(features);
static struct attribute *ap_bus_attrs[] = {
&bus_attr_ap_domain.attr,
&bus_attr_ap_control_domain_mask.attr,
&bus_attr_ap_usage_domain_mask.attr,
&bus_attr_ap_adapter_mask.attr,
&bus_attr_config_time.attr,
&bus_attr_poll_thread.attr,
&bus_attr_ap_interrupts.attr,
&bus_attr_poll_timeout.attr,
&bus_attr_ap_max_domain_id.attr,
&bus_attr_ap_max_adapter_id.attr,
&bus_attr_apmask.attr,
&bus_attr_aqmask.attr,
&bus_attr_scans.attr,
&bus_attr_bindings.attr,
&bus_attr_features.attr,
NULL,
};
ATTRIBUTE_GROUPS(ap_bus);
static struct bus_type ap_bus_type = {
.name = "ap",
.bus_groups = ap_bus_groups,
.match = &ap_bus_match,
.uevent = &ap_uevent,
.probe = ap_device_probe,
.remove = ap_device_remove,
};
/**
* ap_select_domain(): Select an AP domain if possible and we haven't
* already done so before.
*/
static void ap_select_domain(void)
{
struct ap_queue_status status;
int card, dom;
/*
* Choose the default domain. Either the one specified with
* the "domain=" parameter or the first domain with at least
* one valid APQN.
*/
spin_lock_bh(&ap_domain_lock);
if (ap_domain_index >= 0) {
/* Domain has already been selected. */
goto out;
}
for (dom = 0; dom <= ap_max_domain_id; dom++) {
if (!ap_test_config_usage_domain(dom) ||
!test_bit_inv(dom, ap_perms.aqm))
continue;
for (card = 0; card <= ap_max_adapter_id; card++) {
if (!ap_test_config_card_id(card) ||
!test_bit_inv(card, ap_perms.apm))
continue;
status = ap_test_queue(AP_MKQID(card, dom),
ap_apft_available(),
NULL);
if (status.response_code == AP_RESPONSE_NORMAL)
break;
}
if (card <= ap_max_adapter_id)
break;
}
if (dom <= ap_max_domain_id) {
ap_domain_index = dom;
AP_DBF_INFO("%s new default domain is %d\n",
__func__, ap_domain_index);
}
out:
spin_unlock_bh(&ap_domain_lock);
}
/*
* This function checks the type and returns either 0 for not
* supported or the highest compatible type value (which may
* include the input type value).
*/
static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
{
int comp_type = 0;
/* < CEX4 is not supported */
if (rawtype < AP_DEVICE_TYPE_CEX4) {
AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
__func__, AP_QID_CARD(qid),
AP_QID_QUEUE(qid), rawtype);
return 0;
}
/* up to CEX8 known and fully supported */
if (rawtype <= AP_DEVICE_TYPE_CEX8)
return rawtype;
/*
* unknown new type > CEX8, check for compatibility
* to the highest known and supported type which is
* currently CEX8 with the help of the QACT function.
*/
if (ap_qact_available()) {
struct ap_queue_status status;
union ap_qact_ap_info apinfo = {0};
apinfo.mode = (func >> 26) & 0x07;
apinfo.cat = AP_DEVICE_TYPE_CEX8;
status = ap_qact(qid, 0, &apinfo);
if (status.response_code == AP_RESPONSE_NORMAL &&
apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
apinfo.cat <= AP_DEVICE_TYPE_CEX8)
comp_type = apinfo.cat;
}
if (!comp_type)
AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
__func__, AP_QID_CARD(qid),
AP_QID_QUEUE(qid), rawtype);
else if (comp_type != rawtype)
AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
__func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
rawtype, comp_type);
return comp_type;
}
/*
* Helper function to be used with bus_find_dev
* matches for the card device with the given id
*/
static int __match_card_device_with_id(struct device *dev, const void *data)
{
return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
}
/*
* Helper function to be used with bus_find_dev
* matches for the queue device with a given qid
*/
static int __match_queue_device_with_qid(struct device *dev, const void *data)
{
return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
}
/*
* Helper function to be used with bus_find_dev
* matches any queue device with given queue id
*/
static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
{
return is_queue_dev(dev) &&
AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
}
/* Helper function for notify_config_changed */
static int __drv_notify_config_changed(struct device_driver *drv, void *data)
{
struct ap_driver *ap_drv = to_ap_drv(drv);
if (try_module_get(drv->owner)) {
if (ap_drv->on_config_changed)
ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
module_put(drv->owner);
}
return 0;
}
/* Notify all drivers about an qci config change */
static inline void notify_config_changed(void)
{
bus_for_each_drv(&ap_bus_type, NULL, NULL,
__drv_notify_config_changed);
}
/* Helper function for notify_scan_complete */
static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
{
struct ap_driver *ap_drv = to_ap_drv(drv);
if (try_module_get(drv->owner)) {
if (ap_drv->on_scan_complete)
ap_drv->on_scan_complete(ap_qci_info,
ap_qci_info_old);
module_put(drv->owner);
}
return 0;
}
/* Notify all drivers about bus scan complete */
static inline void notify_scan_complete(void)
{
bus_for_each_drv(&ap_bus_type, NULL, NULL,
__drv_notify_scan_complete);
}
/*
* Helper function for ap_scan_bus().
