linux-next/drivers/clk/clk-sp7021.c
Yang Yingliang 1004c346a2 clk: sp7021: fix return value check in sp7021_clk_probe()
devm_platform_ioremap_resource() never returns NULL pointer,
it will return ERR_PTR() when it fails, so replace the check
with IS_ERR().

Fixes: d54c1fd4a5 ("clk: Add Sunplus SP7021 clock driver")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Link: https://lore.kernel.org/r/20231128133016.2494699-1-yangyingliang@huawei.com
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2023-12-16 17:10:17 -08:00

713 lines
15 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/*
* Copyright (C) Sunplus Technology Co., Ltd.
* All rights reserved.
*/
#include <linux/module.h>
#include <linux/clk-provider.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <dt-bindings/clock/sunplus,sp7021-clkc.h>
/* speical div_width values for PLLTV/PLLA */
#define DIV_TV 33
#define DIV_A 34
/* PLLTV parameters */
enum {
SEL_FRA,
SDM_MOD,
PH_SEL,
NFRA,
DIVR,
DIVN,
DIVM,
P_MAX
};
#define MASK_SEL_FRA GENMASK(1, 1)
#define MASK_SDM_MOD GENMASK(2, 2)
#define MASK_PH_SEL GENMASK(4, 4)
#define MASK_NFRA GENMASK(12, 6)
#define MASK_DIVR GENMASK(8, 7)
#define MASK_DIVN GENMASK(7, 0)
#define MASK_DIVM GENMASK(14, 8)
/* HIWORD_MASK FIELD_PREP */
#define HWM_FIELD_PREP(mask, value) \
({ \
u64 _m = mask; \
(_m << 16) | FIELD_PREP(_m, value); \
})
struct sp_pll {
struct clk_hw hw;
void __iomem *reg;
spinlock_t lock; /* lock for reg */
int div_shift;
int div_width;
int pd_bit; /* power down bit idx */
int bp_bit; /* bypass bit idx */
unsigned long brate; /* base rate, TODO: replace brate with muldiv */
u32 p[P_MAX]; /* for hold PLLTV/PLLA parameters */
};
#define to_sp_pll(_hw) container_of(_hw, struct sp_pll, hw)
struct sp_clk_gate_info {
u16 reg; /* reg_index_shift */
u16 ext_parent; /* parent is extclk */
};
static const struct sp_clk_gate_info sp_clk_gates[] = {
{ 0x02 },
{ 0x05 },
{ 0x06 },
{ 0x07 },
{ 0x09 },
{ 0x0b, 1 },
{ 0x0f, 1 },
{ 0x14 },
{ 0x15 },
{ 0x16 },
{ 0x17 },
{ 0x18, 1 },
{ 0x19, 1 },
{ 0x1a, 1 },
{ 0x1b, 1 },
{ 0x1c, 1 },
{ 0x1d, 1 },
{ 0x1e },
{ 0x1f, 1 },
{ 0x20 },
{ 0x21 },
{ 0x22 },
{ 0x23 },
{ 0x24 },
{ 0x25 },
{ 0x26 },
{ 0x2a },
{ 0x2b },
{ 0x2d },
{ 0x2e },
{ 0x30 },
{ 0x31 },
{ 0x32 },
{ 0x33 },
{ 0x3d },
{ 0x3e },
{ 0x3f },
{ 0x42 },
{ 0x44 },
{ 0x4b },
{ 0x4c },
{ 0x4d },
{ 0x4e },
{ 0x4f },
{ 0x50 },
{ 0x55 },
{ 0x60 },
{ 0x61 },
{ 0x6a },
{ 0x73 },
{ 0x86 },
{ 0x8a },
{ 0x8b },
{ 0x8d },
{ 0x8e },
{ 0x8f },
{ 0x90 },
{ 0x92 },
{ 0x93 },
{ 0x95 },
{ 0x96 },
{ 0x97 },
{ 0x98 },
{ 0x99 },
};
#define _M 1000000UL
#define F_27M (27 * _M)
/*********************************** PLL_TV **********************************/
/* TODO: set proper FVCO range */
#define FVCO_MIN (100 * _M)
#define FVCO_MAX (200 * _M)
#define F_MIN (FVCO_MIN / 8)
#define F_MAX (FVCO_MAX)
static long plltv_integer_div(struct sp_pll *clk, unsigned long freq)
{
/* valid m values: 27M must be divisible by m */
static const u32 m_table[] = {
