linux-next/drivers/clk/clk-lmk04832.c
Mike Looijmans 6aa8dc690d clk: lmk04832: Support using PLL1_LD as SPI readback pin
The PLL1_PD pin (a.k.a. STATUS_LD1) can be used as SPI readback pin. Make
this possible.

Signed-off-by: Mike Looijmans <mike.looijmans@topic.nl>
Link: https://lore.kernel.org/r/20230802064100.15793-3-mike.looijmans@topic.nl
Reviewed-by: Liam Beguin <liambeguin@gmail.com>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2023-08-23 15:47:35 -07:00

1590 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner
* Pin compatible with the LMK0482x family
*
* Datasheet: https://www.ti.com/lit/ds/symlink/lmk04832.pdf
*
* Copyright (c) 2020, Xiphos Systems Corp.
*
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/gcd.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
/* 0x000 - 0x00d System Functions */
#define LMK04832_REG_RST3W 0x000
#define LMK04832_BIT_RESET BIT(7)
#define LMK04832_BIT_SPI_3WIRE_DIS BIT(4)
#define LMK04832_REG_POWERDOWN 0x002
#define LMK04832_REG_ID_DEV_TYPE 0x003
#define LMK04832_REG_ID_PROD_MSB 0x004
#define LMK04832_REG_ID_PROD_LSB 0x005
#define LMK04832_REG_ID_MASKREV 0x006
#define LMK04832_REG_ID_VNDR_MSB 0x00c
#define LMK04832_REG_ID_VNDR_LSB 0x00d
/* 0x100 - 0x137 Device Clock and SYSREF Clock Output Control */
#define LMK04832_REG_CLKOUT_CTRL0(ch) (0x100 + (ch >> 1) * 8)
#define LMK04832_BIT_DCLK_DIV_LSB GENMASK(7, 0)
#define LMK04832_REG_CLKOUT_CTRL1(ch) (0x101 + (ch >> 1) * 8)
#define LMK04832_BIT_DCLKX_Y_DDLY_LSB GENMASK(7, 0)
#define LMK04832_REG_CLKOUT_CTRL2(ch) (0x102 + (ch >> 1) * 8)
#define LMK04832_BIT_CLKOUTX_Y_PD BIT(7)
#define LMK04832_BIT_DCLKX_Y_DDLY_PD BIT(4)
#define LMK04832_BIT_DCLKX_Y_DDLY_MSB GENMASK(3, 2)
#define LMK04832_BIT_DCLK_DIV_MSB GENMASK(1, 0)
#define LMK04832_REG_CLKOUT_SRC_MUX(ch) (0x103 + (ch % 2) + (ch >> 1) * 8)
#define LMK04832_BIT_CLKOUT_SRC_MUX BIT(5)
#define LMK04832_REG_CLKOUT_CTRL3(ch) (0x103 + (ch >> 1) * 8)
#define LMK04832_BIT_DCLKX_Y_PD BIT(4)
#define LMK04832_BIT_DCLKX_Y_DCC BIT(2)
#define LMK04832_BIT_DCLKX_Y_HS BIT(0)
#define LMK04832_REG_CLKOUT_CTRL4(ch) (0x104 + (ch >> 1) * 8)
#define LMK04832_BIT_SCLK_PD BIT(4)
#define LMK04832_BIT_SCLKX_Y_DIS_MODE GENMASK(3, 2)
#define LMK04832_REG_SCLKX_Y_ADLY(ch) (0x105 + (ch >> 1) * 8)
#define LMK04832_REG_SCLKX_Y_DDLY(ch) (0x106 + (ch >> 1) * 8)
#define LMK04832_BIT_SCLKX_Y_DDLY GENMASK(3, 0)
#define LMK04832_REG_CLKOUT_FMT(ch) (0x107 + (ch >> 1) * 8)
#define LMK04832_BIT_CLKOUT_FMT(ch) (ch % 2 ? 0xf0 : 0x0f)
#define LMK04832_VAL_CLKOUT_FMT_POWERDOWN 0x00
#define LMK04832_VAL_CLKOUT_FMT_LVDS 0x01
#define LMK04832_VAL_CLKOUT_FMT_HSDS6 0x02
#define LMK04832_VAL_CLKOUT_FMT_HSDS8 0x03
#define LMK04832_VAL_CLKOUT_FMT_LVPECL1600 0x04
#define LMK04832_VAL_CLKOUT_FMT_LVPECL2000 0x05
#define LMK04832_VAL_CLKOUT_FMT_LCPECL 0x06
#define LMK04832_VAL_CLKOUT_FMT_CML16 0x07
#define LMK04832_VAL_CLKOUT_FMT_CML24 0x08
#define LMK04832_VAL_CLKOUT_FMT_CML32 0x09
#define LMK04832_VAL_CLKOUT_FMT_CMOS_OFF_INV 0x0a
#define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_OFF 0x0b
#define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_INV 0x0c
#define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_NOR 0x0d
#define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_INV 0x0e
#define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_NOR 0x0f
/* 0x138 - 0x145 SYSREF, SYNC, and Device Config */
#define LMK04832_REG_VCO_OSCOUT 0x138
#define LMK04832_BIT_VCO_MUX GENMASK(6, 5)
#define LMK04832_VAL_VCO_MUX_VCO0 0x00
#define LMK04832_VAL_VCO_MUX_VCO1 0x01
#define LMK04832_VAL_VCO_MUX_EXT 0x02
#define LMK04832_REG_SYSREF_OUT 0x139
#define LMK04832_BIT_SYSREF_REQ_EN BIT(6)
#define LMK04832_BIT_SYSREF_MUX GENMASK(1, 0)
#define LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC 0x00
#define LMK04832_VAL_SYSREF_MUX_RECLK 0x01
#define LMK04832_VAL_SYSREF_MUX_PULSER 0x02
#define LMK04832_VAL_SYSREF_MUX_CONTINUOUS 0x03
#define LMK04832_REG_SYSREF_DIV_MSB 0x13a
#define LMK04832_BIT_SYSREF_DIV_MSB GENMASK(4, 0)
#define LMK04832_REG_SYSREF_DIV_LSB 0x13b
#define LMK04832_REG_SYSREF_DDLY_MSB 0x13c
#define LMK04832_BIT_SYSREF_DDLY_MSB GENMASK(4, 0)
#define LMK04832_REG_SYSREF_DDLY_LSB 0x13d
#define LMK04832_REG_SYSREF_PULSE_CNT 0x13e
#define LMK04832_REG_FB_CTRL 0x13f
#define LMK04832_BIT_PLL2_RCLK_MUX BIT(7)
#define LMK04832_VAL_PLL2_RCLK_MUX_OSCIN 0x00
#define LMK04832_VAL_PLL2_RCLK_MUX_CLKIN 0x01