* Remove card device and associated queue devices.
*/
static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
{
bus_for_each_dev(&ap_bus_type, NULL,
(void *)(long)ac->id,
__ap_queue_devices_with_id_unregister);
device_unregister(&ac->ap_dev.device);
}
/*
* Helper function for ap_scan_bus().
* Does the scan bus job for all the domains within
* a valid adapter given by an ap_card ptr.
*/
static inline void ap_scan_domains(struct ap_card *ac)
{
int rc, dom, depth, type, ml;
bool decfg, chkstop;
struct ap_queue *aq;
struct device *dev;
unsigned int func;
ap_qid_t qid;
/*
* Go through the configuration for the domains and compare them
* to the existing queue devices. Also take care of the config
* and error state for the queue devices.
*/
for (dom = 0; dom <= ap_max_domain_id; dom++) {
qid = AP_MKQID(ac->id, dom);
dev = bus_find_device(&ap_bus_type, NULL,
(void *)(long)qid,
__match_queue_device_with_qid);
aq = dev ? to_ap_queue(dev) : NULL;
if (!ap_test_config_usage_domain(dom)) {
if (dev) {
AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
__func__, ac->id, dom);
device_unregister(dev);
}
goto put_dev_and_continue;
}
/* domain is valid, get info from this APQN */
rc = ap_queue_info(qid, &type, &func, &depth,
&ml, &decfg, &chkstop);
switch (rc) {
case -1:
if (dev) {
AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
__func__, ac->id, dom);
device_unregister(dev);
}
fallthrough;
case 0:
goto put_dev_and_continue;
default:
break;
}
/* if no queue device exists, create a new one */
if (!aq) {
aq = ap_queue_create(qid, ac->ap_dev.device_type);
if (!aq) {
AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
__func__, ac->id, dom);
continue;
}
aq->card = ac;
aq->config = !decfg;
aq->chkstop = chkstop;
dev = &aq->ap_dev.device;
dev->bus = &ap_bus_type;
dev->parent = &ac->ap_dev.device;
dev_set_name(dev, "%02x.%04x", ac->id, dom);
/* register queue device */
rc = device_register(dev);
if (rc) {
AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
__func__, ac->id, dom);
goto put_dev_and_continue;
}
/* get it and thus adjust reference counter */
get_device(dev);
if (decfg)
AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
__func__, ac->id, dom);
else if (chkstop)
AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
__func__, ac->id, dom);
else
AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
__func__, ac->id, dom);
goto put_dev_and_continue;
}
/* handle state changes on already existing queue device */
spin_lock_bh(&aq->lock);
/* checkstop state */
if (chkstop && !aq->chkstop) {
/* checkstop on */
aq->chkstop = true;
if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
}
spin_unlock_bh(&aq->lock);
AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
__func__, ac->id, dom);
/* 'receive' pending messages with -EAGAIN */
ap_flush_queue(aq);
goto put_dev_and_continue;
} else if (!chkstop && aq->chkstop) {
/* checkstop off */
aq->chkstop = false;
if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
aq->dev_state = AP_DEV_STATE_OPERATING;
aq->sm_state = AP_SM_STATE_RESET_START;
}
spin_unlock_bh(&aq->lock);
AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
__func__, ac->id, dom);
goto put_dev_and_continue;
}
/* config state change */
if (decfg && aq->config) {
/* config off this queue device */
aq->config = false;
if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
aq->dev_state = AP_DEV_STATE_ERROR;
aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
}
spin_unlock_bh(&aq->lock);
AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
__func__, ac->id, dom);
ap_send_config_uevent(&aq->ap_dev, aq->config);
/* 'receive' pending messages with -EAGAIN */
ap_flush_queue(aq);
goto put_dev_and_continue;
} else if (!decfg && !aq->config) {
/* config on this queue device */
aq->config = true;
if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
aq->dev_state = AP_DEV_STATE_OPERATING;
aq->sm_state = AP_SM_STATE_RESET_START;
}
spin_unlock_bh(&aq->lock);
AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
__func__, ac->id, dom);
ap_send_config_uevent(&aq->ap_dev, aq->config);
goto put_dev_and_continue;
}
/* handle other error states */
if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
spin_unlock_bh(&aq->lock);
/* 'receive' pending messages with -EAGAIN */
ap_flush_queue(aq);
/* re-init (with reset) the queue device */
ap_queue_init_state(aq);
AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
__func__, ac->id, dom);
goto put_dev_and_continue;
}
spin_unlock_bh(&aq->lock);
put_dev_and_continue:
put_device(dev);
}
}
/*
* Helper function for ap_scan_bus().