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32
};
u32 m, n, r;
unsigned long fvco, nf;
long ret;
freq = clamp(freq, F_MIN, F_MAX);
/* DIVR 0~3 */
for (r = 0; r <= 3; r++) {
fvco = freq << r;
if (fvco <= FVCO_MAX)
break;
}
/* DIVM */
for (m = 0; m < ARRAY_SIZE(m_table); m++) {
nf = fvco * m_table[m];
n = nf / F_27M;
if ((n * F_27M) == nf)
break;
}
if (m >= ARRAY_SIZE(m_table)) {
ret = -EINVAL;
goto err_not_found;
}
/* save parameters */
clk->p[SEL_FRA] = 0;
clk->p[DIVR] = r;
clk->p[DIVN] = n;
clk->p[DIVM] = m_table[m];
return freq;
err_not_found:
pr_err("%s: %s freq:%lu not found a valid setting\n",
__func__, clk_hw_get_name(&clk->hw), freq);
return ret;
}
/* parameters for PLLTV fractional divider */
static const u32 pt[][5] = {
/* conventional fractional */
{
1, /* factor */
5, /* 5 * p0 (nint) */
1, /* 1 * p0 */
F_27M, /* F_27M / p0 */
1, /* p0 / p2 */
},
/* phase rotation */
{
10, /* factor */
54, /* 5.4 * p0 (nint) */
2, /* 0.2 * p0 */
F_27M / 10, /* F_27M / p0 */
5, /* p0 / p2 */
},
};
static const u32 sdm_mod_vals[] = { 91, 55 };
static long plltv_fractional_div(struct sp_pll *clk, unsigned long freq)
{
u32 m, r;
u32 nint, nfra;
u32 df_quotient_min = 210000000;
u32 df_remainder_min = 0;
unsigned long fvco, nf, f, fout = 0;
int sdm, ph;
freq = clamp(freq, F_MIN, F_MAX);
/* DIVR 0~3 */
for (r = 0; r <= 3; r++) {
fvco = freq << r;
if (fvco <= FVCO_MAX)
break;
}
f = F_27M >> r;
/* PH_SEL */
for (ph = ARRAY_SIZE(pt) - 1; ph >= 0; ph--) {
const u32 *pp = pt[ph];
/* SDM_MOD */
for (sdm = 0; sdm < ARRAY_SIZE(sdm_mod_vals); sdm++) {
u32 mod = sdm_mod_vals[sdm];
/* DIVM 1~32 */
for (m = 1; m <= 32; m++) {
u32 df; /* diff freq */
u32 df_quotient, df_remainder;
nf = fvco * m;
nint = nf / pp[3];
if (nint < pp[1])
continue;
if (nint > pp[1])
break;
nfra = (((nf % pp[3]) * mod * pp[4]) + (F_27M / 2)) / F_27M;
if (nfra) {
u32 df0 = f * (nint + pp[2]) / pp[0];
u32 df1 = f * (mod - nfra) / mod / pp[4];
df = df0 - df1;
} else {
df = f * (nint) / pp[0];
}
df_quotient = df / m;
df_remainder = ((df % m) * 1000) / m;
if (freq > df_quotient) {
df_quotient = freq - df_quotient - 1;
df_remainder = 1000 - df_remainder;
} else {
df_quotient = df_quotient - freq;
}
if (df_quotient_min > df_quotient ||
(df_quotient_min == df_quotient &&
df_remainder_min > df_remainder)) {
/* found a closer freq, save parameters */
clk->p[SEL_FRA] = 1;
clk->p[SDM_MOD] = sdm;
clk->p[PH_SEL] = ph;
clk->p[NFRA] = nfra;
clk->p[DIVR] = r;
clk->p[DIVM] = m;
fout = df / m;
df_quotient_min = df_quotient;
df_remainder_min = df_remainder;
}
}
}
}
if (!fout) {
pr_err("%s: %s freq:%lu not found a valid setting\n",
__func__, clk_hw_get_name(&clk->hw), freq);
return -EINVAL;
}
return fout;
}
static long plltv_div(struct sp_pll *clk, unsigned long freq)
{
if (freq % 100)
return plltv_fractional_div(clk, freq);
return plltv_integer_div(clk, freq);
}
static int plltv_set_rate(struct sp_pll *clk)
{
unsigned long flags;
u32 r0, r1, r2;
r0 = BIT(clk->bp_bit + 16);