#define LMK04832_BIT_PLL2_NCLK_MUX BIT(5)
#define LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P 0x00
#define LMK04832_VAL_PLL2_NCLK_MUX_FB_MUX 0x01
#define LMK04832_BIT_FB_MUX_EN BIT(0)
#define LMK04832_REG_MAIN_PD 0x140
#define LMK04832_BIT_PLL1_PD BIT(7)
#define LMK04832_BIT_VCO_LDO_PD BIT(6)
#define LMK04832_BIT_VCO_PD BIT(5)
#define LMK04832_BIT_OSCIN_PD BIT(4)
#define LMK04832_BIT_SYSREF_GBL_PD BIT(3)
#define LMK04832_BIT_SYSREF_PD BIT(2)
#define LMK04832_BIT_SYSREF_DDLY_PD BIT(1)
#define LMK04832_BIT_SYSREF_PLSR_PD BIT(0)
#define LMK04832_REG_SYNC 0x143
#define LMK04832_BIT_SYNC_CLR BIT(7)
#define LMK04832_BIT_SYNC_1SHOT_EN BIT(6)
#define LMK04832_BIT_SYNC_POL BIT(5)
#define LMK04832_BIT_SYNC_EN BIT(4)
#define LMK04832_BIT_SYNC_MODE GENMASK(1, 0)
#define LMK04832_VAL_SYNC_MODE_OFF 0x00
#define LMK04832_VAL_SYNC_MODE_ON 0x01
#define LMK04832_VAL_SYNC_MODE_PULSER_PIN 0x02
#define LMK04832_VAL_SYNC_MODE_PULSER_SPI 0x03
#define LMK04832_REG_SYNC_DIS 0x144
/* 0x146 - 0x14a CLKin Control */
#define LMK04832_REG_CLKIN_SEL0 0x148
#define LMK04832_REG_CLKIN_SEL1 0x149
#define LMK04832_REG_CLKIN_RST 0x14a
#define LMK04832_BIT_SDIO_RDBK_TYPE BIT(6)
#define LMK04832_BIT_CLKIN_SEL_MUX GENMASK(5, 3)
#define LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK 0x06
#define LMK04832_BIT_CLKIN_SEL_TYPE GENMASK(2, 0)
#define LMK04832_VAL_CLKIN_SEL_TYPE_OUT 0x03
/* 0x14b - 0x152 Holdover */
/* 0x153 - 0x15f PLL1 Configuration */
#define LMK04832_REG_PLL1_LD 0x15f
#define LMK04832_BIT_PLL1_LD_MUX GENMASK(7, 3)
#define LMK04832_VAL_PLL1_LD_MUX_SPI_RDBK 0x07
#define LMK04832_BIT_PLL1_LD_TYPE GENMASK(2, 0)
#define LMK04832_VAL_PLL1_LD_TYPE_OUT_PP 0x03
/* 0x160 - 0x16e PLL2 Configuration */
#define LMK04832_REG_PLL2_R_MSB 0x160
#define LMK04832_BIT_PLL2_R_MSB GENMASK(3, 0)
#define LMK04832_REG_PLL2_R_LSB 0x161
#define LMK04832_REG_PLL2_MISC 0x162
#define LMK04832_BIT_PLL2_MISC_P GENMASK(7, 5)
#define LMK04832_BIT_PLL2_MISC_REF_2X_EN BIT(0)
#define LMK04832_REG_PLL2_N_CAL_0 0x163
#define LMK04832_BIT_PLL2_N_CAL_0 GENMASK(1, 0)
#define LMK04832_REG_PLL2_N_CAL_1 0x164
#define LMK04832_REG_PLL2_N_CAL_2 0x165
#define LMK04832_REG_PLL2_N_0 0x166
#define LMK04832_BIT_PLL2_N_0 GENMASK(1, 0)
#define LMK04832_REG_PLL2_N_1 0x167
#define LMK04832_REG_PLL2_N_2 0x168
#define LMK04832_REG_PLL2_DLD_CNT_MSB 0x16a
#define LMK04832_REG_PLL2_DLD_CNT_LSB 0x16b
#define LMK04832_REG_PLL2_LD 0x16e
#define LMK04832_BIT_PLL2_LD_MUX GENMASK(7, 3)
#define LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD 0x02
#define LMK04832_BIT_PLL2_LD_TYPE GENMASK(2, 0)
#define LMK04832_VAL_PLL2_LD_TYPE_OUT_PP 0x03
/* 0x16F - 0x555 Misc Registers */
#define LMK04832_REG_PLL2_PD 0x173
#define LMK04832_BIT_PLL2_PRE_PD BIT(6)
#define LMK04832_BIT_PLL2_PD BIT(5)
#define LMK04832_REG_PLL1R_RST 0x177
#define LMK04832_REG_CLR_PLL_LOST 0x182
#define LMK04832_REG_RB_PLL_LD 0x183
#define LMK04832_REG_RB_CLK_DAC_VAL_MSB 0x184
#define LMK04832_REG_RB_DAC_VAL_LSB 0x185
#define LMK04832_REG_RB_HOLDOVER 0x188
#define LMK04832_REG_SPI_LOCK 0x555
enum lmk04832_device_types {
LMK04832,
};
/**
* struct lmk04832_device_info - Holds static device information that is
* specific to the chip revision
*
* @pid: Product Identifier
* @maskrev: IC version identifier
* @num_channels: Number of available output channels (clkout count)
* @vco0_range: {min, max} of the VCO0 operating range (in MHz)
* @vco1_range: {min, max} of the VCO1 operating range (in MHz)
*/
struct lmk04832_device_info {
u16 pid;
u8 maskrev;
size_t num_channels;
unsigned int vco0_range[2];
unsigned int vco1_range[2];
};
static const struct lmk04832_device_info lmk04832_device_info[] = {
[LMK04832] = {
.pid = 0x63d1, /* WARNING PROD_ID is inverted in the datasheet */
.maskrev = 0x70,
.num_channels = 14,
.vco0_range = { 2440, 2580 },
.vco1_range = { 2945, 3255 },
},
};
enum lmk04832_rdbk_type {
RDBK_CLKIN_SEL0,
RDBK_CLKIN_SEL1,
RDBK_RESET,
RDBK_PLL1_LD,
};
struct lmk_dclk {
struct lmk04832 *lmk;
struct clk_hw hw;
u8 id;
};
struct lmk_clkout {
struct lmk04832 *lmk;
struct clk_hw hw;
bool sysref;
u32 format;
u8 id;
};
/**
* struct lmk04832 - The LMK04832 device structure
*
* @dev: reference to a struct device, linked to the spi_device
* @regmap: struct regmap instance use to access the chip
* @sync_mode: operational mode for SYNC signal
* @sysref_mux: select SYSREF source
* @sysref_pulse_cnt: number of SYSREF pulses generated while not in continuous
* mode.