* Does the scan bus job for the given adapter id.
*/
static inline void ap_scan_adapter(int ap)
{
int rc, dom, depth, type, comp_type, ml;
bool decfg, chkstop;
struct ap_card *ac;
struct device *dev;
unsigned int func;
ap_qid_t qid;
/* Is there currently a card device for this adapter ? */
dev = bus_find_device(&ap_bus_type, NULL,
(void *)(long)ap,
__match_card_device_with_id);
ac = dev ? to_ap_card(dev) : NULL;
/* Adapter not in configuration ? */
if (!ap_test_config_card_id(ap)) {
if (ac) {
AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
__func__, ap);
ap_scan_rm_card_dev_and_queue_devs(ac);
put_device(dev);
}
return;
}
/*
* Adapter ap is valid in the current configuration. So do some checks:
* If no card device exists, build one. If a card device exists, check
* for type and functions changed. For all this we need to find a valid
* APQN first.
*/
for (dom = 0; dom <= ap_max_domain_id; dom++)
if (ap_test_config_usage_domain(dom)) {
qid = AP_MKQID(ap, dom);
if (ap_queue_info(qid, &type, &func, &depth,
&ml, &decfg, &chkstop) > 0)
break;
}
if (dom > ap_max_domain_id) {
/* Could not find one valid APQN for this adapter */
if (ac) {
AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
__func__, ap);
ap_scan_rm_card_dev_and_queue_devs(ac);
put_device(dev);
} else {
AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
__func__, ap);
}
return;
}
if (!type) {
/* No apdater type info available, an unusable adapter */
if (ac) {
AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
__func__, ap);
ap_scan_rm_card_dev_and_queue_devs(ac);
put_device(dev);
} else {
AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
__func__, ap);
}
return;
}
if (ac) {
/* Check APQN against existing card device for changes */
if (ac->raw_hwtype != type) {
AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
__func__, ap, type);
ap_scan_rm_card_dev_and_queue_devs(ac);
put_device(dev);
ac = NULL;
} else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
(func & TAPQ_CARD_FUNC_CMP_MASK)) {
AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
__func__, ap, func);
ap_scan_rm_card_dev_and_queue_devs(ac);
put_device(dev);
ac = NULL;
} else {
/* handle checkstop state change */
if (chkstop && !ac->chkstop) {
/* checkstop on */
ac->chkstop = true;
AP_DBF_INFO("%s(%d) card dev checkstop on\n",
__func__, ap);
} else if (!chkstop && ac->chkstop) {
/* checkstop off */
ac->chkstop = false;
AP_DBF_INFO("%s(%d) card dev checkstop off\n",
__func__, ap);
}
/* handle config state change */
if (decfg && ac->config) {
ac->config = false;
AP_DBF_INFO("%s(%d) card dev config off\n",
__func__, ap);
ap_send_config_uevent(&ac->ap_dev, ac->config);
} else if (!decfg && !ac->config) {
ac->config = true;
AP_DBF_INFO("%s(%d) card dev config on\n",
__func__, ap);
ap_send_config_uevent(&ac->ap_dev, ac->config);
}
}
}
if (!ac) {
/* Build a new card device */
comp_type = ap_get_compatible_type(qid, type, func);
if (!comp_type) {
AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
__func__, ap, type);
return;
}
ac = ap_card_create(ap, depth, type, comp_type, func, ml);
if (!ac) {
AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
__func__, ap);
return;
}
ac->config = !decfg;
ac->chkstop = chkstop;
dev = &ac->ap_dev.device;
dev->bus = &ap_bus_type;
dev->parent = ap_root_device;
dev_set_name(dev, "card%02x", ap);
/* maybe enlarge ap_max_msg_size to support this card */
if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
atomic_set(&ap_max_msg_size, ac->maxmsgsize);
AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
__func__, ap,
atomic_read(&ap_max_msg_size));
}
/* Register the new card device with AP bus */
rc = device_register(dev);
if (rc) {
AP_DBF_WARN("%s(%d) device_register() failed\n",
__func__, ap);
put_device(dev);
return;
}
/* get it and thus adjust reference counter */
get_device(dev);
if (decfg)
AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
__func__, ap, type, func);
else if (chkstop)
AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
__func__, ap, type, func);
else
AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
__func__, ap, type, func);
}
/* Verify the domains and the queue devices for this card */
ap_scan_domains(ac);
/* release the card device */
put_device(&ac->ap_dev.device);
}
/**
* ap_get_configuration - get the host AP configuration
*
* Stores the host AP configuration information returned from the previous call
* to Query Configuration Information (QCI), then retrieves and stores the
* current AP configuration returned from QCI.
