mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-10 07:50:04 +00:00
4155942000
Provide better handling of unsupported crypto when verifying a PKCS#7 message. If we can't bridge the gap between a pair of X.509 certs or between a signed info block and an X.509 cert because it involves some crypto we don't support, that's not necessarily the end of the world as there may be other ways points at which we can intersect with a ring of trusted keys. Instead, only produce ENOPKG immediately if all the signed info blocks in a PKCS#7 message require unsupported crypto to bridge to the first X.509 cert. Otherwise, we defer the generation of ENOPKG until we get ENOKEY during trust validation. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
352 lines
9.0 KiB
C
352 lines
9.0 KiB
C
/* Instantiate a public key crypto key from an X.509 Certificate
|
|
*
|
|
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public Licence
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the Licence, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "X.509: "fmt
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mpi.h>
|
|
#include <linux/asn1_decoder.h>
|
|
#include <keys/asymmetric-subtype.h>
|
|
#include <keys/asymmetric-parser.h>
|
|
#include <keys/system_keyring.h>
|
|
#include <crypto/hash.h>
|
|
#include "asymmetric_keys.h"
|
|
#include "public_key.h"
|
|
#include "x509_parser.h"
|
|
|
|
static bool use_builtin_keys;
|
|
static struct asymmetric_key_id *ca_keyid;
|
|
|
|
#ifndef MODULE
|
|
static int __init ca_keys_setup(char *str)
|
|
{
|
|
if (!str) /* default system keyring */
|
|
return 1;
|
|
|
|
if (strncmp(str, "id:", 3) == 0) {
|
|
struct asymmetric_key_id *p;
|
|
p = asymmetric_key_hex_to_key_id(str);
|
|
if (p == ERR_PTR(-EINVAL))
|
|
pr_err("Unparsable hex string in ca_keys\n");
|
|
else if (!IS_ERR(p))
|
|
ca_keyid = p; /* owner key 'id:xxxxxx' */
|
|
} else if (strcmp(str, "builtin") == 0) {
|
|
use_builtin_keys = true;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
__setup("ca_keys=", ca_keys_setup);
|
|
#endif
|
|
|
|
/**
|
|
* x509_request_asymmetric_key - Request a key by X.509 certificate params.
|
|
* @keyring: The keys to search.
|
|
* @kid: The key ID.
|
|
*
|
|
* Find a key in the given keyring by subject name and key ID. These might,
|
|
* for instance, be the issuer name and the authority key ID of an X.509
|
|
* certificate that needs to be verified.
|
|
*/
|
|
struct key *x509_request_asymmetric_key(struct key *keyring,
|
|
const struct asymmetric_key_id *kid)
|
|
{
|
|
key_ref_t key;
|
|
char *id, *p;
|
|
|
|
/* Construct an identifier "id:<keyid>". */
|
|
p = id = kmalloc(2 + 1 + kid->len * 2 + 1, GFP_KERNEL);
|
|
if (!id)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
*p++ = 'i';
|
|
*p++ = 'd';
|
|
*p++ = ':';
|
|
p = bin2hex(p, kid->data, kid->len);
|
|
*p = 0;
|
|
|
|
pr_debug("Look up: \"%s\"\n", id);
|
|
|
|
key = keyring_search(make_key_ref(keyring, 1),
|
|
&key_type_asymmetric, id);
|
|
if (IS_ERR(key))
|
|
pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
|
|
kfree(id);
|
|
|
|
if (IS_ERR(key)) {
|
|
switch (PTR_ERR(key)) {
|
|
/* Hide some search errors */
|
|
case -EACCES:
|
|
case -ENOTDIR:
|
|
case -EAGAIN:
|
|
return ERR_PTR(-ENOKEY);
|
|
default:
|
|
return ERR_CAST(key);
|
|
}
|
|
}
|
|
|
|
pr_devel("<==%s() = 0 [%x]\n", __func__,
|
|
key_serial(key_ref_to_ptr(key)));
|
|
return key_ref_to_ptr(key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
|
|
|
|
/*
|
|
* Set up the signature parameters in an X.509 certificate. This involves
|
|
* digesting the signed data and extracting the signature.