* @sysref_ddly: SYSREF digital delay value
* @oscin: PLL2 input clock
* @vco: reference to the internal VCO clock
* @sclk: reference to the internal sysref clock (SCLK)
* @vco_rate: user provided VCO rate
* @reset_gpio: reference to the reset GPIO
* @dclk: list of internal device clock references.
* Each pair of clkout clocks share a single device clock (DCLKX_Y)
* @clkout: list of output clock references
* @clk_data: holds clkout related data like clk_hw* and number of clocks
*/
struct lmk04832 {
struct device *dev;
struct regmap *regmap;
unsigned int sync_mode;
unsigned int sysref_mux;
unsigned int sysref_pulse_cnt;
unsigned int sysref_ddly;
struct clk *oscin;
struct clk_hw vco;
struct clk_hw sclk;
unsigned int vco_rate;
struct gpio_desc *reset_gpio;
struct lmk_dclk *dclk;
struct lmk_clkout *clkout;
struct clk_hw_onecell_data *clk_data;
};
static bool lmk04832_regmap_rd_regs(struct device *dev, unsigned int reg)
{
switch (reg) {
case LMK04832_REG_RST3W ... LMK04832_REG_ID_MASKREV:
case LMK04832_REG_ID_VNDR_MSB:
case LMK04832_REG_ID_VNDR_LSB:
case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
case LMK04832_REG_PLL2_LD:
case LMK04832_REG_PLL2_PD:
case LMK04832_REG_PLL1R_RST:
case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
case LMK04832_REG_RB_HOLDOVER:
case LMK04832_REG_SPI_LOCK:
return true;
default:
return false;
};
}
static bool lmk04832_regmap_wr_regs(struct device *dev, unsigned int reg)
{
switch (reg) {
case LMK04832_REG_RST3W:
case LMK04832_REG_POWERDOWN:
return true;
case LMK04832_REG_ID_DEV_TYPE ... LMK04832_REG_ID_MASKREV:
case LMK04832_REG_ID_VNDR_MSB:
case LMK04832_REG_ID_VNDR_LSB:
return false;
case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
case LMK04832_REG_PLL2_LD:
case LMK04832_REG_PLL2_PD:
case LMK04832_REG_PLL1R_RST:
case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
case LMK04832_REG_RB_HOLDOVER:
case LMK04832_REG_SPI_LOCK:
return true;
default:
return false;
};
}
static const struct regmap_config regmap_config = {
.name = "lmk04832",
.reg_bits = 16,
.val_bits = 8,
.use_single_read = 1,
.use_single_write = 1,
.read_flag_mask = 0x80,
.write_flag_mask = 0x00,
.readable_reg = lmk04832_regmap_rd_regs,
.writeable_reg = lmk04832_regmap_wr_regs,
.cache_type = REGCACHE_NONE,
.max_register = LMK04832_REG_SPI_LOCK,
};
static int lmk04832_vco_is_enabled(struct clk_hw *hw)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
unsigned int tmp;
int ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
if (ret)
return ret;
return !(FIELD_GET(LMK04832_BIT_OSCIN_PD, tmp) |
FIELD_GET(LMK04832_BIT_VCO_PD, tmp) |
FIELD_GET(LMK04832_BIT_VCO_LDO_PD, tmp));
}
static int lmk04832_vco_prepare(struct clk_hw *hw)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
int ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
LMK04832_BIT_PLL2_PRE_PD |
LMK04832_BIT_PLL2_PD,
0x00);
if (ret)
return ret;
return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
LMK04832_BIT_VCO_LDO_PD |
LMK04832_BIT_VCO_PD |
LMK04832_BIT_OSCIN_PD, 0x00);
}
static void lmk04832_vco_unprepare(struct clk_hw *hw)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD,
0xff);
/* Don't set LMK04832_BIT_OSCIN_PD since other clocks depend on it */
regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD, 0xff);
}
static unsigned long lmk04832_vco_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
const unsigned int pll2_p[] = {8, 2, 2, 3, 4, 5, 6, 7};
unsigned int pll2_n, p, pll2_r;
unsigned int pll2_misc;
unsigned long vco_rate;
u8 tmp[3];
int ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_PLL2_MISC, &pll2_misc);
if (ret)
return ret;
p = FIELD_GET(LMK04832_BIT_PLL2_MISC_P, pll2_misc);
ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_N_0, &tmp, 3);
if (ret)
return ret;
pll2_n = FIELD_PREP(0x030000, tmp[0]) |
FIELD_PREP(0x00ff00, tmp[1]) |
FIELD_PREP(0x0000ff, tmp[2]);
ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_R_MSB, &tmp, 2);
if (ret)
return ret;
pll2_r = FIELD_PREP(0x0f00, tmp[0]) |
FIELD_PREP(0x00ff, tmp[1]);
vco_rate = (prate << FIELD_GET(LMK04832_BIT_PLL2_MISC_REF_2X_EN,
pll2_misc)) * pll2_n * pll2_p[p] / pll2_r;
return vco_rate;
}
/**
* lmk04832_check_vco_ranges - Check requested VCO frequency against VCO ranges
*
* @lmk: Reference to the lmk device
* @rate: Desired output rate for the VCO
*
* The LMK04832 has 2 internal VCO, each with independent operating ranges.
* Use the device_info structure to determine which VCO to use based on rate.
*
* Returns: VCO_MUX value or negative errno.