*
* Return: true if the host AP configuration changed between calls to QCI;
* otherwise, return false.
*/
static bool ap_get_configuration(void)
{
if (!ap_qci_info) /* QCI not supported */
return false;
memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
ap_fetch_qci_info(ap_qci_info);
return memcmp(ap_qci_info, ap_qci_info_old,
sizeof(struct ap_config_info)) != 0;
}
/**
* ap_scan_bus(): Scan the AP bus for new devices
* Runs periodically, workqueue timer (ap_config_time)
* @unused: Unused pointer.
*/
static void ap_scan_bus(struct work_struct *unused)
{
int ap, config_changed = 0;
/* config change notify */
config_changed = ap_get_configuration();
if (config_changed)
notify_config_changed();
ap_select_domain();
AP_DBF_DBG("%s running\n", __func__);
/* loop over all possible adapters */
for (ap = 0; ap <= ap_max_adapter_id; ap++)
ap_scan_adapter(ap);
/* scan complete notify */
if (config_changed)
notify_scan_complete();
/* check if there is at least one queue available with default domain */
if (ap_domain_index >= 0) {
struct device *dev =
bus_find_device(&ap_bus_type, NULL,
(void *)(long)ap_domain_index,
__match_queue_device_with_queue_id);
if (dev)
put_device(dev);
else
AP_DBF_INFO("%s no queue device with default domain %d available\n",
__func__, ap_domain_index);
}
if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
AP_DBF_DBG("%s init scan complete\n", __func__);
ap_send_init_scan_done_uevent();
ap_check_bindings_complete();
}
mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
}
static void ap_config_timeout(struct timer_list *unused)
{
queue_work(system_long_wq, &ap_scan_work);
}
static int __init ap_debug_init(void)
{
ap_dbf_info = debug_register("ap", 2, 1,
DBF_MAX_SPRINTF_ARGS * sizeof(long));
debug_register_view(ap_dbf_info, &debug_sprintf_view);
debug_set_level(ap_dbf_info, DBF_ERR);
return 0;
}
static void __init ap_perms_init(void)
{
/* all resources usable if no kernel parameter string given */
memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
/* apm kernel parameter string */
if (apm_str) {
memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
&ap_perms_mutex);
}
/* aqm kernel parameter string */
if (aqm_str) {
memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
&ap_perms_mutex);
}
}
/**
* ap_module_init(): The module initialization code.
*
* Initializes the module.
*/
static int __init ap_module_init(void)
{
int rc;
rc = ap_debug_init();
if (rc)
return rc;
if (!ap_instructions_available()) {
pr_warn("The hardware system does not support AP instructions\n");
return -ENODEV;
}
/* init ap_queue hashtable */
hash_init(ap_queues);
/* set up the AP permissions (ioctls, ap and aq masks) */
ap_perms_init();
/* Get AP configuration data if available */
ap_init_qci_info();
/* check default domain setting */
if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
(ap_domain_index >= 0 &&
!test_bit_inv(ap_domain_index, ap_perms.aqm))) {
pr_warn("%d is not a valid cryptographic domain\n",
ap_domain_index);
ap_domain_index = -1;
}
/* enable interrupts if available */
if (ap_interrupts_available() && ap_useirq) {
rc = register_adapter_interrupt(&ap_airq);
ap_irq_flag = (rc == 0);
}
/* Create /sys/bus/ap. */
rc = bus_register(&ap_bus_type);
if (rc)
goto out;
/* Create /sys/devices/ap. */
ap_root_device = root_device_register("ap");
rc = PTR_ERR_OR_ZERO(ap_root_device);
if (rc)
goto out_bus;
ap_root_device->bus = &ap_bus_type;
/* Setup the AP bus rescan timer. */
timer_setup(&ap_config_timer, ap_config_timeout, 0);
/*
* Setup the high resolution poll timer.
* If we are running under z/VM adjust polling to z/VM polling rate.
*/
if (MACHINE_IS_VM)
poll_high_timeout = 1500000;
hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ap_poll_timer.function = ap_poll_timeout;
/* Start the low priority AP bus poll thread. */
if (ap_thread_flag) {
rc = ap_poll_thread_start();
if (rc)
goto out_work;
}
queue_work(system_long_wq, &ap_scan_work);
return 0;
out_work:
hrtimer_cancel(&ap_poll_timer);
root_device_unregister(ap_root_device);
out_bus:
bus_unregister(&ap_bus_type);
out:
if (ap_irq_flag)
unregister_adapter_interrupt(&ap_airq);
kfree(ap_qci_info);
return rc;
}
device_initcall(ap_module_init);