|
|
*/
|
|
int x509_get_sig_params(struct x509_certificate *cert)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
struct shash_desc *desc;
|
|
size_t digest_size, desc_size;
|
|
void *digest;
|
|
int ret;
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
if (cert->unsupported_crypto)
|
|
return -ENOPKG;
|
|
if (cert->sig.rsa.s)
|
|
return 0;
|
|
|
|
cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
|
|
if (!cert->sig.rsa.s)
|
|
return -ENOMEM;
|
|
cert->sig.nr_mpi = 1;
|
|
|
|
/* Allocate the hashing algorithm we're going to need and find out how
|
|
* big the hash operational data will be.
|
|
*/
|
|
tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
if (PTR_ERR(tfm) == -ENOENT) {
|
|
cert->unsupported_crypto = true;
|
|
return -ENOPKG;
|
|
}
|
|
return PTR_ERR(tfm);
|
|
}
|
|
|
|
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
digest_size = crypto_shash_digestsize(tfm);
|
|
|
|
/* We allocate the hash operational data storage on the end of the
|
|
* digest storage space.
|
|
*/
|
|
ret = -ENOMEM;
|
|
digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
|
|
if (!digest)
|
|
goto error;
|
|
|
|
cert->sig.digest = digest;
|
|
cert->sig.digest_size = digest_size;
|
|
|
|
desc = digest + digest_size;
|
|
desc->tfm = tfm;
|
|
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
ret = crypto_shash_init(desc);
|
|
if (ret < 0)
|
|
goto error;
|
|
might_sleep();
|
|
ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
|
|
error:
|
|
crypto_free_shash(tfm);
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(x509_get_sig_params);
|
|
|
|
/*
|
|
* Check the signature on a certificate using the provided public key
|
|
*/
|
|
int x509_check_signature(const struct public_key *pub,
|
|
struct x509_certificate *cert)
|
|
{
|
|
int ret;
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
ret = x509_get_sig_params(cert);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = public_key_verify_signature(pub, &cert->sig);
|
|
if (ret == -ENOPKG)
|
|
cert->unsupported_crypto = true;
|
|
pr_debug("Cert Verification: %d\n", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(x509_check_signature);
|
|
|
|
/*
|
|
* Check the new certificate against the ones in the trust keyring. If one of
|
|
* those is the signing key and validates the new certificate, then mark the
|
|
* new certificate as being trusted.
|
|
*
|
|
* Return 0 if the new certificate was successfully validated, 1 if we couldn't
|
|
* find a matching parent certificate in the trusted list and an error if there
|
|
* is a matching certificate but the signature check fails.
|
|
*/
|
|
static int x509_validate_trust(struct x509_certificate *cert,
|
|
struct key *trust_keyring)
|
|
{
|
|
struct key *key;
|
|
int ret = 1;
|
|
|
|
if (!trust_keyring)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (ca_keyid && !asymmetric_key_id_same(cert->authority, ca_keyid))
|
|
return -EPERM;
|
|
|
|
key = x509_request_asymmetric_key(trust_keyring, cert->authority);
|
|
if (!IS_ERR(key)) {
|
|
if (!use_builtin_keys
|
|
|| test_bit(KEY_FLAG_BUILTIN, &key->flags))
|
|
ret = x509_check_signature(key->payload.data, cert);
|
|
key_put(key);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Attempt to parse a data blob for a key as an X509 certificate.