*/
static int lmk04832_check_vco_ranges(struct lmk04832 *lmk, unsigned long rate)
{
struct spi_device *spi = to_spi_device(lmk->dev);
const struct lmk04832_device_info *info;
unsigned long mhz = rate / 1000000;
info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];
if (mhz >= info->vco0_range[0] && mhz <= info->vco0_range[1])
return LMK04832_VAL_VCO_MUX_VCO0;
if (mhz >= info->vco1_range[0] && mhz <= info->vco1_range[1])
return LMK04832_VAL_VCO_MUX_VCO1;
dev_err(lmk->dev, "%lu Hz is out of VCO ranges\n", rate);
return -ERANGE;
}
/**
* lmk04832_calc_pll2_params - Get PLL2 parameters used to set the VCO frequency
*
* @prate: parent rate to the PLL2, usually OSCin
* @rate: Desired output rate for the VCO
* @n: reference to PLL2_N
* @p: reference to PLL2_P
* @r: reference to PLL2_R
*
* This functions assumes LMK04832_BIT_PLL2_MISC_REF_2X_EN is set since it is
* recommended in the datasheet because a higher phase detector frequencies
* makes the design of wider loop bandwidth filters possible.
*
* the VCO rate can be calculated using the following expression:
*
* VCO = OSCin * 2 * PLL2_N * PLL2_P / PLL2_R
*
* Returns: vco rate or negative errno.
*/
static long lmk04832_calc_pll2_params(unsigned long prate, unsigned long rate,
unsigned int *n, unsigned int *p,
unsigned int *r)
{
unsigned int pll2_n, pll2_p, pll2_r;
unsigned long num, div;
/* Set PLL2_P to a fixed value to simplify optimizations */
pll2_p = 2;
div = gcd(rate, prate);
num = DIV_ROUND_CLOSEST(rate, div);
pll2_r = DIV_ROUND_CLOSEST(prate, div);
if (num > 4) {
pll2_n = num >> 2;
} else {
pll2_r = pll2_r << 2;
pll2_n = num;
}
if (pll2_n < 1 || pll2_n > 0x03ffff)
return -EINVAL;
if (pll2_r < 1 || pll2_r > 0xfff)
return -EINVAL;
*n = pll2_n;
*p = pll2_p;
*r = pll2_r;
return DIV_ROUND_CLOSEST(prate * 2 * pll2_p * pll2_n, pll2_r);
}
static long lmk04832_vco_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
unsigned int n, p, r;
long vco_rate;
int ret;
ret = lmk04832_check_vco_ranges(lmk, rate);
if (ret < 0)
return ret;
vco_rate = lmk04832_calc_pll2_params(*prate, rate, &n, &p, &r);
if (vco_rate < 0) {
dev_err(lmk->dev, "PLL2 parameters out of range\n");
return vco_rate;
}
if (rate != vco_rate)
return -EINVAL;
return vco_rate;
}
static int lmk04832_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
unsigned int n, p, r;
long vco_rate;
int vco_mux;
int ret;
vco_mux = lmk04832_check_vco_ranges(lmk, rate);
if (vco_mux < 0)
return vco_mux;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
LMK04832_BIT_VCO_MUX,
FIELD_PREP(LMK04832_BIT_VCO_MUX, vco_mux));
if (ret)
return ret;
vco_rate = lmk04832_calc_pll2_params(prate, rate, &n, &p, &r);
if (vco_rate < 0) {
dev_err(lmk->dev, "failed to determine PLL2 parameters\n");
return vco_rate;
}
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_R_MSB,
LMK04832_BIT_PLL2_R_MSB,
FIELD_GET(0x000700, r));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_R_LSB,
FIELD_GET(0x0000ff, r));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
LMK04832_BIT_PLL2_MISC_P,
FIELD_PREP(LMK04832_BIT_PLL2_MISC_P, p));
if (ret)
return ret;
/*
* PLL2_N registers must be programmed after other PLL2 dividers are
* programmed to ensure proper VCO frequency calibration
*/
ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_0,
FIELD_GET(0x030000, n));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_1,
FIELD_GET(0x00ff00, n));
if (ret)
return ret;
return regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_2,
FIELD_GET(0x0000ff, n));
}
static const struct clk_ops lmk04832_vco_ops = {
.is_enabled = lmk04832_vco_is_enabled,
.prepare = lmk04832_vco_prepare,
.unprepare = lmk04832_vco_unprepare,
.recalc_rate = lmk04832_vco_recalc_rate,
.round_rate = lmk04832_vco_round_rate,
.set_rate = lmk04832_vco_set_rate,
};
/*
* lmk04832_register_vco - Initialize the internal VCO and clock distribution
* path in PLL2 single loop mode.
*/
static int lmk04832_register_vco(struct lmk04832 *lmk)
{
const char *parent_names[1];
struct clk_init_data init;
int ret;
init.name = "lmk-vco";
parent_names[0] = __clk_get_name(lmk->oscin);
init.parent_names = parent_names;
init.ops = &lmk04832_vco_ops;
init.num_parents = 1;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
LMK04832_BIT_VCO_MUX,
FIELD_PREP(LMK04832_BIT_VCO_MUX,
LMK04832_VAL_VCO_MUX_VCO1));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_FB_CTRL,
LMK04832_BIT_PLL2_RCLK_MUX |
LMK04832_BIT_PLL2_NCLK_MUX,
FIELD_PREP(LMK04832_BIT_PLL2_RCLK_MUX,
LMK04832_VAL_PLL2_RCLK_MUX_OSCIN)|
FIELD_PREP(LMK04832_BIT_PLL2_NCLK_MUX,
LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
LMK04832_BIT_PLL2_MISC_REF_2X_EN,
LMK04832_BIT_PLL2_MISC_REF_2X_EN);
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_LD,
FIELD_PREP(LMK04832_BIT_PLL2_LD_MUX,
LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD) |
FIELD_PREP(LMK04832_BIT_PLL2_LD_TYPE,
LMK04832_VAL_PLL2_LD_TYPE_OUT_PP));
if (ret)
return ret;
lmk->vco.init = &init;
return devm_clk_hw_register(lmk->dev, &lmk->vco);
}
static int lmk04832_clkout_set_ddly(struct lmk04832 *lmk, int id)
{
const int dclk_div_adj[] = {0, 0, -2, -2, 0, 3, -1, 0};
unsigned int sclkx_y_ddly = 10;
unsigned int dclkx_y_ddly;
unsigned int dclkx_y_div;
unsigned int sysref_ddly;