r0 |= HWM_FIELD_PREP(MASK_SEL_FRA, clk->p[SEL_FRA]);
r0 |= HWM_FIELD_PREP(MASK_SDM_MOD, clk->p[SDM_MOD]);
r0 |= HWM_FIELD_PREP(MASK_PH_SEL, clk->p[PH_SEL]);
r0 |= HWM_FIELD_PREP(MASK_NFRA, clk->p[NFRA]);
r1 = HWM_FIELD_PREP(MASK_DIVR, clk->p[DIVR]);
r2 = HWM_FIELD_PREP(MASK_DIVN, clk->p[DIVN] - 1);
r2 |= HWM_FIELD_PREP(MASK_DIVM, clk->p[DIVM] - 1);
spin_lock_irqsave(&clk->lock, flags);
writel(r0, clk->reg);
writel(r1, clk->reg + 4);
writel(r2, clk->reg + 8);
spin_unlock_irqrestore(&clk->lock, flags);
return 0;
}
/*********************************** PLL_A ***********************************/
/* from Q628_PLLs_REG_setting.xlsx */
static const struct {
u32 rate;
u32 regs[5];
} pa[] = {
{
.rate = 135475200,
.regs = {
0x4801,
0x02df,
0x248f,
0x0211,
0x33e9
}
},
{
.rate = 147456000,
.regs = {
0x4801,
0x1adf,
0x2490,
0x0349,
0x33e9
}
},
{
.rate = 196608000,
.regs = {
0x4801,
0x42ef,
0x2495,
0x01c6,
0x33e9
}
},
};
static int plla_set_rate(struct sp_pll *clk)
{
const u32 *pp = pa[clk->p[0]].regs;
unsigned long flags;
int i;
spin_lock_irqsave(&clk->lock, flags);
for (i = 0; i < ARRAY_SIZE(pa->regs); i++)
writel(0xffff0000 | pp[i], clk->reg + (i * 4));
spin_unlock_irqrestore(&clk->lock, flags);
return 0;
}
static long plla_round_rate(struct sp_pll *clk, unsigned long rate)
{
int i = ARRAY_SIZE(pa);
while (--i) {
if (rate >= pa[i].rate)
break;
}
clk->p[0] = i;
return pa[i].rate;
}
/********************************** SP_PLL ***********************************/
static long sp_pll_calc_div(struct sp_pll *clk, unsigned long rate)
{
u32 fbdiv;
u32 max = 1 << clk->div_width;
fbdiv = DIV_ROUND_CLOSEST(rate, clk->brate);
if (fbdiv > max)
fbdiv = max;
return fbdiv;
}
static long sp_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct sp_pll *clk = to_sp_pll(hw);
long ret;
if (rate == *prate) {
ret = *prate; /* bypass */
} else if (clk->div_width == DIV_A) {
ret = plla_round_rate(clk, rate);
} else if (clk->div_width == DIV_TV) {
ret = plltv_div(clk, rate);
if (ret < 0)
ret = *prate;
} else {
ret = sp_pll_calc_div(clk, rate) * clk->brate;
}
return ret;
}
static unsigned long sp_pll_recalc_rate(struct clk_hw *hw,
unsigned long prate)
{
struct sp_pll *clk = to_sp_pll(hw);
u32 reg = readl(clk->reg);
unsigned long ret;
if (reg & BIT(clk->bp_bit)) {
ret = prate; /* bypass */
} else if (clk->div_width == DIV_A) {
ret = pa[clk->p[0]].rate;
} else if (clk->div_width == DIV_TV) {
u32 m, r, reg2;
r = FIELD_GET(MASK_DIVR, readl(clk->reg + 4));
reg2 = readl(clk->reg + 8);
m = FIELD_GET(MASK_DIVM, reg2) + 1;
if (reg & MASK_SEL_FRA) {
/* fractional divider */
u32 sdm = FIELD_GET(MASK_SDM_MOD, reg);
u32 ph = FIELD_GET(MASK_PH_SEL, reg);
u32 nfra = FIELD_GET(MASK_NFRA, reg);
const u32 *pp = pt[ph];
unsigned long r0, r1;
ret = prate >> r;
r0 = ret * (pp[1] + pp[2]) / pp[0];
r1 = ret * (sdm_mod_vals[sdm] - nfra) / sdm_mod_vals[sdm] / pp[4];
ret = (r0 - r1) / m;
} else {
/* integer divider */
u32 n = FIELD_GET(MASK_DIVN, reg2) + 1;
ret = (prate / m * n) >> r;
}
} else {