|
|
*/
|
|
static int x509_key_preparse(struct key_preparsed_payload *prep)
|
|
{
|
|
struct asymmetric_key_ids *kids;
|
|
struct x509_certificate *cert;
|
|
const char *q;
|
|
size_t srlen, sulen;
|
|
char *desc = NULL, *p;
|
|
int ret;
|
|
|
|
cert = x509_cert_parse(prep->data, prep->datalen);
|
|
if (IS_ERR(cert))
|
|
return PTR_ERR(cert);
|
|
|
|
pr_devel("Cert Issuer: %s\n", cert->issuer);
|
|
pr_devel("Cert Subject: %s\n", cert->subject);
|
|
|
|
if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
|
|
cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
|
|
cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
|
|
!pkey_algo[cert->pub->pkey_algo] ||
|
|
!pkey_algo[cert->sig.pkey_algo] ||
|
|
!hash_algo_name[cert->sig.pkey_hash_algo]) {
|
|
ret = -ENOPKG;
|
|
goto error_free_cert;
|
|
}
|
|
|
|
pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
|
|
pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
|
|
cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
|
|
cert->valid_from.tm_mday, cert->valid_from.tm_hour,
|
|
cert->valid_from.tm_min, cert->valid_from.tm_sec);
|
|
pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
|
|
cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
|
|
cert->valid_to.tm_mday, cert->valid_to.tm_hour,
|
|
cert->valid_to.tm_min, cert->valid_to.tm_sec);
|
|
pr_devel("Cert Signature: %s + %s\n",
|
|
pkey_algo_name[cert->sig.pkey_algo],
|
|
hash_algo_name[cert->sig.pkey_hash_algo]);
|
|
|
|
cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
|
|
cert->pub->id_type = PKEY_ID_X509;
|
|
|
|
/* Check the signature on the key if it appears to be self-signed */
|
|
if (!cert->authority ||
|
|
asymmetric_key_id_same(cert->skid, cert->authority)) {
|
|
ret = x509_check_signature(cert->pub, cert); /* self-signed */
|
|
if (ret < 0)
|
|
goto error_free_cert;
|
|
} else if (!prep->trusted) {
|
|
ret = x509_validate_trust(cert, get_system_trusted_keyring());
|
|
if (!ret)
|
|
prep->trusted = 1;
|
|
}
|
|
|
|
/* Propose a description */
|
|
sulen = strlen(cert->subject);
|
|
srlen = cert->raw_serial_size;
|
|
q = cert->raw_serial;
|
|
if (srlen > 1 && *q == 0) {
|
|
srlen--;
|
|
q++;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
|
|
if (!desc)
|
|
goto error_free_cert;
|
|
p = memcpy(desc, cert->subject, sulen);
|
|
p += sulen;
|
|
*p++ = ':';
|
|
*p++ = ' ';
|
|
p = bin2hex(p, q, srlen);
|
|
*p = 0;
|
|
|
|
kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
|
|
if (!kids)
|
|
goto error_free_desc;
|
|
kids->id[0] = cert->id;
|
|
kids->id[1] = cert->skid;
|
|
|
|
/* We're pinning the module by being linked against it */
|
|
__module_get(public_key_subtype.owner);
|
|
prep->type_data[0] = &public_key_subtype;
|
|
prep->type_data[1] = kids;
|
|
prep->payload[0] = cert->pub;
|
|
prep->description = desc;
|
|
prep->quotalen = 100;
|
|
|
|
/* We've finished with the certificate */
|
|
cert->pub = NULL;
|
|
cert->id = NULL;
|
|
cert->skid = NULL;
|
|
desc = NULL;
|
|
ret = 0;
|
|
|
|
error_free_desc:
|
|
kfree(desc);
|
|
error_free_cert:
|
|
x509_free_certificate(cert);
|
|
return ret;
|
|
}
|
|
|
|
static struct asymmetric_key_parser x509_key_parser = {
|
|
.owner = THIS_MODULE,
|
|
.name = "x509",
|
|
.parse = x509_key_preparse,
|
|
};
|
|
|
|
/*
|
|
* Module stuff
|
|
*/
|
|
static int __init x509_key_init(void)
|
|
{
|
|
return register_asymmetric_key_parser(&x509_key_parser);
|
|
}
|
|
|
|
static void __exit x509_key_exit(void)
|
|
{
|
|
unregister_asymmetric_key_parser(&x509_key_parser);
|
|
}
|
|
|
|
module_init(x509_key_init);
|
|
module_exit(x509_key_exit);
|
|
|
|
MODULE_DESCRIPTION("X.509 certificate parser");
|
|
MODULE_LICENSE("GPL");
|