unsigned int dclkx_y_hs;
unsigned int lsb, msb;
int ret;
ret = regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL2(id),
LMK04832_BIT_DCLKX_Y_DDLY_PD,
FIELD_PREP(LMK04832_BIT_DCLKX_Y_DDLY_PD, 0));
if (ret)
return ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, &lsb);
if (ret)
return ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, &msb);
if (ret)
return ret;
sysref_ddly = FIELD_GET(LMK04832_BIT_SYSREF_DDLY_MSB, msb) << 8 | lsb;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(id), &lsb);
if (ret)
return ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), &msb);
if (ret)
return ret;
dclkx_y_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(id), &lsb);
if (ret)
return ret;
dclkx_y_hs = FIELD_GET(LMK04832_BIT_DCLKX_Y_HS, lsb);
dclkx_y_ddly = sysref_ddly + 1 -
dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7] -
dclkx_y_hs + sclkx_y_ddly;
if (dclkx_y_ddly < 7 || dclkx_y_ddly > 0x3fff) {
dev_err(lmk->dev, "DCLKX_Y_DDLY out of range (%d)\n",
dclkx_y_ddly);
return -EINVAL;
}
ret = regmap_write(lmk->regmap,
LMK04832_REG_SCLKX_Y_DDLY(id),
FIELD_GET(LMK04832_BIT_SCLKX_Y_DDLY, sclkx_y_ddly));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL1(id),
FIELD_GET(0x00ff, dclkx_y_ddly));
if (ret)
return ret;
dev_dbg(lmk->dev, "clkout%02u: sysref_ddly=%u, dclkx_y_ddly=%u, "
"dclk_div_adj=%+d, dclkx_y_hs=%u, sclkx_y_ddly=%u\n",
id, sysref_ddly, dclkx_y_ddly,
dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7],
dclkx_y_hs, sclkx_y_ddly);
return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id),
LMK04832_BIT_DCLKX_Y_DDLY_MSB,
FIELD_GET(0x0300, dclkx_y_ddly));
}
/** lmk04832_sclk_sync - Establish deterministic phase relationship between sclk
* and dclk
*
* @lmk: Reference to the lmk device
*
* The synchronization sequence:
* - in the datasheet https://www.ti.com/lit/ds/symlink/lmk04832.pdf, p.31
* (8.3.3.1 How to enable SYSREF)
* - Ti forum: https://e2e.ti.com/support/clock-and-timing/f/48/t/970972
*
* Returns 0 or negative errno.
*/
static int lmk04832_sclk_sync_sequence(struct lmk04832 *lmk)
{
int ret;
int i;
/* 1. (optional) mute all sysref_outputs during synchronization */
/* 2. Enable and write device clock digital delay to applicable clocks */
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
LMK04832_BIT_SYSREF_DDLY_PD,
FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0));
if (ret)
return ret;
for (i = 0; i < lmk->clk_data->num; i += 2) {
ret = lmk04832_clkout_set_ddly(lmk, i);
if (ret)
return ret;
}
/*
* 3. Configure SYNC_MODE to SYNC_PIN and SYSREF_MUX to Normal SYNC,
* and clear SYSREF_REQ_EN (see 6.)
*/
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
LMK04832_BIT_SYSREF_REQ_EN |
LMK04832_BIT_SYSREF_MUX,
FIELD_PREP(LMK04832_BIT_SYSREF_REQ_EN, 0) |
FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
LMK04832_BIT_SYNC_MODE,
FIELD_PREP(LMK04832_BIT_SYNC_MODE,
LMK04832_VAL_SYNC_MODE_ON));
if (ret)
return ret;
/* 4. Clear SYNXC_DISx or applicable clocks and clear SYNC_DISSYSREF */
ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0x00);
if (ret)
return ret;
/*
* 5. If SCLKX_Y_DDLY != 0, Set SYSREF_CLR=1 for at least 15 clock
* distribution path cycles (VCO cycles), then back to 0. In
* PLL2-only use case, this will be complete in less than one SPI
* transaction. If SYSREF local digital delay is not used, this step
* can be skipped.
*/
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
LMK04832_BIT_SYNC_CLR,
FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x01));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
LMK04832_BIT_SYNC_CLR,
FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x00));
if (ret)
return ret;
/*
* 6. Toggle SYNC_POL state between inverted and not inverted.
* If you use an external signal on the SYNC pin instead of toggling
* SYNC_POL, make sure that SYSREF_REQ_EN=0 so that the SYSREF_MUX
* does not shift into continuous SYSREF mode.
*/
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
LMK04832_BIT_SYNC_POL,
FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x01));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
LMK04832_BIT_SYNC_POL,
FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x00));
if (ret)
return ret;
/* 7. Set all SYNC_DISx=1, including SYNC_DISSYSREF */
ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
if (ret)
return ret;
/* 8. Restore state of SYNC_MODE and SYSREF_MUX to desired values */
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
LMK04832_BIT_SYSREF_MUX,
FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
lmk->sysref_mux));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
LMK04832_BIT_SYNC_MODE,
FIELD_PREP(LMK04832_BIT_SYNC_MODE,
lmk->sync_mode));
if (ret)
return ret;
/*
* 9. (optional) if SCLKx_y_DIS_MODE was used to mute SYSREF outputs
* during the SYNC event, restore SCLKx_y_DIS_MODE=0 for active state,
* or set SYSREF_GBL_PD=0 if SCLKx_y_DIS_MODE is set to a conditional
* option.
*/
/*
* 10. (optional) To reduce power consumption, after the synchronization
* event is complete, DCLKx_y_DDLY_PD=1 and SYSREF_DDLY_PD=1 disable the
* digital delay counters (which are only used immediately after the
* SYNC pulse to delay the output by some number of VCO counts).