u32 fbdiv = ((reg >> clk->div_shift) & ((1 << clk->div_width) - 1)) + 1;
ret = clk->brate * fbdiv;
}
return ret;
}
static int sp_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct sp_pll *clk = to_sp_pll(hw);
unsigned long flags;
u32 reg;
reg = BIT(clk->bp_bit + 16); /* HIWORD_MASK */
if (rate == prate) {
reg |= BIT(clk->bp_bit); /* bypass */
} else if (clk->div_width == DIV_A) {
return plla_set_rate(clk);
} else if (clk->div_width == DIV_TV) {
return plltv_set_rate(clk);
} else if (clk->div_width) {
u32 fbdiv = sp_pll_calc_div(clk, rate);
u32 mask = GENMASK(clk->div_shift + clk->div_width - 1, clk->div_shift);
reg |= mask << 16;
reg |= ((fbdiv - 1) << clk->div_shift) & mask;
}
spin_lock_irqsave(&clk->lock, flags);
writel(reg, clk->reg);
spin_unlock_irqrestore(&clk->lock, flags);
return 0;
}
static int sp_pll_enable(struct clk_hw *hw)
{
struct sp_pll *clk = to_sp_pll(hw);
writel(BIT(clk->pd_bit + 16) | BIT(clk->pd_bit), clk->reg);
return 0;
}
static void sp_pll_disable(struct clk_hw *hw)
{
struct sp_pll *clk = to_sp_pll(hw);
writel(BIT(clk->pd_bit + 16), clk->reg);
}
static int sp_pll_is_enabled(struct clk_hw *hw)
{
struct sp_pll *clk = to_sp_pll(hw);
return readl(clk->reg) & BIT(clk->pd_bit);
}
static const struct clk_ops sp_pll_ops = {
.enable = sp_pll_enable,
.disable = sp_pll_disable,
.is_enabled = sp_pll_is_enabled,
.round_rate = sp_pll_round_rate,
.recalc_rate = sp_pll_recalc_rate,
.set_rate = sp_pll_set_rate
};
static const struct clk_ops sp_pll_sub_ops = {
.enable = sp_pll_enable,
.disable = sp_pll_disable,
.is_enabled = sp_pll_is_enabled,
.recalc_rate = sp_pll_recalc_rate,
};
static struct clk_hw *sp_pll_register(struct device *dev, const char *name,
const struct clk_parent_data *parent_data,
void __iomem *reg, int pd_bit, int bp_bit,
unsigned long brate, int shift, int width,
unsigned long flags)
{
struct sp_pll *pll;
struct clk_hw *hw;
struct clk_init_data initd = {
.name = name,
.parent_data = parent_data,
.ops = (bp_bit >= 0) ? &sp_pll_ops : &sp_pll_sub_ops,
.num_parents = 1,
.flags = flags,
};
int ret;
pll = devm_kzalloc(dev, sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
pll->hw.init = &initd;
pll->reg = reg;
pll->pd_bit = pd_bit;
pll->bp_bit = bp_bit;
pll->brate = brate;
pll->div_shift = shift;
pll->div_width = width;
spin_lock_init(&pll->lock);
hw = &pll->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw;
}
#define PLLA_CTL (pll_base + 0x1c)
#define PLLE_CTL (pll_base + 0x30)
#define PLLF_CTL (pll_base + 0x34)
#define PLLTV_CTL (pll_base + 0x38)
static int sp7021_clk_probe(struct platform_device *pdev)
{
static const u32 sp_clken[] = {
0x67ef, 0x03ff, 0xff03, 0xfff0, 0x0004, /* G0.1~5 */
0x0000, 0x8000, 0xffff, 0x0040, 0x0000, /* G0.6~10 */
};
static struct clk_parent_data pd_ext, pd_sys, pd_e;
struct device *dev = &pdev->dev;
void __iomem *clk_base, *pll_base, *sys_base;
struct clk_hw_onecell_data *clk_data;
struct clk_hw **hws;
int i;
clk_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(clk_base))