*/
return ret;
}
static int lmk04832_sclk_is_enabled(struct clk_hw *hw)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
unsigned int tmp;
int ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
if (ret)
return ret;
return FIELD_GET(LMK04832_BIT_SYSREF_PD, tmp);
}
static int lmk04832_sclk_prepare(struct clk_hw *hw)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
LMK04832_BIT_SYSREF_PD, 0x00);
}
static void lmk04832_sclk_unprepare(struct clk_hw *hw)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
LMK04832_BIT_SYSREF_PD, LMK04832_BIT_SYSREF_PD);
}
static unsigned long lmk04832_sclk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
unsigned int sysref_div;
u8 tmp[2];
int ret;
ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, &tmp, 2);
if (ret)
return ret;
sysref_div = FIELD_GET(LMK04832_BIT_SYSREF_DIV_MSB, tmp[0]) << 8 |
tmp[1];
return DIV_ROUND_CLOSEST(prate, sysref_div);
}
static long lmk04832_sclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
unsigned long sclk_rate;
unsigned int sysref_div;
sysref_div = DIV_ROUND_CLOSEST(*prate, rate);
sclk_rate = DIV_ROUND_CLOSEST(*prate, sysref_div);
if (sysref_div < 0x07 || sysref_div > 0x1fff) {
dev_err(lmk->dev, "SYSREF divider out of range\n");
return -EINVAL;
}
if (rate != sclk_rate)
return -EINVAL;
return sclk_rate;
}
static int lmk04832_sclk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
unsigned int sysref_div;
int ret;
sysref_div = DIV_ROUND_CLOSEST(prate, rate);
if (sysref_div < 0x07 || sysref_div > 0x1fff) {
dev_err(lmk->dev, "SYSREF divider out of range\n");
return -EINVAL;
}
ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB,
FIELD_GET(0x1f00, sysref_div));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_LSB,
FIELD_GET(0x00ff, sysref_div));
if (ret)
return ret;
ret = lmk04832_sclk_sync_sequence(lmk);
if (ret)
dev_err(lmk->dev, "SYNC sequence failed\n");
return ret;
}
static const struct clk_ops lmk04832_sclk_ops = {
.is_enabled = lmk04832_sclk_is_enabled,
.prepare = lmk04832_sclk_prepare,
.unprepare = lmk04832_sclk_unprepare,
.recalc_rate = lmk04832_sclk_recalc_rate,
.round_rate = lmk04832_sclk_round_rate,
.set_rate = lmk04832_sclk_set_rate,
};
static int lmk04832_register_sclk(struct lmk04832 *lmk)
{
const char *parent_names[1];
struct clk_init_data init;
int ret;
init.name = "lmk-sclk";
parent_names[0] = clk_hw_get_name(&lmk->vco);
init.parent_names = parent_names;
init.ops = &lmk04832_sclk_ops;
init.flags = CLK_SET_RATE_PARENT;
init.num_parents = 1;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
LMK04832_BIT_SYSREF_MUX,
FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
lmk->sysref_mux));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB,
FIELD_GET(0x00ff, lmk->sysref_ddly));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB,
FIELD_GET(0x1f00, lmk->sysref_ddly));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_PULSE_CNT,
ilog2(lmk->sysref_pulse_cnt));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
LMK04832_BIT_SYSREF_DDLY_PD |
LMK04832_BIT_SYSREF_PLSR_PD,
FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0) |
FIELD_PREP(LMK04832_BIT_SYSREF_PLSR_PD, 0));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC,
FIELD_PREP(LMK04832_BIT_SYNC_POL, 0) |
FIELD_PREP(LMK04832_BIT_SYNC_EN, 1) |
FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode));
if (ret)
return ret;
ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
if (ret)
return ret;
lmk->sclk.init = &init;
return devm_clk_hw_register(lmk->dev, &lmk->sclk);
}
static int lmk04832_dclk_is_enabled(struct clk_hw *hw)
{
struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
struct lmk04832 *lmk = dclk->lmk;
unsigned int tmp;
int ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id),
&tmp);
if (ret)
return ret;
return !FIELD_GET(LMK04832_BIT_DCLKX_Y_PD, tmp);
}
static int lmk04832_dclk_prepare(struct clk_hw *hw)
{
struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
struct lmk04832 *lmk = dclk->lmk;
return regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL3(dclk->id),
LMK04832_BIT_DCLKX_Y_PD, 0x00);
}
static void lmk04832_dclk_unprepare(struct clk_hw *hw)
{
struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
struct lmk04832 *lmk = dclk->lmk;
regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL3(dclk->id),
LMK04832_BIT_DCLKX_Y_PD, 0xff);
}
static unsigned long lmk04832_dclk_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
struct lmk04832 *lmk = dclk->lmk;
unsigned int dclk_div;
unsigned int lsb, msb;
unsigned long rate;
int ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
&lsb);
if (ret)
return ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id),
&msb);
if (ret)
return ret;
dclk_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
rate = DIV_ROUND_CLOSEST(prate, dclk_div);
return rate;
}
static long lmk04832_dclk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
struct lmk04832 *lmk = dclk->lmk;
unsigned long dclk_rate;
unsigned int dclk_div;
dclk_div = DIV_ROUND_CLOSEST(*prate, rate);
dclk_rate = DIV_ROUND_CLOSEST(*prate, dclk_div);
if (dclk_div < 1 || dclk_div > 0x3ff) {
dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
return -EINVAL;
}
if (rate != dclk_rate)
return -EINVAL;
return dclk_rate;
}
static int lmk04832_dclk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
struct lmk04832 *lmk = dclk->lmk;
unsigned int dclk_div;
int ret;
dclk_div = DIV_ROUND_CLOSEST(prate, rate);
if (dclk_div > 0x3ff) {
dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
return -EINVAL;
}
/* Enable Duty Cycle Correction */
if (dclk_div == 1) {
ret = regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL3(dclk->id),
LMK04832_BIT_DCLKX_Y_DCC,
FIELD_PREP(LMK04832_BIT_DCLKX_Y_DCC, 1));
if (ret)
return ret;
}
/*
* While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC
* procedure requires to first program Divide-by-4 and then back to
* Divide-by-2 or Divide-by-3 before doing SYNC.
*/
if (dclk_div == 2 || dclk_div == 3) {
ret = regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL2(dclk->id),
LMK04832_BIT_DCLK_DIV_MSB, 0x00);
if (ret)
return ret;
ret = regmap_write(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL0(dclk->id), 0x04);
if (ret)
return ret;
}
ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
FIELD_GET(0x0ff, dclk_div));
if (ret)
return ret;
ret = regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL2(dclk->id),
LMK04832_BIT_DCLK_DIV_MSB,
FIELD_GET(0x300, dclk_div));
if (ret)
return ret;
ret = lmk04832_sclk_sync_sequence(lmk);
if (ret)
dev_err(lmk->dev, "SYNC sequence failed\n");
return ret;
}
static const struct clk_ops lmk04832_dclk_ops = {
.is_enabled = lmk04832_dclk_is_enabled,
.prepare = lmk04832_dclk_prepare,
.unprepare = lmk04832_dclk_unprepare,
.recalc_rate = lmk04832_dclk_recalc_rate,
.round_rate = lmk04832_dclk_round_rate,
.set_rate = lmk04832_dclk_set_rate,
};
static int lmk04832_clkout_is_enabled(struct clk_hw *hw)
{
struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
struct lmk04832 *lmk = clkout->lmk;
unsigned int clkoutx_y_pd;
unsigned int sclkx_y_pd;
unsigned int tmp;
u32 enabled;
int ret;
u8 fmt;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id),
&clkoutx_y_pd);
if (ret)
return ret;
enabled = !FIELD_GET(LMK04832_BIT_CLKOUTX_Y_PD, clkoutx_y_pd);
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
&tmp);
if (ret)
return ret;
if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
ret = regmap_read(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL4(clkout->id),
&sclkx_y_pd);
if (ret)
return ret;
enabled = enabled && !FIELD_GET(LMK04832_BIT_SCLK_PD, sclkx_y_pd);
}
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
&tmp);
if (ret)
return ret;
if (clkout->id % 2)
fmt = FIELD_GET(0xf0, tmp);
else
fmt = FIELD_GET(0x0f, tmp);
return enabled && !fmt;
}
static int lmk04832_clkout_prepare(struct clk_hw *hw)
{
struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
struct lmk04832 *lmk = clkout->lmk;
unsigned int tmp;
int ret;
if (clkout->format == LMK04832_VAL_CLKOUT_FMT_POWERDOWN)
dev_err(lmk->dev, "prepared %s but format is powerdown\n",
clk_hw_get_name(hw));
ret = regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL2(clkout->id),
LMK04832_BIT_CLKOUTX_Y_PD, 0x00);
if (ret)
return ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
&tmp);
if (ret)
return ret;
if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
ret = regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_CTRL4(clkout->id),
LMK04832_BIT_SCLK_PD, 0x00);
if (ret)
return ret;
}
return regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_FMT(clkout->id),
LMK04832_BIT_CLKOUT_FMT(clkout->id),
clkout->format << 4 * (clkout->id % 2));
}
static void lmk04832_clkout_unprepare(struct clk_hw *hw)
{
struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
struct lmk04832 *lmk = clkout->lmk;
regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
LMK04832_BIT_CLKOUT_FMT(clkout->id),
0x00);
}
static int lmk04832_clkout_set_parent(struct clk_hw *hw, uint8_t index)
{
struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
struct lmk04832 *lmk = clkout->lmk;
return regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
LMK04832_BIT_CLKOUT_SRC_MUX,
FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
index));
}
static uint8_t lmk04832_clkout_get_parent(struct clk_hw *hw)
{
struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
struct lmk04832 *lmk = clkout->lmk;
unsigned int tmp;
int ret;
ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
&tmp);
if (ret)
return ret;
return FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp);
}
static const struct clk_ops lmk04832_clkout_ops = {
.is_enabled = lmk04832_clkout_is_enabled,
.prepare = lmk04832_clkout_prepare,
.unprepare = lmk04832_clkout_unprepare,
.determine_rate = __clk_mux_determine_rate,
.set_parent = lmk04832_clkout_set_parent,
.get_parent = lmk04832_clkout_get_parent,
};
static int lmk04832_register_clkout(struct lmk04832 *lmk, const int num)
{
char name[] = "lmk-clkoutXX";
char dclk_name[] = "lmk-dclkXX_YY";
const char *parent_names[2];
struct clk_init_data init;
int dclk_num = num / 2;
int ret;
if (num % 2 == 0) {
sprintf(dclk_name, "lmk-dclk%02d_%02d", num, num + 1);
init.name = dclk_name;
parent_names[0] = clk_hw_get_name(&lmk->vco);
init.parent_names = parent_names;
init.ops = &lmk04832_dclk_ops;
init.flags = CLK_SET_RATE_PARENT;
init.num_parents = 1;
lmk->dclk[dclk_num].id = num;
lmk->dclk[dclk_num].lmk = lmk;
lmk->dclk[dclk_num].hw.init = &init;
ret = devm_clk_hw_register(lmk->dev, &lmk->dclk[dclk_num].hw);
if (ret)
return ret;
} else {
sprintf(dclk_name, "lmk-dclk%02d_%02d", num - 1, num);
}
if (of_property_read_string_index(lmk->dev->of_node,
"clock-output-names",
num, &init.name)) {
sprintf(name, "lmk-clkout%02d", num);
init.name = name;
}
parent_names[0] = dclk_name;
parent_names[1] = clk_hw_get_name(&lmk->sclk);
init.parent_names = parent_names;
init.ops = &lmk04832_clkout_ops;
init.flags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT;
init.num_parents = ARRAY_SIZE(parent_names);
lmk->clkout[num].id = num;
lmk->clkout[num].lmk = lmk;
lmk->clkout[num].hw.init = &init;
lmk->clk_data->hws[num] = &lmk->clkout[num].hw;
/* Set initial parent */
regmap_update_bits(lmk->regmap,
LMK04832_REG_CLKOUT_SRC_MUX(num),
LMK04832_BIT_CLKOUT_SRC_MUX,
FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
lmk->clkout[num].sysref));
return devm_clk_hw_register(lmk->dev, &lmk->clkout[num].hw);
}