return PTR_ERR(clk_base);
pll_base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(pll_base))
return PTR_ERR(pll_base);
sys_base = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(sys_base))
return PTR_ERR(sys_base);
/* enable default clks */
for (i = 0; i < ARRAY_SIZE(sp_clken); i++)
writel((sp_clken[i] << 16) | sp_clken[i], clk_base + i * 4);
clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, CLK_MAX),
GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->num = CLK_MAX;
hws = clk_data->hws;
pd_ext.index = 0;
/* PLLs */
hws[PLL_A] = sp_pll_register(dev, "plla", &pd_ext, PLLA_CTL,
11, 12, 27000000, 0, DIV_A, 0);
if (IS_ERR(hws[PLL_A]))
return PTR_ERR(hws[PLL_A]);
hws[PLL_E] = sp_pll_register(dev, "plle", &pd_ext, PLLE_CTL,
6, 2, 50000000, 0, 0, 0);
if (IS_ERR(hws[PLL_E]))
return PTR_ERR(hws[PLL_E]);
pd_e.hw = hws[PLL_E];
hws[PLL_E_2P5] = sp_pll_register(dev, "plle_2p5", &pd_e, PLLE_CTL,
13, -1, 2500000, 0, 0, 0);
if (IS_ERR(hws[PLL_E_2P5]))
return PTR_ERR(hws[PLL_E_2P5]);
hws[PLL_E_25] = sp_pll_register(dev, "plle_25", &pd_e, PLLE_CTL,
12, -1, 25000000, 0, 0, 0);
if (IS_ERR(hws[PLL_E_25]))
return PTR_ERR(hws[PLL_E_25]);
hws[PLL_E_112P5] = sp_pll_register(dev, "plle_112p5", &pd_e, PLLE_CTL,
11, -1, 112500000, 0, 0, 0);
if (IS_ERR(hws[PLL_E_112P5]))
return PTR_ERR(hws[PLL_E_112P5]);
hws[PLL_F] = sp_pll_register(dev, "pllf", &pd_ext, PLLF_CTL,
0, 10, 13500000, 1, 4, 0);
if (IS_ERR(hws[PLL_F]))
return PTR_ERR(hws[PLL_F]);
hws[PLL_TV] = sp_pll_register(dev, "plltv", &pd_ext, PLLTV_CTL,
0, 15, 27000000, 0, DIV_TV, 0);
if (IS_ERR(hws[PLL_TV]))
return PTR_ERR(hws[PLL_TV]);
hws[PLL_TV_A] = devm_clk_hw_register_divider(dev, "plltv_a", "plltv", 0,
PLLTV_CTL + 4, 5, 1,
CLK_DIVIDER_POWER_OF_TWO,
&to_sp_pll(hws[PLL_TV])->lock);
if (IS_ERR(hws[PLL_TV_A]))
return PTR_ERR(hws[PLL_TV_A]);
/* system clock, should not be disabled */
hws[PLL_SYS] = sp_pll_register(dev, "pllsys", &pd_ext, sys_base,
10, 9, 13500000, 0, 4, CLK_IS_CRITICAL);
if (IS_ERR(hws[PLL_SYS]))
return PTR_ERR(hws[PLL_SYS]);
pd_sys.hw = hws[PLL_SYS];
/* gates */
for (i = 0; i < ARRAY_SIZE(sp_clk_gates); i++) {
char name[10];
u32 j = sp_clk_gates[i].reg;
struct clk_parent_data *pd = sp_clk_gates[i].ext_parent ? &pd_ext : &pd_sys;
sprintf(name, "%02d_0x%02x", i, j);
hws[i] = devm_clk_hw_register_gate_parent_data(dev, name, pd, 0,
clk_base + (j >> 4) * 4,
j & 0x0f,
CLK_GATE_HIWORD_MASK,
NULL);
if (IS_ERR(hws[i]))
return PTR_ERR(hws[i]);
}
return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data);
}
static const struct of_device_id sp7021_clk_dt_ids[] = {
{ .compatible = "sunplus,sp7021-clkc" },
{ }
};
MODULE_DEVICE_TABLE(of, sp7021_clk_dt_ids);
static struct platform_driver sp7021_clk_driver = {
.probe = sp7021_clk_probe,
.driver = {
.name = "sp7021-clk",
.of_match_table = sp7021_clk_dt_ids,
},
};
module_platform_driver(sp7021_clk_driver);
MODULE_AUTHOR("Sunplus Technology");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Clock driver for Sunplus SP7021 SoC");