static int lmk04832_set_spi_rdbk(const struct lmk04832 *lmk, const int rdbk_pin)
{
int reg;
int ret;
int val = FIELD_PREP(LMK04832_BIT_CLKIN_SEL_MUX,
LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK) |
FIELD_PREP(LMK04832_BIT_CLKIN_SEL_TYPE,
LMK04832_VAL_CLKIN_SEL_TYPE_OUT);
dev_info(lmk->dev, "setting up 4-wire mode\n");
ret = regmap_write(lmk->regmap, LMK04832_REG_RST3W,
LMK04832_BIT_SPI_3WIRE_DIS);
if (ret)
return ret;
switch (rdbk_pin) {
case RDBK_CLKIN_SEL0:
reg = LMK04832_REG_CLKIN_SEL0;
break;
case RDBK_CLKIN_SEL1:
reg = LMK04832_REG_CLKIN_SEL1;
break;
case RDBK_RESET:
reg = LMK04832_REG_CLKIN_RST;
break;
case RDBK_PLL1_LD:
reg = LMK04832_REG_PLL1_LD;
val = FIELD_PREP(LMK04832_BIT_PLL1_LD_MUX,
LMK04832_VAL_PLL1_LD_MUX_SPI_RDBK) |
FIELD_PREP(LMK04832_BIT_PLL1_LD_TYPE,
LMK04832_VAL_PLL1_LD_TYPE_OUT_PP);
break;
default:
return -EINVAL;
}
return regmap_write(lmk->regmap, reg, val);
}
static int lmk04832_probe(struct spi_device *spi)
{
const struct lmk04832_device_info *info;
int rdbk_pin = RDBK_CLKIN_SEL1;
struct device_node *child;
struct lmk04832 *lmk;
u8 tmp[3];
int ret;
int i;
info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];
lmk = devm_kzalloc(&spi->dev, sizeof(struct lmk04832), GFP_KERNEL);
if (!lmk)
return -ENOMEM;
lmk->dev = &spi->dev;
lmk->oscin = devm_clk_get(lmk->dev, "oscin");
if (IS_ERR(lmk->oscin)) {
dev_err(lmk->dev, "failed to get oscin clock\n");
return PTR_ERR(lmk->oscin);
}
ret = clk_prepare_enable(lmk->oscin);
if (ret)
return ret;
lmk->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset",
GPIOD_OUT_LOW);
lmk->dclk = devm_kcalloc(lmk->dev, info->num_channels >> 1,
sizeof(struct lmk_dclk), GFP_KERNEL);
if (!lmk->dclk) {
ret = -ENOMEM;
goto err_disable_oscin;
}
lmk->clkout = devm_kcalloc(lmk->dev, info->num_channels,
sizeof(*lmk->clkout), GFP_KERNEL);
if (!lmk->clkout) {
ret = -ENOMEM;
goto err_disable_oscin;
}
lmk->clk_data = devm_kzalloc(lmk->dev, struct_size(lmk->clk_data, hws,
info->num_channels),
GFP_KERNEL);
if (!lmk->clk_data) {
ret = -ENOMEM;
goto err_disable_oscin;
}
device_property_read_u32(lmk->dev, "ti,vco-hz", &lmk->vco_rate);
lmk->sysref_ddly = 8;
device_property_read_u32(lmk->dev, "ti,sysref-ddly", &lmk->sysref_ddly);
lmk->sysref_mux = LMK04832_VAL_SYSREF_MUX_CONTINUOUS;
device_property_read_u32(lmk->dev, "ti,sysref-mux",
&lmk->sysref_mux);
lmk->sync_mode = LMK04832_VAL_SYNC_MODE_OFF;
device_property_read_u32(lmk->dev, "ti,sync-mode",
&lmk->sync_mode);
lmk->sysref_pulse_cnt = 4;
device_property_read_u32(lmk->dev, "ti,sysref-pulse-count",
&lmk->sysref_pulse_cnt);
for_each_child_of_node(lmk->dev->of_node, child) {
int reg;
ret = of_property_read_u32(child, "reg", &reg);
if (ret) {
dev_err(lmk->dev, "missing reg property in child: %s\n",
child->full_name);
of_node_put(child);
goto err_disable_oscin;
}
of_property_read_u32(child, "ti,clkout-fmt",
&lmk->clkout[reg].format);
if (lmk->clkout[reg].format >= 0x0a && reg % 2 == 0
&& reg != 8 && reg != 10)
dev_err(lmk->dev, "invalid format for clkout%02d\n",
reg);
lmk->clkout[reg].sysref =
of_property_read_bool(child, "ti,clkout-sysref");
}
lmk->regmap = devm_regmap_init_spi(spi, &regmap_config);
if (IS_ERR(lmk->regmap)) {
dev_err(lmk->dev, "%s: regmap allocation failed: %ld\n",
__func__, PTR_ERR(lmk->regmap));
ret = PTR_ERR(lmk->regmap);
goto err_disable_oscin;
}
regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_RESET);
if (!(spi->mode & SPI_3WIRE)) {
device_property_read_u32(lmk->dev, "ti,spi-4wire-rdbk",
&rdbk_pin);
ret = lmk04832_set_spi_rdbk(lmk, rdbk_pin);
if (ret)
goto err_disable_oscin;
}
regmap_bulk_read(lmk->regmap, LMK04832_REG_ID_PROD_MSB, &tmp, 3);
if ((tmp[0] << 8 | tmp[1]) != info->pid || tmp[2] != info->maskrev) {
dev_err(lmk->dev, "unsupported device type: pid 0x%04x, maskrev 0x%02x\n",
tmp[0] << 8 | tmp[1], tmp[2]);
ret = -EINVAL;
goto err_disable_oscin;
}
ret = lmk04832_register_vco(lmk);
if (ret) {
dev_err(lmk->dev, "failed to init device clock path\n");
goto err_disable_oscin;
}
if (lmk->vco_rate) {
dev_info(lmk->dev, "setting VCO rate to %u Hz\n", lmk->vco_rate);
ret = clk_set_rate(lmk->vco.clk, lmk->vco_rate);
if (ret) {
dev_err(lmk->dev, "failed to set VCO rate\n");
goto err_disable_oscin;
}
}
ret = lmk04832_register_sclk(lmk);
if (ret) {
dev_err(lmk->dev, "failed to init SYNC/SYSREF clock path\n");
goto err_disable_oscin;
}
for (i = 0; i < info->num_channels; i++) {
ret = lmk04832_register_clkout(lmk, i);
if (ret) {
dev_err(lmk->dev, "failed to register clk %d\n", i);
goto err_disable_oscin;
}
}
lmk->clk_data->num = info->num_channels;
ret = devm_of_clk_add_hw_provider(lmk->dev, of_clk_hw_onecell_get,
lmk->clk_data);
if (ret) {
dev_err(lmk->dev, "failed to add provider (%d)\n", ret);
goto err_disable_oscin;
}
spi_set_drvdata(spi, lmk);
return 0;
err_disable_oscin:
clk_disable_unprepare(lmk->oscin);
return ret;
}
static void lmk04832_remove(struct spi_device *spi)
{
struct lmk04832 *lmk = spi_get_drvdata(spi);
clk_disable_unprepare(lmk->oscin);
}
static const struct spi_device_id lmk04832_id[] = {
{ "lmk04832", LMK04832 },
{}
};
MODULE_DEVICE_TABLE(spi, lmk04832_id);
static const struct of_device_id lmk04832_of_id[] = {
{ .compatible = "ti,lmk04832" },
{}
};
MODULE_DEVICE_TABLE(of, lmk04832_of_id);
static struct spi_driver lmk04832_driver = {
.driver = {
.name = "lmk04832",
.of_match_table = lmk04832_of_id,
},
.probe = lmk04832_probe,
.remove = lmk04832_remove,
.id_table = lmk04832_id,
};
module_spi_driver(lmk04832_driver);
MODULE_AUTHOR("Liam Beguin <lvb@xiphos.com>");
MODULE_DESCRIPTION("Texas Instruments LMK04832");
MODULE_LICENSE("GPL v2");